STRUCTURAL EVALUATION OF PROCESS INDUCED DEVIATIONS DURING COMPOSITE LAYUP AND CURING

Dr. T. Wille, F. Heinecke, R. Hein, M. Liebisch (DLR)

FULLCOMP Workshop - Novel Developments in Failure Analysis of

Composite Materials and Structures

Hannover, 30th July 2018

Knowledge for Tomorrow

Outline

- Introduction
- Probabilistic process simulation
- Effects of defects
- In-situ structural evaluation during fibre deposition
- In-situ structural evaluation of process induced distortions

• Well known potentials of composites, such as

High weight specific mechanical properties

[VDI-Nachrichten Nr. 37, 2004]

Anisotropic Tailoring

[HTP connection beam, MAAXIMUS project]

Integral Design

[Integral manufactured letter structure, CRUVA project]

Function Integration

[SHM integrated door surround structure, SARISTU project]

• Great variety of composite materials and manufacturing technologies, such as

Winding

Preforming (COPRO® Technology)

Automated Fibre Placement

Resin Transfer Moulding

Autoclave

• Property development during manufacturing, depending on material systems, process technology, process

parameters

Residual stress in fiber direction after curing

- Remaining uncertainties
 - Material properties and tolerances
 - Process parameters and tolerances
- Inevitable deviations or faults. Fibre deposition

- Fibre orientation
- Waviness
- Gaps, overlaps
- Folds, twists
- Foreign objects

Tow width variation

Resin infiltration

- Fibre volume variation
- **Pores**
- Resin rich areas
- Air entrapments

Temperature distribution

Curing

- Overheating
- Degree of cure variation
- Chemical shrinkage, distortion
- **Residual Stresses**
- Delamination

- Careful tolerance management required
 - Definition of composite engineering requirements (CER) and allowables (trade-off between accuracy and efficiency during production)
 - Quality assurance methods wrt. predefined tolerances
 - Process (temperature, pressure, cure, ...)
 - Part (visual inspection, ultrasonic testing, geometry, ...)
 - Actual structural properties analysed in case of particular non-conformities
 - High non-added value costs due to NDT effort or non-conformities

• Developments of composite process chains

- Advanced methods under development and implementation
 - Probabilistic process simulation
 - Enhanced effects-of-defects analyses
 - Online process monitoring
 - In-situ structural evaluation of deviations

Serving Digital Twin

• Prediction of process induced distortions for robust tool design

[Liebisch et al.: Probabilistic process simulation to predict process induced distortions of a composite frame, CEAS Aeronautical Journal, 2018]

- · Deterministic numerical analysis of composite curing
 - 1) Heat Transfer Analysis (incl. cure model, exothermal reaction, thermal interaction)
 - → Degree of cure & T_a fields
 - → Temperature fields
 - 2) Structural Analysis (incl. thermal and chemical shrinkage, viscoelasticity, tool-part interaction)
 - → Distortions
 - → Residual Stresses
 - 3) Nominal tool geometry compensation
 - → No information about probabilistic distribution or robustness
 - → Efficient method required for large parameter space

- Probabilistic analysis procedure (1/2)
 - Sensitivity analysis, definition of area of interest/ parameter space
 - · Design of Experiments, e.g. Latin Hypercube Design with Maximin method
 - FE analysis for e.g. 50 design points

Parameter	range	μ	σ_{abs}	σ _{rel} [%]
material uncertainties				
CTE _L , [ppm/K]*	-0.50.5	0.0	0.167	_
CTE _T , [ppm/K]*	27.240.8	34.0	2.167	6.67
resin shrinkage [%]	2.493.73	3.11	0.208	6.67
point of gelation [%]	50.070.0	60.0	3.3	5.55
process deviations				
Cure temp. [°C]	150160	155	1.33	-
Cure time [min]	200220	210	3.33	-
Cooling time [min]	25120	60	10	_

- Probabilistic analysis procedure (2/2)
 - Surrogate model derivation, e.g. Kriging method and cross validation for evaluating predictive quality

 $PID = f(CTEL, CTET, \beta_R, GP, Tcure, tcure \ t_{cool})$

• Monte Carlo simulation (100.000 points) for deriving confidence interval and

[Liebisch et al.: Probabilistic process simulation to predict process induced distortions of a composite frame, CEAS Aeronautical Journal, 2018]

Validation

analysis results:		
—- mean predictionarea of 90% conficencearea of 100% confidence		
measurement results:		
O Frame 001		
♦ Frame 002		
△ Frame 003		

[Liebisch et al.: Probabilistic process simulation to predict process induced distortions of a composite frame, CEAS Aeronautical Journal, 2018]

- Defect characterisation depending on defect types, e.g. for AFP process
 - · Misc. causes for deviations from design to manufacturing

Methods to determine knock-down factors (KDF)

Experimental

- Mostly component cut-out specimens
- Supplementary coupon specimens with artificial defects
- Limited statistical assurance
- Extremely high costs
- Derivation of conservative KDF functions (lower bound)

Numerical

• 2D/3D FFM models

Validation

- Homogenisation of material properties considering load redistribution
- Separated and combined defect analysis
- Model validity to be proven (e.g. fidelity, failure criteria)
- Derivation of distinct KDF functions

Analytical

- Determination of stiffness and strength
- Limited application on laminate level
- · Simplified/ idealized defects

Verification

 Derived properties and KDF for subsequent numerical analyses on laminate/ component level

Transferring "real" world into model world

 Homogenisation approach to determine layer-wise KDFs of the defective laminate by averaging the stress and strain response from unit load cases

$$\begin{cases}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{12}
\end{cases} =
\begin{cases}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{12}
\end{cases} \longrightarrow
\begin{cases}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{cases} \longrightarrow
KDF_{E11} =
\begin{cases}
E_{11} \\
E_{11} \\
Pristine
\end{cases}, ...$$

• Calculation of strength KDFs by relating failure indices of defective and pristine layers $KDF = \frac{FI^{defective}}{FI^{pristine}}$

Examples

[Heinecke et al.: In-situ structural evaluation during the fibre deposition process of composite manufacturing, CEAS Aeronautical Journal, 9:123–133, 2018]

• Derivation of KDF functions (e.g. Kriging) of laminate property within defect parameter space

Example: [-45°, 45°, 0°, 90°, 0°] laminate with

In-situ structural evaluation during fibre deposition

• Effects of defects analysis completed prior to manufacturing

· Assessment process during manufacturing

In-situ structural evaluation during fibre deposition

- Example: Demonstration on Wing Cover
 - Nominal design and analysis (prior to manufacturing)

2. AFP manufacturing incl. online measurement

3. In-situ data transfer of defects to manufacturing database

4. In-situ mapping of material properties, model update and structural as-built analysis (re-evaluation)

[Heinecke et al.: In-situ structural evaluation during the fibre deposition process of composite manufacturing, CEAS Aeronautical Journal, 9:123–133, 2018]

In-situ structural evaluation during curing

Prior to manufacturing

• Analysis of manufacturing process and structural requirements

• DoE for varying material and process parameters

• Surrogate models of part distortion and residual stresses

[Hein et al.: Prediction of process-induced distortions and residual stresses of a composite suspension blade, ISCM, 2016]

In-situ structural evaluation during curing

During curing

- 1. Process monitoring
- 2. In-situ feedback of on sensor data (temperature) and model update
- 3. In-situ process analysis and prediction of final distortion
- 4. In-situ evaluation with respect to structural requirements

1. Temperature, cure monitoring

2. As-is cure cycle update with sensor data at time t i

3. Prediction of distortion at time t final

4. Tolerance check wrt. final process induced distortions

[Hein et al.: Prediction of process-induced distortions and residual stresses of a composite suspension blade, ISCM, 2016]

- The research leading to these results has received funding from European Community's
 - FP7-2013-NMP-ICT-FoF Project
 ECOMISE Enabling Next Generation Composite Manufacturing by In-Situ Structural Evaluation and Process Adjustment, GA 608667
 - FP7-AAT-2007-RTD-1 Project
 MAAXIMUS More Affordable Aircraft through Extended, Integrated and Mature Numerical Sizing,
 GA 213371

Contact

Dr.-Ing. Tobias Wille

Head of Structural Mechanics Department Institute of Composite Structures and Adaptive Systems German Aerospace Center (DLR)

Phone: +49 531 295-3012

Mail: tobias.wille@dlr.de

Web: www.DLR.de

