

Efficient simulation of the through-thethickness damage composition in composite aircraft structures for use with integrated SHM systems

presented by Marc Garbade (German Aerospace Center)

Rome, 7th of August 2018

I. Acknowledgements

Damage localization & size estimation (using an integrated SHM system)

- Dr. Daniel Schmidt
- Maria Moix-Bonet
- Lars Trampe

Damage segmentation & abstraction

Christoph Dienel

Damage severity assessment

Marc Garbade

DLR-FA SHM demonstrator @ILA 2018

I. Acknowledgements

This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under H2020-CS2-CPW01-2014-01

件

II. The Big Picture

adapted from [1]

Low-fidelity multiple impact simulation

Composite aircraft structures are vulnerable to impacts by foreign objects, e.g.

- in-flight & ground hail
- ice-shedding
- tool-drop (production & maintenance)

... leading to barely visible impact damage (BVID), potentially

- remaining undetected in the structure
- accumulating up to the next maintenance date

Integrated SHM systems can identify the damage location, but

- the damage size depends strongly on the resolution of the sensor network
- There is no information about the through-thethickness damage composition

SHM measurement

*

III. A quick recap on fidelity levels

Low-fidelity models

- Limited insight in material and geometrical nonlinearities
- Low modeling effort
- Low computation cost
- High level of abstraction
- Low number of input parameters
- Highly scalable (from coupon to structure level)
- Well suited for parametric & uncertainty studies

Balanced models

- Good balance between physical accuracy & effort
- Medium computation cost
- Suited for development of meta models

High-fidelity models

Level of Effort

- Full insight in material and geometrical nonlinearities
- High modeling effort
- High computation cost
- Exact physical representation of boundary conditions
- High number of input parameters
- High physical accuracy

IV. Low-fidelity simulation methodology...

Material modeling

- Three-dimensional stress state recovery
- Use of modern three-dimensional failure criteria
- Material degradation with a lookup table

Experimental vs. virtual testing

Structural modeling

- Contact modeling by using contact laws
- Discretization with a single layer of shell elements

... in a nutshell

Application in a multiple impact simulation

Validation by means of single-drop tests

Impactor:

- stainless steel
- 3.95 *kg*
- Ø 16 mm

Target:

- 4 mm thickness
- $[(\pm 45, 0.90)_2, \pm 45.0]_s$

Projected delamination areas:

- LHS
- → C-scan result
- RHS
- → Simulation

Damage initiation database (June 2018)

General purpose	<u>Fiber breakage</u>	Matrix cracking	<u>Delamination</u>
Max nominal	• Hashin	• Hashin (2D & 3D)	• Hashin
Quad nominal	Chang & Chang	Chang & Chang	• Puck
Linear interaction	• Christensen	• Chai	• Chai
Quad interaction		• Cuntze (2004 & 2012)	Choi & Chang
Norris interaction		• Puck	Ochoa & Engblom
• Polynomial (e.g. Tsai-Wu)		• Wiegand	• Lee
Yamada & Sun		• VDI 2014	
• Ha		• Camanho	
		• SPC3D (DLR)	

Availability

- Python, Java, Fortran
- Abaqus, Ansys, Nastran

Modeling strategy

Overall strategy:

- Finite shell element model in ABAQUS Standard (S8R5)
- Damage assessment in a linear perturbation step
- Major user-defined subroutines (URDFIL, USDFLD)
 - → obtain global displacements of each node for each relevant element at the start of each increment
 - → calculate nodal displacements in the shell COS
 - → through-the-thickness stress recovery ...
 - > evaluation of damage initiation criterion in USDFLD

Three-dimensional stress state recovery:

Transverse shear stresses

Transverse normal stress

Rolfes & Rohwer [2]

Transverse normal stress [2]:

$$G(z) = [c(z)A^{-1}B - d(z)]D^{*-1}$$

$$\sigma(z) = -[\{G_{11}, G_{32}\}R_{,x} + \{G_{31}, G_{22}\}R_{,y}] + p_0$$

Transverse shear stresses [2]:

$$F(z) = [a(z)A^{-1}B - b(z)]D^{*-1}$$

$$F(z) = [a(z)A^{-1}B - b(z)]D^{*-1}$$

$$\tau_z(z) = -B_1F(z)M_{,x} - B_2F(z)M_{,y}$$

Modeling strategy

Damage severity assessment:

- DIC (Damage Influence Criterion Tang et al. [3]
- Point stress criterion
- Rankine equivalent stress

Stiffness reduction for each damage composition:

Elastic constants in <i>Pa</i>								$e_{FB} \geq 1$	$e_{MC} \geq 1$	$e_{DEL} \geq 1$		
	E_{11}	E_{22}	E_{33}	ν_{12}	ν_{13}	ν_{23}	G_{12}	G_{13}	G_{23}	-	-	-
	1.	E_{22}	E_{33}	0.	0.	0.	1.	G_{13}	G_{23}	Χ	-	-
	E_{11}	1.	1.	0.	0.	0.	G_{12}	G_{13}	G_{23}	-	Χ	-
	E_{11}	E_{22}	E_{33}	ν_{12}	ν_{13}	ν_{23}	1.	1.	1.	-	-	Χ
	1.	1.	1.	0.	0.	0.	1.	1.	1.	Χ	X	-
	E_{11}	1.	1.		0.		1.	1.	1.	-	Χ	Χ
	1.	E_{22}	E_{33}	0.	0.	0.	1.	1.	1.	Χ	-	Χ
	1.	1.	1.	0.	0.	0.	1.	1.	1.	Х	X	X

Additional reduction due to sub-laminate buckling (multiple layers can form a sub-laminate stack j) [3]:

$$R_j = \frac{N_{\mathcal{X}}/t_j}{\sigma_0}$$

$$C_{dic} = R_j C_{dmg}$$

Modeling strategy

Damage assessment workflow using the DIC [3]:

- Each damage mode (fiber, matrix & delamination) is idealized as an ellipse in the material coordinate system.
- A linear buckling analysis is used to determine knock-down factors for every delaminated stack.
- The cross-sectional stress perpendicular to the main load axis is evaluated → results in a knock-down factor w.r.t. the virgin residual strength of the laminate.

Clean Sky2

Validation of the DIC by means of single-drop tests

Short remarks:

- Validation pending
- Preliminary results are not acceptable

Target:

- 4 mm thickness
- $[(\pm 45)_5, 45]_s$

Cross

Short remarks:

- Strictly conservative
- Constant shift
- Acceptable

Target:

- 4 mm thickness
- $[(\pm 45, 0,90)_2, \pm 45,0]$

VI. Contributions to DLR-FA SHM demonstrator DLR

DLR-FA SHM demonstrator workflow:

- A small glass cylinder introduces a signal disturbance, which is located by the SHM system.
- The Damage Influence Criterion (DIC) simulation workflow is applied to a submodel of the panel surrounding the damaged area.

Use case:

Maintenance \rightarrow Is damage in need of repair?

VI. Contributions to DLR-FA SHM demonstrator DLR

Contributions to DLR-FA SHM demonstrator:

- Automated pre- & post-processing of ABAQUS simulation jobs with user-defined subroutines.
- Calculation of a local damage severity measure on panel level using the DIC.
- Damage severity assessment capability in **real-time**.

VII. Concluding remarks

Validation of the DIC by means of single-drop tests:

- Acceptable accuracy for quasi-isotropic laminates (conservative deviations)
- Almost constant shift in case of quasi-isotropic laminates \rightarrow may indicate a systematic error
- Non-acceptable results for cross-ply laminates (no extreme value points in weight function)

Points to optimize:

- Modification or reimplementation of weight function in order to work properly for all layups
- Calculate through-the-thickness damage composition on-the-fly, if sufficient data can be provided by a SHM system (energy, maximum deflection, duration)

Next challenges:

- Implementation of a similar damage severity assessment workflow for multiple impact/damage problems
- Implementation of a low-fidelity delamination growth criterion under quasi-static loading for single and multiple damage

Thank you for your attention!

Marc Garbade, M.Sc.

Email: Marc.Garbade@dlr.de
Phone: +49(0)5312953666

German Aerospace Center e.V. (DLR)

Composite Structures and Adaptive Systems | Lilienthalplatz 7 | 38108

Brunswick, Germany

*

IX. References

- [1] http://testcs.openimpact.be/green-regional-aircraft-gra (saved on 26.08.2017)
- [2] Rolfes R., & Rohwer K. (1997). Improved transverse shear stresses in composite finite elements based on first order shear deformation theory. *Int J Numer Methods Eng*, 40, 51–60.
- [3] Tang, X., Shen, Z., Chen, P., Gaedke, M. (1997). Methodology for residual strength of damaged laminated composites. In 38th Structures, Structural Dynamics, and Materials Conference (p. 1220).

