A Pseudo Cell Approach for Hanging Nodes in Unstructured Meshes

Dr. Margrit Klitz
Matthias Orlt, Daniel Vollmer
German Aerospace Center (DLR)
Göttingen / Braunschweig / Köln

Esco 2018
Pilsen, Czech Republic
Outline

1. Software Framework
 I. FlowSimulator
 II. FlowSimulator DataManager (FSDM)
 III. Flucs

2. Hanging nodes/faces/edges in unstructured meshes in FSDM

3. Adaptive refinement for meshes in FSDM

4. Outlook
FlowSimulator

• HPC environment for integration of multiple parallel components into a process chain

• Jointly developed by Airbus, DLR, ONERA, universities, ...

• Components of simulation process chain („Plug-ins“) integrated via
 • Python control interface
 • FSDM data interface

• Definition and control of simulation process chain by Python control script
FlowSimulator DataManager (FSDM)

- FSDM reads/writes data (mesh, solution, log-data) from/to files
- FSDM decomposes data and distributes it over the different MPI domains
- FSDM stores data in container classes (e.g. FSMesh, FSDataset)
- FSDM offers an interface (Python and C++) to container classes
- FSDM for us means unstructured meshes, can handle structured meshes as well

![Diagram of FSDM components](image)
The “next generation” flow solver currently developed at DLR

Solves the Euler-equations, the Navier-Stokes equations, or the RANS equations

Two discretizations
 • Second-order Finite-Volume
 • Discontinuous Galerkin

Flucs is designed as an FS plug-in in order facilitate multi-disciplinary simulations

Consequently, development of FSDM and Flucs has to go hand in hand
Why should we care about hanging nodes/edges/faces?

One of the main aims of the DLR: Virtual design of an aircraft.
• Determine flight characteristics by numerical simulation
 • Key element: numerical flow simulation
 ➤ CFD software Flucs

Complex 3d transient flows
• highly time-consuming
 ➤ use mesh adaptivity

Ok, we are working on a tool for mesh adaptation
✗ Creation of hanging mesh entities and non-conforming interfaces

• Multidisciplinary optimization of a transport aircraft configuration.
 • Example of mesh adaption from Abaqus User’s manual
Motivation for Allowing Hanging Nodes/Edges/Faces

- Adaptation leads to creation of hanging nodes along non-conforming interfaces
 - E.g. disturb continuity of finite element space
 - Much effort required to remove them

- Allow for very flexible grid structures and flexible adaptivity
 - Go well with our new mesh adaption tool (currently under development)

- Discontinuous Galerkin & Finite Volume methods allow for very general non-matching grids with hanging nodes
 - Go well with the next generation flow solver Flucs

→ So far not accounted for in FSDM
Basic Idea for Hanging Edges

- Pseudo element types represent the types of “hanging” connections, one possibility of storing the hanging connectivity,
- Ignored by the solver, have no volume and no solution values, used by the face extractor to create the face based grid,
- Complete the hanging node grid to a kind of (pseudo) conformity,
- Enable the adaptation to work on hanging elements in the same way (only with other element types) as on conforming elements.
Implemented pseudo element types

1. PCT_Quad2Quad with 3 faces
2. PCT_Quad4Quad with 5 faces
3. PCT_Tri2Tri with 3 faces
4. PCT_Tri4Tri with 5 faces
5. PCT_Node1Node: 1d-element that is equivalent to an edge and simply connects 2 nodes

→ Definition of cell types and lots of small test meshes in data manager FSDM
Flucs requires the connectivity information and the node-coordinates of the faces of the mesh.

- **class FSMeshFaceExtractor**: Extracts and matches all unstructured faces and writes them in a list.
- Pseudo elements are handled in a natural way by the existing face extraction algorithm.
Modified Face Extraction Algorithm

- Tricky part: Removal of pseudo elements from list

- At process borders, additional communication is required
 - Parts of the cells connected to pseudo faces may be distributed among the processes
 - Pseudo cell faces themselves may belong to different MPI domains
 - Lots of different subcases to consider

- Also holds for higher order cells in FSDM: only corners are relevant
Simple Vortex Transport from left to right from (*)

- Mesh contains regular hexahedra, one column of hexahedra is refined with hanging edges in a 1:2 fashion

- 2nd order Finite-Volume discretization of the Euler equations
- Mach = 0.3, time-step = 0.025 using RK4 time-integration

- contour lines show the x-component of the momentum on the regular mesh while the flood colors show the x-momentum on the mesh with hanging nodes.

* J.C. Kok: A high-order low-dispersion symmetry-preserving finite-volume method for compressible flow on curvilinear grids
Results after convection

- The black line represents the x-momentum on the regular mesh
- Dashed red lines show the x-momentum on the mesh with hanging nodes
- Other quantities are similarly accurate
Idea: Mesh adaptation and pseudo cells

Initial grid of 2 hexahedra (blue).

1st adaptation:
mark for subdivision by indicator (red), refinement information transport (magenta) via (internal) faces (grey).

1st refined grid with pseudo element (green) between hanging faces.

2nd adaptation:
mark for subdivision by indicator (red), refinement information transport (magenta) via faces (grey) and pseudo element (green).

2nd refined grid with pseudo element (green) between hanging faces.
Outlook

- Mesh adaptation as FSDM-plug-in “FSMeshAdaptation”
 - Support of hanging nodes
 - Anisotropic refinement
 - Hybrid parallelization
- General polyhedric cells in FSDM

Contact:
Margrit Klitz
DLR, Simulation- and Softwaretechnology
HPC department
Margrit.Klitz@dlr.de
http://www.dlr.de/sc