Standoff detection and classification of chemical and biological hazardous substances combining temporal and spectral laser induced fluorescence techniques

F. Gebert (1), L. Fellner (1), K. Grünewald (1), M. Kraus (1), C. Pargmann (1), A. Walter (1), F. Duschek (1)

(1) German Aerospace Center, Institute of Technical Physics, Langer Grund, Lampoldshausen, 74239 Hardthausen, Germany.
Fast detection and early identification of hazardous substances with low false alarm rates and low risk for people are essential!
Detection techniques

Laser based detection
- Fast localization / time-dependent mapping
- Classification
- Limited identification

Particle samplers
- Identification ability
- "Right" positioning?
- Origin / movement / distribution of cloud?

Local information:
- Gas chromatograph / mass spectrometer*
- UAV*

* Wikimedia Commons
creativecommons.org/licenses/by-sa/4.0
LIF detection setup

Spectrally resolved LIF

Temporally resolved LIF

Desired setup features:
- Combination of LIF techniques to obtain non-redundant information for the classification process
- Fast data acquisition to enable online detection
- Compact system to be able to transport setup to external laboratory
Experimental setup

Setup features:
- 32 spectral channels + up to 4 temporal channels
- 100 Hz data acquisition rate (complete spectral and temporal dataset excited by laser pulses with two different excitation wavelengths)
- Modular and transportable system
Multiple reflections between plane-parallel mirrors are for temporal separation of laser pulses of different wavelengths.

Up to 40 reflections possible → Delay up to 120 ns
Detection system

1st fiber bundle from telescope

Spectrometer

32 chan. PMT array

HV

DAQ with internal gating (Vertilon)

Computer

Laser control electronics

2nd fiber bundle from telescope

PMT and optical filter

Data transfer and control

Computer

Oscilloscope

Computer

Trigger
Internal gating of DAQ system

Excitation pulse 266 nm

Fluorescence

gate bank 1

t₀

t₀ + t_{propagation}

Excitation pulse 355 nm

Fluorescence

gate bank 2

t_{delay}

t_{delay} + t_{propagation}
Spectra of three bacteria

For 266 nm excitation partly overlap of spectral data for *B. thuringiensis* and *M. luteus*. For 355 nm excitation regions of distinct signals exist for all three bacteria.
Fluorescence decay of three bacteria

Excitation: 266 nm; detection: 310 nm

Excitation: 355 nm; detection: 460 nm

For 266 nm excitation time signal overlaps for all three bacteria. For 355 nm excitation regions of distinct signals exist.
Classification using C5.0 decision tree

- 500 spectral and fluorescence decay signals for each bacterial sample and excitation wavelength
- Randomized samples for training and testing
- 75% used for training, 25% used for testing the algorithm
- Not optimized parameters used for classification

Spectral data

<table>
<thead>
<tr>
<th></th>
<th>B. thur.</th>
<th>M. luteus</th>
<th>O. ureth.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. thur.</td>
<td>124</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>M. luteus</td>
<td>0</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>O. ureth.</td>
<td>1</td>
<td>5</td>
<td>121</td>
</tr>
</tbody>
</table>

Accuracy: $> 97\%$

Fluorescence decay dataset

<table>
<thead>
<tr>
<th></th>
<th>B. thur.</th>
<th>M. luteus</th>
<th>O. ureth.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. thur.</td>
<td>122</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>M. luteus</td>
<td>0</td>
<td>125</td>
<td>1</td>
</tr>
<tr>
<td>O. ureth.</td>
<td>3</td>
<td>0</td>
<td>122</td>
</tr>
</tbody>
</table>

Accuracy: $> 98\%$

Combined dataset

<table>
<thead>
<tr>
<th></th>
<th>B. thur.</th>
<th>M. luteus</th>
<th>O. ureth.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. thur.</td>
<td>122</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>M. luteus</td>
<td>0</td>
<td>125</td>
<td>1</td>
</tr>
<tr>
<td>O. ureth.</td>
<td>3</td>
<td>0</td>
<td>122</td>
</tr>
</tbody>
</table>

Accuracy: $> 98\%$
Fluorescence decay of seven bacteria

- Fluorescence intensities for excitation wavelength of 355 nm vary strongly for different bacteria
- For low intensities signal out of dynamic range of detection, making data incomparable
- Advanced classification algorithms, that neglect low intensity data, may be applied
Summary and outlook

Summary:
• Compact detection system that combines temporal and spectral LIF data
• Fast data acquisition with 100 Hz
• Identification of three bacterial samples within spectral and temporal LIF dataset possible
• Strongly varying fluorescence intensity limits use of decay signal for classification

Additional work and next Steps:
• Investigate more elaborate classification algorithms [1]
• Investigate influence of growth conditions of bacteria [2]
• Extend system and classification procedure to incorporate time signal of more bacterial chemical and background samples
• Investigate third excitation wavelength