
Rethinking Ground Systems: Supporting New Mission Types
through Modularity and Standardization

Stefan A. Gärtner∗, Michael P. Geyer†, Stefan Hackel‡, Armin Hauke§, Corey O’Meara¶, and Yi Wasser‖
German Space Operations Center GSOC, DLR Oberpfaffenhofen, 82234 Weßling, Germany

We begin to see an increase in the diversity of today’s space missions: Small student-
designed satellites, unique scientific missions and fleets of commercial spacecraft are just a
few of those mission types. In order to cater for new demands on the ground system and to
offer customer-tailored solutions we started to rethink the foundations of the German Space
Operations Center (GSOC) ground system in terms of a service-oriented architecture approach
using standardized technology, mainly CCSDS Mission Operations services. We show how we
modularize our ground system, identify and clearly name the mission functions present in the
current system complete with timing information and data size requirements. We illustrate this
process by employing a concrete prototypical mission with involvement across all departments
from antenna control, data processing to mission planning and flight dynamics, and hint at
the challenges encountered along the way. The chosen technical solution is motivated and
explained, and aspects of deployment, performance, and security are discussed.

Nomenclature
CCSDS Consultative Committee for Space Data Systems
CORBA Common Object Request Broker Architecture
DLR German Aerospace Center/Deutsches Zentrum für Luft- und Raumfahrt
GSOC German Space Operations Center
HCC Holistic Control Center
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
M&C Monitor and Control
MAL Message Abstraction Layer
MDPDS Mission Data Product Distribution Services
MO Mission Operations
MQTT Message Queue Telemetry Transport
REST Representational State Transfer
SOA Service-oriented architecture
TCP/IP Transmission Control Protocol/Internet Protocol
URI Uniform Resource Identifier
XML Extensible Markup Language

∗Mission Control and Data Systems Engineer, Mission Operations, DLR German Aerospace Center, Münchner Straße 20, 82234 Weßling,
Germany, ORCID: http://orcid.org/0000-0002-4077-9851

†Deputy Group Leader Mission Control and Data Systems, Mission Operations, DLR German Aerospace Center, Münchner Straße 20, 82234
Weßling, Germany

‡Flight Dynamics Engineer, Mission Operations, DLR German Aerospace Center, Münchner Straße 20, 82234 Weßling, Germany
§Deputy Head of Department Communication and Ground Stations and HCC Project Lead, Mission Operations, DLR German Aerospace Center,

Münchner Straße 20, 82234 Weßling, Germany
¶Mission Planning System Engineer, Mission Operations, DLR German Aerospace Center, Münchner Straße 20, 82234 Weßling, Germany
‖Flight Dynamics Engineer, Mission Operations, DLR German Aerospace Center, Münchner Straße 20, 82234 Weßling, Germany

1

http://orcid.org/0000-0002-4077-9851


I. Introduction

A. Current Ground System Architecture at GSOC

The current ground operations system architecture at DLR’s German Space Operations Center (GSOC) was and is the
basis for a successful mission legacy, such as the TerraSAR, TanDEM, GRACE, or FIREBIRD missions. As such it

is flight-proven, familiar to the operations teams and—due to its multi-mission nature—under constant enhancement for
usage in upcoming missions. The ground system existing today does not form a monolithic block but is decomposed
into components, but how these components are distributed across systems and how these systems communicate is often
driven by the organizational structure of our operations center and the historic mission legacy mentioned above. As new
missions are adapted, new systems and new interfaces are devised leading to an organically growing ground system with
responsibilities, interfaces and data exchange formats that are not always explicit and clear. Every component evolves
at its own pace, interfaces between components are designed and implemented as needed, often reflecting what is
state-of-the-art in technology at the moment the interface is designed. It is not uncommon to find a variety of interfaces
in a typical GSOC ground system for a typical mission: They include the exchange of simple text files with a bespoke
format or XML, CORBA (Common Object Request Broker Architecture), REST (Representational State Transfer) web
services, or low-level binary formats that are exchanged over TCP/IP. However, the proliferation of interfaces leads
to increased maintenance cost of existing components and increased development cost of new components that need
to interact with this multitude of interfaces, which often have to be served in different versions. Some interfaces are
sparsely documented and it is not always clear how to evolve them for re-use in future missions.

B. Future Demands
At GSOC we started to rethink the foundations of our ground operations system with respect to future demands.

These demands stem from an increasing number of stakeholders, number of operations sites, number of space and/or
ground assets, and complexity of the space segment. Not all future missions exhibit all of these traits, but the overall
diversity of space missions is increasing: It is ranging from small student-designed CubeSats to satellite fleets providing
commercial services and one-of-a-kind scientific missions, just to name a few mission types. As diverse as the missions
is the customer base for their ground systems. Different customers have different needs: The more traditional mission
types demand a turnkey solution, providing all services for operating spacecraft out of one or only a few hands. Ground
systems based on this paradigm are common and it is well known how to adapt them to new missions falling roughly in
the same category. However, when confronted with requirements of new mission types, setting up and maintaining these
systems becomes a struggle—often resulting in ad-hoc additions and sparsely documented, hard-to-reuse interfaces
for those parts that need to be broken out. The activities to rethink our ground operations systems are bundled in the
“Holistic Control Center” (HCC) project, which aims at modernizing our existing ground system by modularization,
deployment streamlining, documentation, and new developments where necessary. This paper describes the prototyping
activities and technical backgrounds in context of HCC. For more information on HCC itself please refer to [1].

II. The Way to Modularization: Service-oriented Architecture

A. System Decomposition
Accommodating new mission types by exposing some systems to stakeholders or consuming some mission functions

they provide becomes a challenge with the current ground system, which usually leads to unique solutions per mission.
In the future, it shall be possible to “mix and match” mission functions regardless of which party fulfills them. The
mission function deployment is also likely to change over the lifetime of a mission, demanding smooth transition of
functions from one stakeholder to another. The service-oriented architecture (SOA) paradigm provides a possible way
to accomplish this goal by breaking the current systems and components apart in smaller modules called “services”.
This is accomplished by looking at the ground system from a functional point of view. It becomes quickly clear that
service boundaries do not necessarily coincide with the current system and component boundaries. Therefore, it is
the responsibility of the HCC project to find service boundaries that provide high cohesion and low coupling between
services and identify the necessary steps to remodel existing systems according to this SOA approach.

2



B. Distributed Systems
Once a system is properly architectured using a service-oriented approach, it becomes possible to distribute services

in a flexible and natural way. This does not only mean the physical location of a service deployment (e. g. in the GSOC
operational LAN or the external partner’s network), but also the number of service instances. This allows scaling service
capacity (like processed parameter rate) up or down as needed for a specific mission or even just a specific mission
phase. Due to the black-box nature of each service—the service implementation is always abstracted away behind the
service interface—maintenance becomes more controllable and cost-effective. This is enabled because of the limited
scope of a service as well as the possibility of running predefined tests against the interfaces. Changes in mission
requirements can also be accommodated more easily as it is expected that either new services have to be developed or
obsolete services removed, both of which can happen largely independent of the rest of the system. If a service has to be
changed, its previously mentioned limited scope helps in keeping costs low.

III. Ready-made Solution for Service-oriented Architectures: MO Services
With modularity comes complexity: Each module needs a clearly defined boundary, each involved party (of which

there can be many) needs to agree on the interfaces and the more there are of both, the more complex these interface
discussions become. The way out of this situation is provided by standardization: standardization of mission functions
and standardization of data exchange. The Spacecraft Monitor & Control Working Group of the Consultative Committee
for Space Data Systems (CCSDS) provides an international forum for discussing and standardizing exactly these issues.
Mission functions are grouped together in so-called “Mission Operations services” (or MO services) [2], data exchange is
made interoperable by so-called “technology bindings”. Mission Operations services are described in a language known
as “Message Abstraction Layer” (MAL) [3] and technology bindings map this language to a concrete “on-the-wire”
representation. GSOC is an active participant in the standardization process together with representatives from the
French space agency CNES, the European Space Agency (ESA) and the US space agency NASA. Please also see [4] on
previous GSOC activities in the realm of MO.

At this point the mainly space-to-ground Monitor and Control services (M&C services) are published [5] as well as
a number of technology bindings, e. g. to the Space Packet protocol [6] or to TCP/IP [7]. The more ground-oriented
Mission Data Product Distribution services are on the verge of publication. Future standardization efforts are driven
by the needs of agencies. Therefore, since publication of the M&C services in 2017 the full stack for implementing
CCSDS MO is in place, already with a number of open-source implementations available∗. The following sections shall
give a short overview of the MO framework and how it can be used for defining and implementing not only standard but
also custom services.

A. Overview of CCSDS Mission Operations
CCSDS MO is an umbrella term that consists of the MO framework and standardized MO services. MO services are

services that are defined using the MO framework. The MO framework also provides the foundation to define bespoke
MO services. Currently, the only published set of standardized MO services are theMonitor & Control services. It is
expected that the next sets of standardized MO services to be published are the Common services and the Mission Data
Product Distribution services. In parallel, work is ongoing to identify and standardize more services, like File services
or Automation services.

The general structure of the MO framework can be seen in Figure 1. The framework is made up of four layers, with
the application layer at the very top. The application layer provides implementations of mission operations services that
are defined in the services layer and makes use (i. e. consumes) others. This is the layer where users interact with the
framework and where the framework interacts with underlying layers. The service layer defines several services in an
abstract way using data types and message exchange patterns provided by the next lower layer, the “Message Abstraction
Layer” (MAL) [3]. Finally, these basic building blocks offered by the MAL are mapped to a concrete on-the-wire
representation by the transport layer. The transport layer connects to remote MO framework stacks adhering to the same
layered structure. The application layer of a remote stack can then consume the services provided by the local stack and
vice versa.

∗https://ccsdsmo.github.io/

3

https://ccsdsmo.github.io/


Transport 

Layer 

Message 

Abstraction 

Layer 

Service 

Layer 

MAL 
Messaging Abstraction Layer 

MO Services Layer 

Consumer / Provider Application 

Common Services 

Common Object Model 

Messaging Technology 

Mapping of MAL to Encoding and Transport 

Mapping to Implementation Language 

Abstract service 

specification 

in terms of the MAL 

“Building Blocks”: 

Data Types, 

Interaction Patterns 

Functional Services Functional Services Functional Services 

Application 

Layer 

Fig. 1 Overview of the CCSDS MO framework. The application layer provides service implementations and
consumes other services. The service layer specifies MO services (functional services) in an abstract way using
the building blocks provided by the next lower layer, the Message Abstraction Layer. The MAL also provides
the building blocks for a Common Object Model and some Common services, that can be referenced from
functional services as well. The lowest layer provides a concrete on-the-wire mapping of all primitives provided
by the MAL.

1. The Service Layer
Services contained in the service layer are either standardized services defined by the CCSDS SM&C working

group or user-defined services for a particular mission or purpose. A number of commonly needed services have been
identified by the working group and are subject to standardization. Adhering to these standardized services is one of
the keys to interoperability. Users are still free to define their own services for specific needs. Service specifications
themselves do not depend on any particular programming language binding. They are formulated in an abstract,
technology-independent way instead. For this purpose, the MAL provides basic building blocks that allow construction
of services. Specifications may be expressed as XML (extensible markup language) documents adhering to an XML
Schema enforcing the MAL building blocks and composition rules. In fact all CCSDS defined services are available as
XML documents.

The service layer consists of three characteristic service types: Functional services, Common services and the
Common Object Model (COM) [8]. Functional services provide the high-level mission operations services the user
expects from the framework, while Common services are concerned with more basic and administration tasks such
as providing a service directory or proper authentication and authorization. Services may use the COM as their data
model, which builds upon the MAL and introduces the notion of objects which possess certain characteristics. Using
this model gives services the ability to archive and retrieve objects, generate and react to certain events or track progress
of activities without the need to specify anything of that themselves.

4



2. The Message Abstraction Layer (MAL)
The MAL [3] provides a common abstract language that is used by service definitions. It provides primitive data

types such as integers and strings without referring to any particular implementation or data representation. The MAL
imposes rules on how to use these primitive types to define more complex types such as compositions or lists and
already provides a number of useful complex types. The MAL not only defines rules for data type definitions, it also
defines a message format and message exchange rules, allowing services to specify interfaces suited to their objectives.
The message exchange rules are called “interaction patterns”, where there are six types of: SEND, SUBMIT, REQUEST,
INVOKE, PROGRESS, PUBLISH-SUBSCRIBE. A service defines the operations it offers using these patterns and the
data it exchanges using the data type building blocks. An XML Schema is available to validate a service description in
XML against.

3. The Transport Layer
Because the MAL describes messages and data types in an abstract way without reference to any particular

representation, it is not directly usable on the wire. Therefore the transport layer is needed, casting the building blocks
of the MAL into a concrete technology representation. Every transport technology to be used with the MAL needs to be
implemented and is called a “binding” of this technology to the MAL. Usually bindings are composed of two parts: the
actual data encoding and the transport of the encoded data, though this is not enforced by the framework. A second type
of binding should not be confused with this transport layer binding: In order to use the abstract interfaces and data
types defined by the MAL a mapping to some concrete programming language is required. This language binding is
independent of the transport layer binding.

B. Overview of the Monitor & Control Services
The M&C services [5] provide a consistent set of services that allow action execution and tracking, parameter

reporting, alert raising, parameter checking, statistics generation, and aggregation monitoring. The services rely on the
Common Object Model as their data model, and use its archiving, event, and activity tracking services. Definition of
some helper services completes the picture. The services will be briefly described in the following:

Action Service This service is concerned with definition, invocation and execution tracking of actions, such as the
execution of a telecommand. In principle, actions could also be defined as operations of a custom service, however
using the Action service and thus its dynamic† definition of actions reduces overhead and provides a common
interface without the need of implementing custom services. Actions can be checked, forwarded, their execution
can be tracked, and the relationship between actions triggered by other actions can be monitored.

Parameter Service This service allows consumers to subscribe to parameter updates. Parameter information is
dynamically defined (in the same sense as dynamic definition of actions). The updates can be generated periodically,
when the parameter value changed more than a user-defined threshold, or ad-hoc in a user-defined way.

Alert Service This service is responsible for asynchronously publishing alerts to subscribers. Alerts are dynamically
defined in the same sense as actions.

Check Service This service provides parameter checking capabilities. The supported check types are “limit check”,
“expected value check”, and “delta check”. Additional types may be supported by individual implementations.

Statistics Service This service allows association of parameters to statistic functions. The available functions
are deployment-dependent. Supported are “maximum”, “minimum”, “mean value”, and “standard deviation”.
Intervals for parameter sampling, report generation, and collection time between resets can be set independently.

Aggregation Service The Aggregation service is similar to the Parameter service, allowing definitions of parameter
aggregations to retrieve updates for in a single message. Updates can be generated periodically, ad-hoc triggered by
implementation-specific measures, or when the values in the aggregation change more than a defined threshold (or
after a user-defined time-out).

†The term “dynamic” relates to the fact that the Action service itself does not fix the exact kind of actions. It does not mean that the system has to
support dynamic definitions.

5



Helper Services The helper services consist of a Conversion and a Group service. The Conversion service offers
structures for converting raw values to engineering values and vice versa. The minimum set of conversions includes
discrete value mappings, linear conversions, polynomial conversions, and conversions from ranges to discrete
values. Implementations may offer support for more conversions. The Group service allows definition of groups of
objects of the same kind, simplifying the usage of the other services when they need to perform several operations
on the same group of objects.

C. Overview of Mission Data Product Distribution Services
The Mission Data Product Distribution services (MDPDS) provide the means of accessing and distributing mission

products. Whereas theM&C services provide a more direct and often real-time access to the monitor and control system,
the MDPDS are responsible for providing processed, aggregated, value-added data, usually with less strict timing
requirements than for monitor and control. They consist of two services: Product Management service and Product
Distribution service. Both use COM for defining their data model and make use of its archive and event services. The
MDPDS are currently under development and still may change until publication.

Product Management Service The Product Management service allows management of products, their specifica-
tions and attributes in form of a catalog. Thus, it allows to define and retrieve meta-information that is associated
with a product. It also manages so-called “streams” of product instances.

Product Distribution Service The Product Distribution service is mainly concerned with the actual distribution
of mission product data. This can be a batch request, where a batch of product instances is retrieved and delivered
upon request. Alternatively, the request can be in streaming mode by subscribing to one of the streams created
by the Product Management service, allowing a standing order. Requests can also be monitored, suspended, or
canceled.

D. Overview of Custom Service Development
The MO framework does not only build the foundation for standardized MO services for interoperability, but

also allows custom MO services to be developed that might only be used internally. The process is the same as for
standardized MO services: An XML document adhering to the MAL XML schema is all that is needed as a service
specification. This specification can either be written by hand or by use of a specialized editor application and describes
in detail all services, operations, data structures, errors, and usages of the COM and Common services. All relevant
documentation can and should be put right in the same specification such that it is self-contained. There exist tools‡ that
can automatically generate human-readable documentation, service consumer stubs and provider skeletons for use of
services in programming languages, or even documents with concrete on-the-wire representations of the exchanged
data using a specific transport technology. If a Directory service is deployed in a system, it can also act as a repository
holding the service specification XMLs such that services can not only be discovered but also used dynamically. This
might make sense if a bespoke MO service is to be offered to an external partner.

IV. Challenges
“Rethinking” a ground operations systems sounds like a daunting task, because it means taking a functional system

apart, critically assessing each function, question interfaces and sometimes implementations and trying to put it back
together in a more streamlined, systematic, and documented way. In contrast to a greenfield project, it has to be decided
which legacy components can be reused, how they can be reused and which have to be replaced completely.

Instead of remodeling the whole system in one go, the first step is to identify a minimal, but complete and somewhat
realistic, set of mission functions that can be prototyped, worked, and iterated upon in a short time. Already this is an
effort spanning several departments. A dedicated inter-departmental team has been put together for the HCC project
that is explicitly encouraged to think out-of-the-box and question the established way of doing things. The prototype
system consists of the minimal mission functions and interfaces that are listed in Table 1, loosely modeled after typical
low-earth orbiting spacecraft. This set of functions deliberately touches many departments and is supposed to provide a
realistic round-trip scenario. See Figure 2 for a conceptual overview of the HCC prototype. For the first iteration the

‡https://github.com/esa/CCSDS_MO_StubGenerator

6

https://github.com/esa/CCSDS_MO_StubGenerator


Table 1 Minimal set of mission functions needed for a functional HCC prototype providing a round-trip sce-
nario. Functions deliberately touch many departments and are kept simple by leaving out satellite commanding
for the first iteration.

Consumer Provider Mission Function Data Size
Mission Planning System Ground Station Network Pass booking small
Ground Station Network Flight Dynamics System Orbit prediction small
Flight Dynamics System Flight Operations System GPS telemetry medium
Flight Operations System Ground Station Network Raw telemetry large

prototype is kept simple and no satellite commanding is planned. Later on simulator commanding is envisaged. This
prototype lays the groundwork for disentangling the whole ground system in the future. The process of identifying
and clearly naming the mission functions as well as categorizing timing information and data size requirements is first
executed for the prototype and later expanded to the whole ground system.

A. Language Problems
Already working on the minimal prototype system taught the team many lessons, both technical as well as

organizational: It is difficult to talk the same language across departments, many terms have overloaded meanings,
some of them carry implicit notions that are unknowingly different between team members. As an example, the terms
“service” or “parameter” mean different things to different people. A “parameter” may be a concrete bit pattern for one
team member, a raw or calibrated value (an integer for example) with a mnemonic like FWDPWR for another or a more
high-level concept like “transmission power”, that always denotes the same thing regardless of mnemonic, for a third
one. We started to capture common ground and common understanding in a dictionary, trying to find a ubiquitous
language [9]. This is an ongoing process. Although we are working on a service-oriented ground system redesign, our
dictionary does not yet include the definition for “service”. This illustrates the difficulties in compiling as well as the
need for such a dictionary.

B. Interface Discussions
Services are currently implemented bottom-up for the prototype: Interface partners discuss the needed interface

functions directly with each other, in an agile and flexible way. This approach goes down to the actual on-the-wire
representation and data exchange patterns, trying to keep things more or less in line with MO paradigms. Whereas
this approach yielded a working prototype it also gave room for many fundamental discussions, often intermingling

GDS FOS

FDSMPS

Raw telemetry
GPS data

Pass booking

Orbit prediction

Message
Bus

Fig. 2 Overview of the HCC prototype concept. Solid lines stand for mission functions represented as MO
services and exchanged over a message bus that is provided by a message broker technology. Services are
provided by the entity connected to the dot on the line and consumed by the other entities connected to the line.
The dotted lines were realized in the prototype but found to be insufficient. Therefore a direct non-MO interface
(represented by the direct arrow between GDS and FOS) using SLE is employed. The entities are GDS (ground
station network), FOS (flight operations system), FDS (flight dynamics system), MPS (mission planning system).

7



lower-level transport and data representation issues with higher-level service representation problems. In order to get out
a working prototype fast, the clear-cut layer boundaries provided by MO were sometimes violated by shortcuts. However,
we still think this approach is justified considering the purpose of the prototype and the variety of used programming
languages and platforms, for which in many cases no MAL implementation or relevant MAL tooling exists yet. After
this first prototype has shown the principal feasibility and advantages of a message-broker based ground system and
automated deployment processes, it will be important to address these issues. The second prototype iteration needs to
replace the bottom-up developed interfaces with a top-down approach where service specifications formulated in a
consistent fashion (as MO services) provide the system baseline. At this stage we expect to see MAL implementations
and tooling for the platforms we use to emerge, removing any shortcuts. As much as possible, standardized services
shall be used by then, e. g. using theMDPDS as basis for a bespoke GPS service.

C. Limits of CCSDS MO
Already now we begin to see that probably not all mission functions can or should be modeled as MO services.

Most notably the raw telemetry interface from the Ground Station Network to the Flight Operations System has peculiar
requirements such that it makes more sense to employ more specialized, but still standardized, means of communication.
In this concrete case, CCSDS Space Link Extension (SLE) [10] provides the better solution. Still, MO fits nicely
in this picture and even acknowledges its own limits by allowing different paradigms to be used when necessary,
reducing its own role to the higher-level management of services. This becomes particular evident for file transfers,
which most probably will still be needed for external data exchange: Many tried-and-tested protocols and techniques
exist for transferring files, which is why MO does not try to provide yet another transfer mechanism, but provides a
unified transfer management instead. These File Transfer Management services are currently under consideration for
standardization by CCSDS. One should note that by far the major share of the interfaces does not require such special
solutions and MO can be applied perfectly fine throughout. Even where a specific transport technology (such as a
broker-based message transport system) does not provide the required performance, the flexibility of MO allows to just
switch transport protocols for this interface (e. g. to a point-to-point connection) without throwing all advantages of MO,
like consistent service descriptions, over board. This also allows the future evolution of a system by switching to better
technologies as they become available.

V. Technical Solution

A. Mission Bus Backbone
The MO framework can be used in conjunction with any transport technology provided that a mapping exists for all

MAL primitives to the technology. The MAL provides a service bus view of the system to the upper layers, though the
technical implementation is not necessarily realized using a bus system. There are a number of standardized or soon to
be standardized technology bindings available [6, 7], all of which rely on direct connections between the service entities.
For the deployment at GSOC we found these bindings unsuitable for a number of reasons that will be detailed in the
following sections. Instead, we chose a custom binding to a message broker protocol with deployment of a number of
message brokers. Each message broker forms its own message bus. The brokers are interconnected and thus allow a
unified view of the bus. Whereas such a setup is beneficial for our internal message exchange, the next sections also
clarify why we plan to use one or several of the standardized bindings for external message exchange. See Figure 3 for a
graphical representation of the broker-based transport concept es envisaged for use at GSOC.

The message broker system we chose for the prototype is MQTT 3.1.1 [11]. MQTT is a standardized lightweight
messaging transport protocol specification that originated in and is mainly used by the “Internet of Things” community.
We have chosen this protocol mainly for its simplicity and the availability of numerous open-source client libraries for
different programming languages and broker implementations. The systems that shall be connected in the prototype
are written in C++, Fortran, Java and Python. We are open to exchange the protocol later if the protocol or the
implementations do not meet our requirements or fail to convince otherwise during the prototyping phase. These
requirements not only include performance, but also reliability, availability, usability, to name just a few. A change away
from the paradigm of a broker-managed message bus is not intended, however.

8



Ops LAN Office LAN 

GSOC 

External 

Service 

Consumer 

Service 

Provider 

Message 

Broker 

Filter 

Network Handover Point 

Technology Bridge 

Fig. 3 Overview of the HCC broker concept. A message broker consisting of a high-availability cluster is
deployed in each LAN at GSOC. Part of the messages are piped through a single monitored network handover
point between the networks. Solid lines represent connections using the message broker technology, which
currently is MQTT. External partners are connected using a technology bridge, such that the dash-dotted line
represents a TCP/IP connection. Filters can inspect and discard messages. For simplicity reasons only one filter
is shown. In practice each message broker would be equipped with one. More can be deployed (e. g. at the
technology bridge), if deemed necessary.

B. Performance and Reliability
As can be seen easily, performance in terms of message and/or data throughput of directly connected service entities

is usually higher than having an additional intermediate entity for brokerage. One part of our prototyping studies is to
find out whether the performance penalty has any noticeable negative effects. Therefore, we broadly categorize the
service interfaces on the two axes data size and timing pattern. Data size can be small (order of bytes to 10 kBytes),
medium (order of 100 kBytes to megabyte) or large (order of 10 megabytes or more). Timing pattern mainly captures
how often data is expected, i. e. message rate in the broadest sense. This can be rare (e. g. once a day), medium (every
few minutes), or often (every second or less). Interfaces with small or medium data size and small or medium data rates
can be handled well by our broker system. We have been able to exchange several tens of message per second between
two service entities over a Mosquitto§ message broker. High data rates or large data sizes demand a direct connection
and in case of large data sizes might not even be viable to exchange via MAL but need dedicated protocols. One such
interface is the raw telemetry interface from ground stations to control center, both in real-time mode and offline mode.
In our prototype, we first modeled this interface as MO service, but are now switching to CCSDS Space Link Extension
[10].

§https://mosquitto.org/

9

https://mosquitto.org/


Most of the interfaces fall on the small to medium scale regarding data size and data rate, especially if function
partition into services is done systematically with these limitations in mind. For example, one would not use an MO
interface for a function that needs to be called several hundred times per second as can occur in optimizations problems.
In such a case one should rethink the service boundary, because service coupling is too high.

Reliability of the message system is of paramount importance for satellite operations. The disadvantage of a message
broker system is that it introduces another component that can fail. In a direct connection one of the service entities or
the network can fail. In a broker-moderated connection additionally the broker can fail. Therefore the broker will be
made up of a high-availability cluster, such that downtimes are kept to a minimum. The advantage of a broker system
is that intermittent connection losses of the service entities can be mitigated by buffering the messages until proper
reception is ensured.

C. Inter-network Connections
Due to security reasons, GSOC employs a network structure of separated networks, mainly an operational network

(Ops LAN) and an Office network (Office LAN). There is only a very limited number of exchange points between the
networks, which are strictly monitored. Whereas operations can be conducted from a completely separated Ops LAN
alone, for everyday operations it is much more convenient to have some Ops services available in the Office LAN and
vice versa. For example, telemetry display should be possible from the Office and access to project documentation and
other non-mission critical information should be possible from the Ops LAN.

From a security point of view, direct connections between two networks should be minimized as much as possible,
which is why MO technology bindings requiring direct connections are not feasible in this environment. By deploying a
broker (or broker cluster) in each LAN, intra-LAN communication becomes possible (though for performance reasons a
direct connection might be used in exceptional cases). Intra-LAN connectivity is provided by relaying or mirroring part
of the broker topic tree into the other LANs. The exact technical details depend on the broker protocol and the concrete
implementation and are still subject to change for our prototype.

D. Security
The previous section already touched on security issues and the resulting separation of networks. The remaining

handover points between message brokers in different networks are very few and allow installation of additional security
measures. The structure of MO services allow for a natural way of inspecting the exchanged traffic and filter it according
to global or project-specific rules. The MAL message header, whose structure is the same across all messages, provides
the possibility of fine-grained filters. If not actively realized as its own service, it is not possible to exchange arbitrary
data but only data pertaining to certain services. These security features are not implemented in the prototype yet,
but can and will be added later via correct assignment of the MAL header fields and filters installed at the message
exchanges. Filtering cannot only be performed at the exchanges but also for all messages received by the broker. Some
of these security features are listed in the following paragraphs.

Certain services can be completely blocked at the exchange points by filtering on Service Area, Service, and
Area version header fields. As an example, if you do not want to expose any Action service, that allows command
execution, all messages belonging to this service can be filtered out. One can also filter single operations, such as
submitAction, by inspecting the Operation header field and still allow messages for operation preCheckAction to pass.

Authenticity of messages can be checked by evaluating the Authentication Id field. Currently we have not yet
decided how to exactly use this field, but some kind of message signature is discussed. This check can be performed by
the exchange filter or broker, but also by each service provider or consumer if there is need for extra security.

If needed, only certain types of sessions can be allowed through the filter, such as simulation sessions. This is
achieved by using header fields Session and Session Name and can also be used to prioritize certain sessions in order
to ensure smooth operations.

User authorization is possible by relying on the Login service. We plan to integrate this as frontend to our central
LDAP server and fill the MAL Authorization Id header field based on login information in a yet to be specified
manner.

Confidentiality is achieved on the transport layer: The MQTT message broker system we chose has the capability
of encrypting all traffic between broker and service entities. In order to provide filtering, no end-to-end encryption
between two communicating service entities will be established, only between entity and broker. Thus, it is of extra
importance to properly secure the brokers against unauthorized access. In the unlikely case that end-to-end encryption
is required, one can think about encrypting the message body independently from the rest of the message.

10



E. Providing Services to External Partner
As shortly mentioned before, externally exposing the message brokers is undesired. We prefer to use a standardized

technology binding, such as MO to TCP/IP [7] or MO to HTTP/XML for exposing services outside of GSOC. This is
achieved by technology bridges that can translate from our internal broker system to a standardized transport. The same
filtering and security mechanisms as mentioned before can be applied. Services will not be addressed directly, but
service URIs are translated from internal to external form and vice versa at the technology bridge. In addition to the
exposition of an MO interface, other interfaces (like a web user interface) can be exposed as well, that will interally map
to MO.

F. Deployment
All of our services are developed in a way that they can be easily packaged into a container format. For the prototype

this is the Docker¶ format. A central repository holds the Docker images. Although each service is supposed to be
deployable to any mission and made mission-specific by configuration, this might not always be possible. This holds
especially true for legacy systems, that are put behind a service interface. Still, a central repository that holds the
executable services provides a one-stop shop for all multi-mission and mission-specific services in a version-controlled
way. Configuration of services is provided by a dedicated Configuration service. Although we are not there yet, the
idea is that the whole ground-system can be deployed with just a few mouse clicks in an automated way that becomes
possible by container orchestration technology. This not only allows a quicker system setup (compared to weeks it takes
now), it also makes changes to the deployment painless: Systems can be moved to different networks or even to the
customer’s site and vice versa. Ideally, service endpoints are not hard coded but retrieved from a Directory service (the
only one that needs to be hard coded), which knows about service locations.

VI. Conclusion and Outlook
We have shown how we started to remodel our existing ground operations systems in terms of MO services by

implementing a prototype system. This system consists of four services, which are realized on an MQTT message bus.
Already now, a few challenges become apparent: Technical challenges demanded the exchange of the raw telemetry
service interface with SLE, communication challenges led to a dictionary defining a ubiquitous language. Next steps
include the harmonization of the interface descriptions using MO, better integration of legacy systems like GECCOS
(GSOC Enhanced Command and Control System for Operating Spacecraft, based on SCOS-2000) and future systems
like EGS-CC (European Ground System – Common Core), and gaining experience with container-based deployment
and orchestration. Automatic configuration and security measures will be put in place, network bridging between
multiple brokers is going to be tested and high-availability concepts will be worked out. Finally, more services need to
be identified, defined, and implemented in order to provide a smooth and efficient experience for future missions and
customers.

References
[1] Hauke, A., and Geyer, M. P., “Towards a Modular and Flexible New Ground System,” SpaceOps Conferences, American

Institute of Aeronautics and Astronautics, 2018. Same proceedings as this paper.

[2] CCSDS, “Mission Operations Services Concept,” , Dec. 2010. URL http://public.ccsds.org/publications/archive/
520x0g3.pdf, Green Book, 520.0-G-3.

[3] CCSDS, “Mission Operations Message Abstraction Layer,” , Mar. 2013. URL https://public.ccsds.org/Pubs/
521x0b2e1.pdf, Blue Book, 521.0-B-2.

[4] Gärtner, S. A., Hartung, J. H., and Wendler, M., “Implementation of CCSDS Mission Operations Services at the German
Space Operations Center,” SpaceOps Conferences, American Institute of Aeronautics and Astronautics, 2014, pp. –. doi:
10.2514/6.2014-1869, URL http://dx.doi.org/10.2514/6.2014-1869.

[5] CCSDS, “Mission OperationsMonitor & Control Services,” , Oct. 2017. URL https://public.ccsds.org/Pubs/522x1b1.
pdf, Blue Book, 522.1-B-1.

[6] CCSDS, “Mission Operations - MAL Space Packet Transport Binding and Binary Encoding,” , Aug. 2015. URL https:
//public.ccsds.org/Pubs/524x1b1.pdf, Blue Book, 524.1-B-1.

¶https://www.docker.com/

11

http://public.ccsds.org/publications/archive/520x0g3.pdf
http://public.ccsds.org/publications/archive/520x0g3.pdf
https://public.ccsds.org/Pubs/521x0b2e1.pdf
https://public.ccsds.org/Pubs/521x0b2e1.pdf
http://dx.doi.org/10.2514/6.2014-1869
https://public.ccsds.org/Pubs/522x1b1.pdf
https://public.ccsds.org/Pubs/522x1b1.pdf
https://public.ccsds.org/Pubs/524x1b1.pdf
https://public.ccsds.org/Pubs/524x1b1.pdf
https://www.docker.com/


[7] CCSDS, “Mission Operations - Message Abstraction Layer Binding to TCP/IP Transport and Split Binary Encoding,” , Nov.
2017. URL https://public.ccsds.org/Pubs/524x2b1.pdf, Blue Book, 524.2-B-1.

[8] CCSDS, “Mission Operations Common Object Model,” , Feb. 2014. URL https://public.ccsds.org/Pubs/521x1b1.
pdf, Blue Book, 521.1-B-1.

[9] Evans, E., Domain-Driven Design: Tackling Complexity in the Heart of Software, 1st ed., Addison Wesley, 2003.

[10] CCSDS, “Cross Support Concept - Part 1: Space Link Extension,” , Mar. 2006. URL https://public.ccsds.org/Pubs/
910x3g3.pdf, Green Book, 910.3-G-3.

[11] OASIS, “MQTT Version 3.1.1,” , Oct. 2014. URL http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.
1-os.html, edited by Andrew Banks and Rahul Gupta.

12

https://public.ccsds.org/Pubs/524x2b1.pdf
https://public.ccsds.org/Pubs/521x1b1.pdf
https://public.ccsds.org/Pubs/521x1b1.pdf
https://public.ccsds.org/Pubs/910x3g3.pdf
https://public.ccsds.org/Pubs/910x3g3.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

	Introduction
	Current Ground System Architecture at GSOC
	Future Demands

	The Way to Modularization: Service-oriented Architecture
	System Decomposition
	Distributed Systems

	Ready-made Solution for Service-oriented Architectures: MO Services
	Overview of CCSDS Mission Operations
	The Service Layer
	The Message Abstraction Layer (MAL)
	The Transport Layer

	Overview of the Monitor & Control Services
	Overview of Mission Data Product Distribution Services
	Overview of Custom Service Development

	Challenges
	Language Problems
	Interface Discussions
	Limits of CCSDS MO

	Technical Solution
	Mission Bus Backbone
	Performance and Reliability
	Inter-network Connections
	Security
	Providing Services to External Partner
	Deployment

	Conclusion and Outlook

