
1. TiGL Workshop - How to contribute + Hands On

Jan Kleinert, Martin Siggel

September 11./12. 2018, Cologne

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 1

TiGL is Open-Source

• TiGL is mainly developed at Airbus D&S, RISC and DLR

• But as TiGL is an Open-Source project, anyone can contribute!

Three Ways to contribute:

1. Send feedback or tell us about your work in the TiGL

ecosystem: martin.siggel@dlr.de, jan.kleinert@dlr.de

2. Report issues on https://github.com/DLR-SC/tigl/issues

3. Develop a feature and post a pull-request

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 2

Apache 2.0 License

Content of this session

mailto:martin.siggel@dlr.de
mailto:jan.kleinert@dlr.de
https://github.com/DLR-SC/tigl/issues
https://github.com/DLR-SC/tigl/issues
https://github.com/DLR-SC/tigl/issues
https://github.com/DLR-SC/tigl/issues

Consider TiGL’s “Hello World Script”

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 3

We have found a bug!!

It’s time to take matters into our own hands!

• Luckily, the bug is not in the original

TiGL repository, but only in my personal

fork https://github.com/joergbrech/tigl

• Paul already spotted it and reported the

bug a while ago using the issue tracker.

• Yet, the TiGL developers seem to be too

busy to fix it …

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 4

https://github.com/joergbrech/tigl
https://github.com/joergbrech/tigl

Contents
The TiGL Ecosystem

• TiGL architecture in a nut-shell

• 3rd-Party dependencies and useful tools

• Building TiGL from source

Prerequisites

• Using Google Test for unit testing

• Basic GIT usage (fork, branch, commit, push, pull-request)

Hands-On

• Write a Unit Test in our local TiGL build

• Fix a bug in your local TiGL build

• Create a Fork of the TiGL Github repository

• Push your local changes to your personal fork

• Share the changes by posting a Pull-Request on Github

Final remarks

• Further ways to contribute

• Comments and further reading

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 5

The TiGL Ecosystem

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 6

Architecture

• TiXI (https://github.com/dlr-sc/tixi)
• Library to parse XML (CPACS) files

• OpenCASCADE (https://www.opencascade.com/)
• Geometry (NURBS-based)

• Topology (Boundary Representation)

• CAD Exports, Visualization

• Language Bindings
• Generated via SWIG (http://www.swig.org/)

• Can access all C++ Data structures

• TiGL Viewer
• 3D Visualization

• Scripting

• Debugging

> TiGL: An Open Source Computational Geometry Library for Parametric Aircraft Design > Martin Siggel > 6.6.2018 DLR.de • Chart 7

TiGL Geometry

Library

TiGL Geometry

Library

OpenCASCADE

CAD Kernel

OpenCASCADE

CAD Kernel

TiXI XML

Interface

TiXI XML

Interface

TiGL Viewer TiGL Viewer Bindings Bindings

Matlab Matlab Python Python Java Java

https://github.com/dlr-sc/tixi
https://github.com/dlr-sc/tixi
https://github.com/dlr-sc/tixi
https://www.opencascade.com/
http://www.swig.org/

The TiGL SDK

• There are a few requirements and useful tools for building TiGL

 some precompiled dependencies can be found here: https://sourceforge.net/projects/tigl/files/Thirdparty/

• For convenience, we prepared a Windows 32 Bit SDK that includes all these tools
 https://sourceforge.net/projects/tigl/files/DevTools/TiGL-SDK-win32.7z/download

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 8

Dependencies Comments

OpenCascade The CAD kernel behind TiGL

TiXI Used to parse the CPACS (.xml) files

Required tools

C/C++ compiler

CMake Used to generate the Make files for compiling and linking

A make program Used by CMake for compiling and linking

Recommended

Qt Needed to build TiGLViewer

Doxygen Needed to build the TiGL HTML Documentation

Git Version control to keep your build syncronized with Github and to help contribute

IDE and debugger Easier coding (auto-completion, dependencies, debugging …)

SDK

6.8.0 (patched)

3.0.2

MinGW 5.3.0

3.10

Ninja

5.11

1.8.13

2.15

QtCreator, GDB debugger

https://sourceforge.net/projects/tigl/files/Thirdparty/
https://sourceforge.net/projects/tigl/files/Thirdparty/
https://sourceforge.net/projects/tigl/files/DevTools/TiGL-SDK-win32.7z/download
https://sourceforge.net/projects/tigl/files/DevTools/TiGL-SDK-win32.7z/download
https://sourceforge.net/projects/tigl/files/DevTools/TiGL-SDK-win32.7z/download
https://sourceforge.net/projects/tigl/files/DevTools/TiGL-SDK-win32.7z/download
https://sourceforge.net/projects/tigl/files/DevTools/TiGL-SDK-win32.7z/download
https://sourceforge.net/projects/tigl/files/DevTools/TiGL-SDK-win32.7z/download

Building TiGL from Source

• For this Hands-On we assume that

• You downloaded the TiGL SDK and followed the instructions in the documentation, i.e.

1. You cloned the TiGL repository

2. You built and installed TiGL successfully

3. You know how to run the the unit-tests and TiGLViewer from your local build

• You installed the TiGL Python package from the TiGL SDK MinGW Command Prompt via

• If you have set up everything correctly, building TiGL should be as easy as pressing Ctr+B in QtCreator

or

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 9

 $ conda create –n tigl_ws python=3.5 tigl3 jupyter pythreejs numpy –c dlr-sc
 $ activate tigl_ws
 $ conda create –n tigl_ws python=3.5 tigl3 jupyter pythreejs numpy –c dlr-sc
 $ activate tigl_ws

 $ mkdir build
 $ cd build
 $ cmake ../tigl/
 $ ninja install

 $ mkdir build
 $ cd build
 $ cmake ../tigl/
 $ ninja install

Assuming CMake finds the dependencies and

CMAKE_INSTALL_PREFIX is set to a path with write

permission

Prerequisites:

Google Test and Git

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 10

Google Test Framework in a very small nutshell

• Basic Idea: Create a separate executable, that tests small portions of your code for correctness.

• TiGL uses the GTEST framework from Google for unit testing.

• GTEST provides abstract classes and macros for ease of use. Example:

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 11

Google Test Framework in a very small nutshell

• Test Fixtures are a way to execute custom code before running unit tests, e.g. reading an input file.

• A Test Fixture is a class defining the behavior before and after the tests.

• Use the TEST_F macro to define a test for a test fixture

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 12

Basic Git and Github Usages

• Git is a version control system to help you keep track changes to your files

• Git assists you in distributed code development

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018% DLR.de • Chart 13

Local Repository 1

Remote Repository

Local Repository 2
commit

push

branch

pull

merge

Remote Repository (forked)

fork

pull upstream

pull origin

push

p
u
s
h

clone

Hands-On

Step 1: Preparation

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 14

Preparation: Make sure you use the joergbrech/tigl fork on Github

Remember: The bug we want to fix is only in my fork joergbrech/tigl and not the official TiGLGithub repository

1. Open the SDK command promt and navigate to your tigl repository

2. Change the “remote” url so that we synchronize with my buggy fork rather than the offical repository

3. Verify that everything worked

4. Synchronize your local repository with the new remote

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 15

$ git remote -v
origin https://github.com/joergbrech/tigl.git (fetch)
origin https://github.com/joergbrech/tigl.git (push)

$ git remote -v
origin https://github.com/joergbrech/tigl.git (fetch)
origin https://github.com/joergbrech/tigl.git (push)

$ cd tigl $ cd tigl

$ git remote set-url origin https://github.com/joergbrech/tigl.git $ git remote set-url origin https://github.com/joergbrech/tigl.git

$ git pull $ git pull

Preparation: Enable the bug in you python package

5. Open QtCreator, rebuild and install TiGL (Ctrl+B). This will overwrite

TIGL_INSTALL_DIRECTORY/bin/libtigl3.dll to include the bug

6. Replace the TiGL library used by the conda python package with our locally built one.

• Navigate to TIGL_SDK_DIRECTORY\tools\python3.6\envs\tigl_ws\Library\bin and make

a backup of the file tigl.dll

• Now copy the file TIGL_INSTALL_DIRECTORY/bin/libtigl3.dll to

TIGL_SDK_DIRECTORY\tools\python3.6\envs\tigl_ws\Library\bin\tigl.dll

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 16

Preparation: Verify the bug

7. Verify the bug in Python

• Copy the file TIGL_HOME\tests\unittests\TestData\simpletest.cpacs.xml to a directory

of your choice and create a script tigl_bug.py in the same directory with the following contents:

• Open the TiGL SDK MinGW Command Prompt, navigate to the directory of your python script and run it

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 17

$ python tigl_bug.py

The airplane has 42 wings.

$ python tigl_bug.py

The airplane has 42 wings.

Or download the two files from here:

 https://goo.gl/f237cw

https://goo.gl/f237cw

Hands-On

Step 2: Write a Unit Test

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 18

Creating a git branch for the bug fix

1. We do not want to develop in the main development branch cpacs_3. Therefore, we will create a new

branch with a reasonable name (e.g. include your initials, the Github number of Paul‘s issue and a keyword

describing the bug).

• Navigate to the directory of the tigl source and enter

• Make sure you are on the correct branch, by checking the git status

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 19

$ git branch jk_1_wingCountBug
$ git checkout jk_1_wingCountBug
$ git branch jk_1_wingCountBug
$ git checkout jk_1_wingCountBug

$ git status $ git status

Unit Testing: Write a unit test that checks for the bug

2. To automatically test for the bug after we fixed it, we will write a unit test. Open QtCreator.

• Before we create a new .cpp file in TIGL_HOME\tests, let us first check if there are already unit tests

for the function tiglGetWingCount. To do so, press Ctr+Shift+F in QtCreator to open the advanced

search. Search for tiglGetWingCount in the entire project

• We should keep all unit tests for tiglGetWingCount in the same place, so we will add a unit test to

TIGL_HOME\tests\unittests\tiglWingSegment.cpp some where near line 173.

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 20

Unit Testing: Write a unit test that checks for the bug

• Look at the other unit tests for tiglGetWingCount. They are all based on the class WingSegment:

• A look at the class WingSegment in the same file (Ctrl+Click) reveals in the member function

SetUpTestCase() that the file "TestData/CPACS_30_D150.xml„ is opened. This is an airplane

configuration with three wings (one wing and two tailplanes, the mirrored wings are not counted)

• Write a unit test that checks if this wings are counted correctly using ASSERT_EQ and/or ASSERT_TRUE.

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 21

If you are unsure how to do this, take a
look at a similar unit test for the function
tiglWingGetSegmentCount in the

same file.

Unit Testing: Write a unit test that checks for the bug

• Let‘s see if our unit test fails. First, configure your QtCreator project to only run the newly written test:

• Press Ctrl+R to build, install and run the code. We expect it to fail, the bug has not been fixed yet:

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 22

Hands-On

Step 3: Fix the bug

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 23

Fix the bug

3. There is a fairly easy to spot bug in tiglGetWingCount. (For the cheaters: https://goo.gl/tun2pW)

• Fix it!

• Rerun the unit test (Ctrl+R). This time we expect it to succeed:

• To be absolutely sure that everything works now, go ahead and copy the file

TIGL_INSTALL_DIRECTORY/bin/libtigl3.dll to

TIGL_SDK_DIRECTORY\tools\python3.6\envs\tigl_ws\Library\bin\tigl.dll and rerun

your python script:

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 24

$ python tigl_bug.py

The airplane has 1 wings.

$ python tigl_bug.py

The airplane has 1 wings.

https://goo.gl/tun2pW
https://goo.gl/tun2pW

Commit your changes locally

• You want to commit the changes to your newly created branch. Navigate to your tigl directory and enter git
status:

• Add the files you would like to commit

• Commit the changes using a speaking commit message

 The hashtag in front of the issue number is interpreted as a reference on Github.

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 25

$ git status
On branch jk_1_wingCountBug
Changes not staged for commit:
 (use “git add <file>...” to update what will be committed)
 (use “git checkout -- <file>...” to discard changes in working directory)

 modified: src/api/tigl.cpp
 modified: tests/unittests/tiglWingSegment.cpp

$ git status
On branch jk_1_wingCountBug
Changes not staged for commit:
 (use “git add <file>...” to update what will be committed)
 (use “git checkout -- <file>...” to discard changes in working directory)

 modified: src/api/tigl.cpp
 modified: tests/unittests/tiglWingSegment.cpp

$ git add src\api\tigl.cpp
$ git add tests\unittests\tiglWingSegment.cpp
$ git add src\api\tigl.cpp
$ git add tests\unittests\tiglWingSegment.cpp

$ git commit –m “fix a bug in tiglGetWingCount, fixes issue #1” $ git commit –m “fix a bug in tiglGetWingCount, fixes issue #1”

Good job!

We are well on our way! So far you have:

1. Verified the bug in Python

2. Created a unit test

3. Fixed the bug

4. Verified that the bug is fixed using the unit test and your Python script

5. Committed the bugfix locally to your version control system (i.e. git).

But so far you are the only one profiting from your bug fix. It’s time to share it with the community.

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 26

Hands-On

Step 4: Share your changes on Github

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 27

Create a fork of the Github repo to which you want to contribute

4. You want to push your local commit to the Github repository. You do not have any rights to push to the

original repository, so you must first create a personal fork to which you can push your changes.

• Log into Github

• Navigate to the Github repository https://github.com/joergbrech/tigl and press the „Fork“ button on the

top right:

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 28

https://github.com/joergbrech/tigl
https://github.com/joergbrech/tigl

Change the remote of your local repository (again) and push your commit

• You want to make sure that you push your local changes to your personal tigl fork. So navigate to your tigl

directory and enter

• Verify that everything worked:

• Your local branch does not exist in your github fork. You can create the remote branch and push your

changes to it by entering

• Enter your Github credentials.

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 29

$ git remote -v
origin https://github.com/YOURUSERNAME/tigl.git (fetch)
origin https://github.com/YOURUSERNAME/tigl.git (push)

$ git remote -v
origin https://github.com/YOURUSERNAME/tigl.git (fetch)
origin https://github.com/YOURUSERNAME/tigl.git (push)

$ git remote set-url origin https://github.com/YOURUSERNAME/tigl.git $ git remote set-url origin https://github.com/YOURUSERNAME/tigl.git

$ git push --set-upstream origin jk_1_wingCountBug $ git push --set-upstream origin jk_1_wingCountBug

Replace YOURUSERNAME with your Github user name and
jk_1_wingCountBug with the name of your local branch.

 Post a Pull-Request

• Take a look at the TiGL fork in your Github account. You will see that you committed a new branch and can

now post a pull-request

• Press the button “Compare & pull request” to ask the maintainers (in this case joergbrech) to merge your

changes into the main development branch. You can comment on your changes and press the button

“Create Pull Request”

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 30

CONGRATULATIONS! YOU ARE DONE! IT IS UP TO THE CODE MAINTAINERS TO
REVIEW YOUR CHANGES AND MERGE THEM TO THE MAIN DEVELOPMENT

BRANCH.

Final Remarks

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 31

• In this hands-on we used an intermediate TiGL fork joergbrech/tigl as an example.

• Let us keep our repository synchronized with the official TiGL Github repository

Next steps

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 32

fork

fork

joergbrech/tigl DLR-SC/tigl username/tigl

PR

pull

push

Local Repository

Next steps
Optional first step: Delete your fork and create a new one, directly from the DLR-SC repository

1. Set the upstream repository to be DLR-SC/tigl:

2. Verify that everything worked:

3. To fetch all changes of the official TiGL repository type

4. And finally, to keep your local cpacs_3 (or any other) branch synchronized with the official TiGL release:

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 33

$ git remote add upstream https://github.com/DLR-SC/tigl.git $ git remote add upstream https://github.com/DLR-SC/tigl.git

$ git remote -v
origin https://github.com/YOURUSERNAME/tigl.git (fetch)
origin https://github.com/YOURUSERNAME/tigl.git (push)
upstream https://github.com/DLR-SC/tigl.git (fetch)
upstream https://github.com/DLR-SC/tigl.git (push)

$ git remote -v
origin https://github.com/YOURUSERNAME/tigl.git (fetch)
origin https://github.com/YOURUSERNAME/tigl.git (push)
upstream https://github.com/DLR-SC/tigl.git (fetch)
upstream https://github.com/DLR-SC/tigl.git (push)

$ git fetch upstream $ git fetch upstream

$ git checkout cpacs_3
$ git merge upstream/cpacs_3
$ git checkout cpacs_3
$ git merge upstream/cpacs_3

Summary: The Contributing Workflow

1. Fetch changes from DLR-SC/tigl to your local repository and synchronize the main development branch

2. Create a branch for your feature and start coding. Don’t forget to commit your changes!

3. Push your changes to your Github Fork

4. Post a Pull-Request on Github. Note that you can choose any Github Fork of DLR-SC/tigl to which you

would like to post the pull request.

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 34

$ git fetch upstream
$ git checkout cpacs_3
$ git merge upstream/cpacs_3

$ git fetch upstream
$ git checkout cpacs_3
$ git merge upstream/cpacs_3

$ git push $ git push

$ git branch my_fancy_tigl_feature
$ git checkout my_fancy_tigl_feature
CREATE SOME AWESOME CODE
$ git add FILE1.cpp FILE2.cpp
$ git commit –m “Implemented a fancy feature”

$ git branch my_fancy_tigl_feature
$ git checkout my_fancy_tigl_feature
CREATE SOME AWESOME CODE
$ git add FILE1.cpp FILE2.cpp
$ git commit –m “Implemented a fancy feature”

Congratulations!

You are now a TiGL developer.

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 35

Further Ways to Contribute: Adaptations to CPACS

• TiGL contains a class/enum for every geometry-related CPACS object in the schema.

• Source Code for abstract classes for these CPACS objects are automatically generated by

CPACSGen

• The TiGL behavior of these objects is implemented (manually) in derived classes

• CPACSGen (short for CPACS generator) is developed by RISC

• It creates source code for classes and enums from the types defined in a CPACS XML

schema file for the TiGL library

https://github.com/RISCSoftware/cpacs_tigl_gen

• The .h and .cpp files in src/generated are created using CPACSGen

• If you make adaptations to the CPACS schema, the code must be regenerated, derived

classes must be adapted or created

• Don’t forget to discuss your CPACS adaptations with the CPACS maintainers at DLR-SL

http://www.cpacs.de/

https://github.com/DLR-LY/CPACS

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 36

https://github.com/RISCSoftware/cpacs_tigl_gen
https://github.com/RISCSoftware/cpacs_tigl_gen
https://github.com/RISCSoftware/cpacs_tigl_gen
https://github.com/RISCSoftware/cpacs_tigl_gen
https://github.com/DLR-LY/CPACS
https://github.com/DLR-LY/CPACS
https://github.com/DLR-LY/CPACS
https://github.com/DLR-LY/CPACS
https://github.com/DLR-LY/CPACS
https://github.com/DLR-LY/CPACS

Further Ways to Contribute: cpacs2to3

• CPACS 3 is released and we have a release candidate for TiGL 3.

• TiGL 3 is NOT backwards-compatible to TiGL 2!

• There are some major changes in regard to the component segment coordinates and

guide curve definitions

• For the transition from CPACS 2 to CPACS 3 we started developing a converter for

cpacs files, hosted on Github: https://github.com/DLR-SC/cpacs2to3

Feel free to contribute!

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 37

https://github.com/DLR-SC/cpacs2to3
https://github.com/DLR-SC/cpacs2to3
https://github.com/DLR-SC/cpacs2to3
https://github.com/DLR-SC/cpacs2to3

Concluding remarks

• We do not expect you to do our bugfixes for us!

• But please do:

1. Let us know what you are working on

2. Report issues, post pull-requests

3. Don’t hesitate to contact us if you have any questions

Additional Information:

Google Test Primer https://goo.gl/mdYNvp

Standard Github Forking https://goo.gl/FXE5ye

TiGL Programmer‘s Guide https://goo.gl/oBjVpg

OpenCascade CheatSheet https://goo.gl/zZ9nrD

> 1. TiGL Workshop > Jan Kleinert • How To Contribute + Hands On > 09/12/2018 DLR.de • Chart 38

https://github.com/google/googletest/blob/master/googletest/docs/primer.md
https://goo.gl/mdYNvp
https://goo.gl/mdYNvp
https://gist.github.com/Chaser324/ce0505fbed06b947d962
https://gist.github.com/Chaser324/ce0505fbed06b947d962
https://gist.github.com/Chaser324/ce0505fbed06b947d962
https://gist.github.com/Chaser324/ce0505fbed06b947d962
https://gist.github.com/Chaser324/ce0505fbed06b947d962
https://goo.gl/FXE5ye
https://goo.gl/FXE5ye
https://github.com/DLR-SC/tigl/wiki/TiGL-Programmers-Guide
https://github.com/DLR-SC/tigl/wiki/TiGL-Programmers-Guide
https://github.com/DLR-SC/tigl/wiki/TiGL-Programmers-Guide
https://github.com/DLR-SC/tigl/wiki/TiGL-Programmers-Guide
https://github.com/DLR-SC/tigl/wiki/TiGL-Programmers-Guide
https://goo.gl/oBjVpg
https://goo.gl/oBjVpg
https://github.com/DLR-SC/tigl/wiki/OpenCASCADE-Cheats
https://github.com/DLR-SC/tigl/wiki/OpenCASCADE-Cheats
https://github.com/DLR-SC/tigl/wiki/OpenCASCADE-Cheats
https://goo.gl/zZ9nrD
https://goo.gl/zZ9nrD

Questions

> Parameterization of trimmed NURBS geometries for mesh deformation, Workshop Univ. Cologne + DLR > Martin Siggel > 04.10.2016 DLR.de • Chart 39

jan.kleinert@dlr.de

martin.siggel@dlr.de

