A Pseudo Cell Approach for Hanging Nodes in Unstructured Meshes

Dr. Margrit Klitz

Matthias Orlt, Daniel Vollmer
German Aerospace Center (DLR)
Göttingen / Braunschweig / Köln

Esco 2018
Pilsen, Czech Republic
Knowledge for Tomorrow

Outline

- 1. Software Framework
 - I. FlowSimulator
 - II. FlowSimulator DataManager (FSDM)
 - III. Flucs
- 2. Hanging nodes/faces/edges in unstructured meshes in FSDM
- 3. Adaptive refinement for meshes in FSDM
- 4. Outlook

FlowSimulator

- HPC environment for integration of multiple parallel components into a process chain
- Jointly developed by Airbus, DLR, ONERA, universities, ...
- Components of simulation process chain ("Plug-ins") integrated via
 - Python control interface
 - FSDM data interface
- Definition and control of simulation process chain by Python control script

FlowSimulator DataManager (FSDM)

- FSDM reads/writes data (mesh, solution, log-data) from/to files
- FSDM decomposes data and distributes it over the different MPI domains
- FSDM stores data in container classes (e.g. FSMesh, FSDataSet)
- FSDM offers an interface (Python and C++) to container classes
- FSDM for us means unstructured meshes, can handle structured meshes as well

FLUCS the Flexible Unstructured CFD Software

- The "next generation" flow solver currenty developed at DLR
- Solves the Euler-equations, the Navier-Stokes equations, or the RANS equations
- Two discretizations
 - Second-order Finite-Volume
 - Discontinuous Galerkin
- Flucs is designed as an FS plug-in in order facilitate multi-disciplinary simulations

Consequently, development of FSDM and Flucs has to go hand in hand

Why should we care about hanging nodes/edges/faces?

One of the main aims of the DLR: Virtual design of an aircraft.

- Determine flight characteristics by numerical simulation
 - Key element: numerical flow simulation
 - CFD software Flucs

Complex 3d transient flows

- highly time-consuming
- → use mesh adaptivity

Ok, we are working on a tool for mesh adaptation

★Creation of hanging mesh entities and non-conforming interfaces

 Multidisciplinary optimization of a transport aircraft configuration.

Example of mesh adaption from Abaqus User's manual

Motivation for Allowing Hanging Nodes/Edges/Faces

- Adaptation leads to creation of hanging nodes along non-conforming interfaces
 - ★E.g. disturb continuity of finite element space
 - ★Much effort required to remove them

A conforming mesh

- Allow for very flexible grid structures and flexible adaptivity
 - Go well with our new mesh adaption tool (currently under development)
- Discontinuous Galerkin & Finite Volume methods allow for very general nonmatching grids with hanging nodes
 - Go well with the next generation flow solver Flucs

→ So far not accounted for in FSDM

Basic Idea for Hanging Edges

- Pseudo element types represent the types of "hanging" connections, one possibility of storing the hanging connectivity,
- Ignored by the solver, have no volume and no solution values, used by the face extractor to create the face based grid,
- Complete the hanging node grid to a kind of (pseudo) conformity,
- Enable the adaptation to work on hanging elements in the same way (only with other element types) as on conforming elements.

Implemented pseudo element types

- 1. PCT Quad2Quad with 3 faces
- 2. PCT_Quad4Quad with 5 faces
- 3. PCT Tri2Tri with 3 faces
- 4. PCT_Tri4Tri with 5 faces
- PCT_Node1Node: 1d-element that is equivalent to an edge and simply connects 2 nodes
- → Definition of cell types and lots of small test meshes in data manager FSDM

Original Face Extraction Algorithm

- class FSMeshFaceExtractor: Extracts and matches all unstructured faces and writes them in a
 list
 - Pseudo elements are handled in a natural way by the existing face extraction algorithm

Modified Face Extraction Algorithm

- Tricky part: Removal of pseudo elements from list
- At process borders, additional communication is required
 - Parts of the cells connected to pseudo faces may be distributed among the processes
 - Pseudo cell faces themselves may belong to different MPI domains
 - Lots of different subcases to consider

 Also holds for higher order cells in FSDM: only corners are relevant

Simple Vortex Transport from left to right from (*)

- Mesh contains regular hexahedra, one column of hexahedra is refined with hanging edges in a 1:2 fashion
- 2nd order Finite-Volume discretization of the Euler equations
- Mach = 0.3, time-step = 0.025 using RK4 time-integration
- contour lines show the xcomponent of the momentum on the regular mesh while the flood colors show the x-momentum on the mesh with hanging nodes.

Results after convection

- The black line represents the xmomentum on the regular mesh
- Dashed red lines shows the xmomentum on the mesh with hanging nodes
- Other quantities are similarly accurate

Idea: Mesh adaptation and pseudo cells

Initial grid of 2 hexahedra (blue).

st

1 adaptation:

mark for subdivision by indicator (red), refinement information transport (magenta) via (internal) faces (grey).

st

1 refined grid with pseudo element (green) between hanging faces.

nd

2 adaptation:

mark for subdivision by indicator (red), refinement information transport (magenta) via faces (grey) and pseudo element (green).

nd

2 refined grid with pseudo element (green) between hanging faces.

Outlook

- Mesh adaptation as FSDM-plug-in "FSMeshAdaptation"
 - Support of hanging nodes
 - Anisotropic refinement
 - Hybrid parallelization
- General polyhedric cells in FSDM

Contact:

Margrit Klitz

DLR, Simulation- and Softwaretechnology
HPC department

Margrit.Klitz@dlr.de

http://www.dlr.de/sc

Original: Kjell André Vector: DTR

