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ABSTRACT 

Previous tests at the Fluid Transient Test Facility (FTTF) [1] revealed interesting 

phenomena which were unexpected like small pressure spikes in an area where only 

saturation pressure is expected and the almost constant velocity of vapour bubbles in 

cavitating flows. In order to support upcoming tests at the FTTF with liquid nitrogen 

(LN2), simulations were performed with a Lattice Boltzmann Method (LBM) to 

investigate how the LBM is suitable for this problem and to show how LN2 will be 

different from the tests performed with water.  

 

Nomenclature 

f :  distribution function 

t :  time 

x⃑  : coordinate 

ξ  : particle velocity vector 

τ : relaxation time 

f eq : equilibrium distribution function 

c : magnitude of velocity 

n,ρ : density 

u⃑  : velocity vector 

e : internal energy 

R : specific gas constant 

T : temperature 

F : weight 

s : equilibrium distribution 

A : weighting factor 

Δs : lattice spacing 

Δt : time step 

ℱ : flux 

Ψ : flux limiter 



Θ : smoothness function 

δαβ : Kronecker delta function 

μ : viscosity 

κe : heat conductivity 

κ : ratio of specific heats 

I : interparticle force term 

p : pressure 

  

Subscripts 

k :  index for absolute velocity 

i :  direction index 

α, β… : vector component 

 

1 INTRODUCTION 

Pressure surge is of strong interest in many industrial fields, amongst which the space 

industry. In rocket engines and thrusters it plays a major role in the designing process of 

the feed system and has to be considered especially when the feed lines are primed 

during start-up as well as during the rapid closing of valves upon shutdown. In both cases 

a pressure peak will occur, leading to a pressure surge wave travelling along the pipe.   

Pressure surge is a well-studied phenomenon because of its importance for the designer 

of fluid systems. For CFD tools it is a valuable validation experiment to check whether 

the code is able to correctly simulate steep pressure gradients, absolute pressure peaks 

and wave attenuation. When the pressure falls below the saturation pressure and hence 

column separation occurs, the complexity of flow simulation increases significantly 

because of instantaneous evaporation and condensation. In order to investigate these 

phenomena at pressures of up to 100 bar and Reynolds numbers of up to 105 a test bench 

was built at the DLR Lampoldshausen. Tests were performed with water to produce a 

pressure surge upon valve closing.  

These tests are used by industry for the validation of their numerical tools for simulating 

the upper stage fluid system of the upcoming Ariane 6 rocket. The Ariane 6 upper stage 

uses liquid oxygen (LOx) and liquid hydrogen (LH2) as fuels and of course the 

numerical tools need to be able to correctly handle these fuels. For this reason the FTTF 

will be upgraded to be able to repeat the water pressure surge experiments with LN2 and 

LOx. LN2 will be used first for safety reasons and after the correct operation of the FTTF 

with cryo-fluids has been demonstrated, the tests will be repeated with LOx. This way we 

will show if and how the behaviour of the cryogenic fluids is comparable to the water 

experiments performed at the same test bench, while creating a database of pressure 

surge experiments with LN2 and LOx. 

In this work we will support the transition from water to cryo fluids by preliminary 

calculations done with a Lattice Boltzmann model which is especially suited for thermal 

two-phase flows. The thermal model uses the multispeed approach to enhance numerical 

stability [2]. The thermal model directly simulates the temperature by incorporating it 

into the equilibrium distribution of the distribution function. The authors who developed 

the thermal model proved that it is suitable for supersonic flow simulation [3]. However 

the Watari and Tsutahara (WT) model is for ideal gases only, so another extension of the 

classical LBM is needed to enable the simulation of a real gas. The chosen model is 

based on the WT-model and simulates a non-ideal van der Waals fluid [4].  



In this paper we want to investigate how the model is able to simulate pressure surge 

events and we want to show how the behaviour of nitrogen is different from the 

behaviour of water during the pressure surge.  

Three simulations have been performed with the model in order to show the above:  

 

 Pressure Surge in a straight conduct; to show the overall behaviour of the 

LBM for this case  

 Pressure Surge with a single bubble; to show the wave propagation over a 

single nitrogen vapour bubble 

 Pressure Surge with 25 bubbles; to show the wave propagation through a 

duct completely obstructed by bubbles 

 

2 NUMERICAL MODEL 

The WT-model we use in this work is a finite difference lattice Boltzmann model 

(FDLBM) which is able to simulate thermal ideal gas flow by a multispeed approach. 

The model conserves moments up to the fourth order of flow velocity 𝑢⃑  which makes it 

possible to simulate compressible flow.  

The extension by [4] enables the model to simulate a real gas with a van der Waals 

equation of state (EOS) by implementing a force term which makes it possible to 

simulate the interparticle forces and hence triggering phase change. The Gonella force 

term enhances the WT-model to the WTG-model. The mathematical foundation of both 

models will be presented in this section.  

For validation of the interesting features for cryo-fluids, three validation cases have been 

simulated in [5] by the authors. Overall correct representation of incompressible single-

phase flow was demonstrated by a lid driven cavity. Instantaneous evaporation was 

simulated by the formation of a single vapour bubble at a heated surface. And finally a 

Riemann shock tube configuration showed the capability of the model to handle shocks 

and supersonic flow [5].  

2.1 Ideal gas multispeed model 

The thermal ideal gas model is a so called multispeed model, because it uses more speeds 

than the classical LBM. This is done in order to increase numerical stability and to 

conserve moments of higher order, which makes it possible to simulate more physical 

phenomena like compressible flow, for example. 

The Ideal gas multispeed model solves the Boltzmann equation with the Bathnagar, 

Kross and Grook collision term 

𝜕𝑓

𝜕𝑡
+ 𝜉 ⋅

𝜕𝑓

𝜕𝑥 
= −

1

𝜏
(𝑓 − 𝑓𝑒𝑞) (1) 

where 𝑓 is the particle distribution function, 𝑡 is the time, 𝜉  is the particle velocity vector, 

𝑥  the direction in Cartesian coordinates, 𝜏 the relaxation time and 𝑓𝑒𝑞  the equilibrium 

distribution function.  

The model uses a quadratic two-dimensional grid (see Figure 1), hence the components 

of the particle velocities are 

𝜉00 = 0, 𝜉𝑘𝑖 = [
𝑐𝑜𝑠 𝜋(𝑖 − 1)

4
,
𝑠𝑖𝑛 𝜋(𝑖 − 1)

4
] 𝑐𝑘 , (2) 

 



where 𝑖 = 1,… ,8 is the index for the direction and 𝑘 = 1,… ,4 is the index for the set of 

absolute values of the velocity, 𝑐𝑘. The values for 𝑐𝑘 = [1.0, 1.92, 2.99, 4.49] were 

chosen in [2] to increase the stability of the model. This leads to a total number of 

𝜉00 + 𝜉𝑘𝑖 = 33 velocities.  

The local values for the macroscopic density 𝑛, the velocity 𝑢⃑  and the temperature 𝑒 are 

𝑛 = ∑𝑓𝑘𝑖

𝑘𝑖

, (3) 

𝑛𝑢𝛼 = ∑𝑓𝑘𝑖𝜉𝑘𝑖𝛼 ,

𝑘𝑖

 (4) 

𝑛 (𝑒 +
𝑢⃑ 2

2
) =

1

2
∑𝑓𝑘𝑖𝑐𝑘

2.

𝑘𝑖

 (5) 

𝑒 is the internal energy and relates to the temperature 𝑇 by 𝑒 = 𝑅𝑇, with R being the 

specific gas constant. 

The equilibrium distribution function has the form  

𝑓𝑘𝑖
𝑒𝑞

= 𝑛𝐹𝑘𝑠𝑘𝑖, (6) 

with 

Figure 1: Quadratic grid for discretization.     
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𝑒
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𝑢2

2𝑒
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1

2𝑒2 (1 −
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2𝑒
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1
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+
1

24𝑒4 𝜉𝑘𝑖𝜓𝜉𝑘𝑖𝜂𝜉𝑘𝑖𝜁𝜉𝑘𝑖𝜒𝑢𝜓𝑢𝜂𝑢𝜁𝑢𝜒, 

(7) 

and the weights  

𝐹𝑘 =
1

𝑐𝑘
2(𝑐𝑘

2 − 𝑐{𝑘+1}
2 )(𝑐𝑘

2 − 𝑐{𝑘+2}
2 )(𝑐𝑘

2 − 𝑐{𝑘+3}
2 )

× [48𝑒4 + 6(𝑐{𝑘+1}
2 + 𝑐{𝑘+2}

2 + 𝑐{𝑘+3}
2 )𝑒3

+ (𝑐{𝑘+1}
2 𝑐{𝑘+2}

2 + 𝑐{𝑘+2}
2 𝑐{𝑘+3}

2 + 𝑐{𝑘+3}
2 𝑐{𝑘+1}

2 )𝑒2

−
𝑐{𝑘+1}
2 𝑐{𝑘+2}

2 𝑐{𝑘+3}
2

4
𝑒] 

𝐹0 = 1 − 8(𝐹1 + 𝐹2 + 𝐹3 + 𝐹4). 

(8) 

The weights 𝐹𝑘 follow the notation of [6]. Please note that summation over repeated 

greek indices (Einstein notation) is used in the equations above.  

Since the speeds are not related to the lattice spacing, a finite difference scheme is used 

to discretize the model in space. We use the flux limiter scheme based on the Lax-

Wendroff scheme according to [7]. Equation (1) then becomes 

𝜕𝑓

𝜕𝑡
= −

𝑐𝑘

𝐴𝑖𝛥𝑠
[𝐹𝑘𝑖

𝑛,𝑗+1 2⁄
− 𝐹𝑘𝑖

𝑛,𝑗−1 2⁄
] −

1

𝜏
[𝑓𝑘𝑖

𝑛,𝑗
− 𝑓𝑘𝑖

𝑒𝑞,𝑛,𝑗
], (9) 

where Δ𝑠 is the lattice spacing, the superscript 𝑛 indicates the current time step and j the 

node relative to the current node. 𝐴𝑖 is a weighting factor. It is  

𝐴𝑖 = {
1, 𝑖 ∈ {1,  3,  5,  7}

√2, 𝑖 ∈ {2,  4,  6,  8}
. (10) 

The fluxes ℱ𝑘𝑖
𝑛,𝑗+1 2⁄

 and ℱ𝑘𝑖
𝑛,𝑗−1 2⁄

 are 

𝐹𝑘𝑖
𝑛,𝑗+1 2⁄

= 𝑓𝑘𝑖
𝑛,𝑗

+
1

2
(1 −

𝑐𝑘𝛥𝑡

𝐴𝑖𝛥𝑠
) [𝑓𝑘𝑖

𝑛,𝑗+1
− 𝑓𝑘𝑖

𝑛,𝑗
]𝛹(𝛩𝑘𝑖

𝑛,𝑗
),   𝑓𝑘𝑖

𝑛,𝑗

= 𝑓𝑘𝑖(𝑥 𝑗 , 𝑡) 

𝐹𝑘𝑖
𝑛,𝑗−1 2⁄

= 𝐹𝑘𝑖

𝑛,(𝑗−1)+
1
2. 

(11) 

where Ψ is the flux limiter and 𝜃 is the smoothness function 

𝛩𝑘𝑖
𝑛,𝑗

=
𝑓𝑘𝑖

𝑛,𝑗
− 𝑓𝑘𝑖

𝑛,𝑗−1

𝑓𝑘𝑖
𝑛,𝑗+1

− 𝑓𝑘𝑖
𝑛,𝑗

. (12) 



In this work we did not use the flux limiter proposed by [7] because we found the flux 

limiter by van-Leer to be more stable:  

𝛹(𝛩𝑘𝑖
𝑛,𝑗

) = {

0, 𝛩𝑘𝑖
𝑛,𝑗

≤ 0

2𝛩𝑘𝑖
𝑛,𝑗

(1 + 𝛩𝑘𝑖
𝑛,𝑗

)
, 0 < 𝛩𝑘𝑖

𝑛,𝑗 (13) 

Watari and Tsutahara showed that this discretization of Eq. (1) is equivalent to the 

following Navier-Stokes equations with no error after the Chapman-Enskog-expansion 

has been applied: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑟𝛼
(𝜌𝑢𝛼) = 0 

𝜕

𝜕𝑡
(𝜌𝑢𝛼) +

𝜕

𝜕𝑟𝛽
(𝜌𝑢𝛼𝑢𝛽 + 𝑃𝛿𝛼𝛽) −

𝜕

𝜕𝑟𝛽
[𝜇 (

𝜕𝑢𝛽

𝜕𝑟𝛼
+

𝜕𝑢𝛼

𝜕𝑟𝛽
−

𝜕𝑢𝛾

𝜕𝑟𝛾
𝛿𝛼𝛽)] = 0 

𝜕

𝜕𝑡
[𝜌 (𝑒 +

𝑢⃑ 2

2
)] +

𝜕

𝜕𝑟𝛼
[𝜌𝑢𝛼 (𝑒 +

𝑢⃑ 2

2
+

𝑃

𝜌
)]

−
𝜕

𝜕𝑟𝛼
[𝜅𝑒

𝜕𝑒

𝜕𝑟𝛼
+ 𝜇𝑢𝛽 (

𝜕𝑢𝛽

𝜕𝑟𝛼
+

𝜕𝑢𝛼

𝜕𝑟𝛽
−

𝜕𝑢𝛾

𝜕𝑟𝛾
𝛿𝛼𝛽)] = 0. 

(14) 

where P is the pressure, µ is the viscosity coefficient and 𝜅𝑒 is the heat conductivity. 

They are  

𝑃 = 𝜌𝑒, (15) 

𝜇 = 𝜌𝑒𝜏, (16) 

𝜅𝑒 = 2𝜌𝑒𝜏. (17) 

2.2 Real gas model 

The real gas model in [4] introduces a force term 𝐼𝑘𝑖 which represents the interparticle 

attraction forces. This way it is possible to simulate phase transition as a continuous 

density change over the interface. In its discretized form Eq. (9) then becomes 

𝑓𝑘𝑖
𝑛+1,𝑗

= 𝑓𝑘𝑖
𝑛,𝑗

−
𝑐𝑘𝛥𝑡

𝐴𝑖𝛥𝑠
[ℱ𝑘𝑖

𝑛,𝑗+1 2⁄
− ℱ𝑘𝑖

𝑛,𝑗−1 2⁄
] 

−
𝛥𝑡

𝜏
[𝑓𝑘𝑖

𝑛,𝑗
− 𝑓𝑘𝑖

𝑒𝑞,𝑛,𝑗
] − 𝛥𝑡 ⋅ 𝐼𝑘𝑖 .   

(18) 

Since the Boltzmann equation is the microscopic description of a gas, the force term 

leads to a real gas which obeys the van der Waals (vdW) EOS for the WTG-model.  

The force term has the form 



𝐼𝑘𝑖 = −[𝐴 + 𝐵𝛼(𝜉𝑘𝑖𝛼 − 𝑢𝛼) + (𝐶 + 𝐶𝑞)(𝜉𝑘𝑖𝛼 − 𝑢𝛼)2]𝑓𝑘𝑖
𝑒𝑞

 ,   𝑒𝑞.  5 

𝐴 = −2(𝐶 + 𝐶𝑞)𝑒  ,   𝑒𝑞.  12 

𝐵𝛼 =
1

𝑛𝑒
[𝜕𝛼(𝑝𝑤 − 𝑛𝑒) + 𝜕𝛽𝛬𝛼𝛽 − 𝜕𝛼(𝜁𝜕𝛾𝑢𝛾)] ,    𝑒𝑞.  13 

𝐶 =
1

2𝑛𝑒2 [(𝑝𝑤 − 𝑛𝑒)𝜕𝛾𝑢𝛾 + 𝛬𝛼𝛽𝜕𝛼𝑢𝛽 − (𝜁𝜕𝛾𝑢𝛾)𝜕𝛼𝑢𝛼 +
9

8
𝑛2𝜕𝛾𝑢𝛾

+ 𝐾 (−
1

2
(𝜕𝛾𝑛)(𝜕𝛾𝑛)(𝜕𝛼𝑢𝛼) − 𝑛(𝜕𝛾𝑛)(𝜕𝛾𝜕𝛼𝑢𝛼)

− (𝜕𝛾𝑛)(𝜕𝛾𝑢𝛼)(𝜕𝛼𝑛))] 

𝐶𝑞 =
1

2𝑛𝑒2 𝜕𝛼[2𝑞𝑛𝑒(𝜕𝛼𝑒)] 

(19) 

where  

𝛬𝛼𝛽 = 𝑀𝜕𝛼𝑛𝜕𝛽𝑛 − 𝑀 (𝑛𝛻2𝑛 +
|𝛻𝑛|2

2
)𝛿𝛼𝛽 − [𝑛𝑒𝜕𝛾𝑛𝜕𝛾 (

𝑀

𝑒
)] 𝛿𝛼𝛽  (20) 

is the contribution to the pressure tensor depending on the density gradients. 𝑀 = 𝐾 +
𝐻𝑒 allows a dependence of surface tension on the temperature e but in all simulations H 

was set to 0 and K was set to 0.005. This value has been chosen mainly to improve 

numerical stability and to counter bubble deformation by spurious currents at the 

interface. The latter are a common problem of multiphase codes in general, not only 

LBMs [8].  

𝜁 is the bulk viscosity, 𝜂 is the shear viscosity and finally  𝑝𝑤 = 3𝑛𝑒/(3 − 𝑛) − 9/8 𝑛2 

is the vdW-pressure. 

The WTG-model allows variation of the Prandtl number 𝑃𝑟 = 𝜂/𝜅_𝑒 = 𝜏/2(𝜏 − 𝑞)  
through the variable q.  

2.3 Boundary and initial conditions 

There are two types of boundary conditions (BC) which we use in this paper. A Dirichlet 

BC is implemented to fix values at the wall, like the velocity for example for which a no-

slip wall-BC is used based on the diffuse reflection BC version 1 in [6].  

The left wall and the bulk volume are set up with an initial velocity in the positive 

direction of 𝑢0 = 5.87 𝑚/𝑠, which represents a steady flow before the computation 

starts.  

 
Figure 2: Boundary conditions 

 

inlet u = u0

no slip wall

bulk u0 = 5.87m/s



The fluid will be stopped at the right wall immediately after the simulation is started. 

This way a “valve” with an infinite closing speed is simulated and a pressure surge will 

evolve from the right wall.  

The thermodynamic properties of each of the following simulations can be found in the 

respective chapters.  

 

3 NUMERICAL SETUP AND RESULTS 

Three simulations are chosen to show how nitrogen behaves in a pressure surge event. 

All of the 2D simulations use the same rectangular computation area with a height of 19 

mm and a length of 76 mm. The height represents the same inner diameter of the pipe 

used in [1]. Since this work focusses on the interaction of a pressure surge with vapour 

bubbles formed by cavitation, the length has no impact on the wave propagation. 

First a simulation of a pressure surge event with no vapour bubbles is performed. Then a 

single bubble is introduced in the duct to show how the incoming pressure wave is 

reflected at the bubble surface and how the pressure evolution in the bubble is. The last 

simulation presented in this work is set up with bubbles everywhere, so that the pressure 

wave cannot travel in the negative direction without impacting on a phase interface. I.e. 

there is no free path for the pressure wave in the rectangular duct.  

In all simulations the bubble size is set to 26 nodes (4.9 mm) because this is a common 

size for the bubbles observed in the experiment.  

The natural frequency of a nitrogen bubble of this size has been calculated to 62.5 kHz 

(according to [9]) which equals a period of 16 µs. This value is at least an order of 

magnitude lower than the time scale of the pressure waves simulated in this paper.  

The boundary conditions are the same for all three simulations (see section 2.3). 

All simulations use the real gas model, even if there is only a single phase.  

The surface tension was set up in order to  

3.1 Single phase pressure surge 

The single phase simulation was set up with the properties for LN2 summarized in Table 

1. The properties are for the van der Waals fluid which is simulated by the model chosen 

in this paper and since the vdW EOS is known to be not very accurate, they are slightly 

different from the real fluid properties. For this reason the third column in Table 1 shows 

the real fluid properties of the NIST [10] for LN2 at the temperature of 116 K. 

 

 
Figure 3: Single phase pressure surge simulation 

 

t = 0.19ms

t = 0.97ms

t = 1.94ms



Table 1: Fluid properties for single phase pressure surge initialization 

Property LBM NIST  

density 𝜌 519 586 kg/m³ 

temperature T 116 116 K 

pressure p 2.91 2.91 MPa 

nodes Nx 512   

nodes Ny 128   

 

The results are shown in Figure 3. It is obvious that the LBM used in this paper has some 

disadvantages for simulating pressure surge. One can easily see that the dissipation of 

pressure is relatively high. The pressure decreases from the top picture to the bottom 

picture from 4.05 MPa, over 3.77 MPa to 3.63 MPa. At t = 0.19 ms low pressure 

evolving from the wall reduces the main surge pressure. Apparently the boundary 

conditions are causing some of the dissipation while the numerical model itself seems to 

have some inherent numerical damping, too. This can also be seen in the surge pressure 

in the simulation, which is below the Joukowsky pressure 𝑝0 + Δ𝑝 = 𝑝0 + 𝜌𝑐𝑢0 =
4.36 MPa. Here 𝑝0 is the mean pressure before the pressure surge event. 

Apart from that, the speed of sound is predicted well within the limits of the vdW EOS. 

From the distance the wave travelled and the time needed for it, a value of 473 m/s is 

calculated. The fluid is close to the critical point and for this reason have a relatively high 

sensitivity to the actual values of temperature and pressure. Depending on the pressure 

the speed of sound varies from 420 m/s for 2.91 MPa to 466 m/s for 4.05 MPa [10] 

where the latter is the pressure behind the pressure wave.  

3.2 Single bubble pressure surge 

The single bubble simulation is set up on the same rectangular grid with the same 

temperature, pressure and liquid density as the single phase simulation. The properties 

are summarized in Table 2. The properties are the saturation properties for the vdW EOS. 

 

Table 2: fluid properties for single bubble pressure surge initialization 

density liquid 𝜌l 519 kg/m³ 

density vapor ρv 133 kg/m³ 

temperature T 116 K 

pressure p 2.91 MPa 

nodes Nx 512  

nodes Ny 128  

 

The bubble and the liquid have the initial velocity of 𝑢0 = 5.87 𝑚/𝑠. The position of the 

bubble is at node 400 in x-direction and in the middle of the duct in y-direction. The 

radius of the bubble is 13 nodes (4.9 mm in diameter). 

The main reason for the simulation with a single bubble is to show the pressure wave 

bubble interaction in a simple example. The same structures will also be visible in the 

simulation with more bubbles, but they will not be so easy to distinguish because they are 

as numerous as the number of bubbles in the simulation.  

Figure 4 shows the results of the simulation. The first two pictures show a low pressure 

wave which originates from the bubble, as well as the pressure surge coming from the 

right wall. The small wave coming from the bubble is due to non-equilibrium 

initialization. 

In the third picture at time t = 0.485 ms the main pressure wave passes the bubble. One 

can see three effects here.  



The first one is the reflection of the pressure wave at the bubble interface as a negative 

pressure wave.  

The second effect visible is how each contact point of the main pressure wave with the 

interface starts a pressure wave inside the bubble, which itself travels with the lower 

speed of sound in the vapour in the bubble. This can also be tracked in the fourth picture. 

For our experiments the density ratio is 3.9 which is very close to the numerical 

simulation presented in [11] where a bubble of Krypton gas in air has been simulated 

(density ratio of 2.9). Since Krypton has a lower SOS than air the results show a 

comparable behaviour of the pressure distribution in the bubble. The authors validated 

their simulations against experimental results and achieved very good agreement [11].  

The third effect visible in the third picture is the low pressure wave mentioned before 

which has its origin in non-equilibrium initialization. It leads to a distortion of the 

bubble. It is no longer round in shape, but more a square. This effect is pronounced by 

spurious currents at the interface. Spurious currents at phase interfaces are a known 

problem in numerical codes [12]. A test simulation done with a bubble without external 

disturbances did not show this behaviour.  

Pictures 5 to 7 (0.573 ms to 0.776 ms) show that after the pressure wave inside of the 

bubble “collapses” or reunites at the front of the bubble, a new pressure wave is sent off 

from the front of the bubble which travels behind the main pressure wave of the pressure 

surge event. This behaviour has also been observed by [11]. 

One can also see, that the pressure inside the bubble reaches a maximum at t = 0.776 ms.  

There is no bubble collapse visible. Past experiments with water showed [1] that the 

collapse time of a bubble is of the order of 6ms. The authors expect the same behaviour 

of LN2 gas bubbles as the ones observed in water. The simulation deviates here from the 

experimental observation. The bubble collapse is driven the so called Richtmyer-

 
Figure 4: Single bubble pressure surge simulation 

 

0.194ms

0.294ms

0.485ms

0.514ms

0.573ms

0.631ms

0.776ms

1.941ms



Meshkov instabability formed at the interface between two fluids with different densities. 

This instability is of small scale and could not be resolved in the numerical simulations 

presented in this paper. The resolution of the mesh on the initial bubble diameter is 0.19 

mm. In [11] the authors were not able to reproduce the instabilities with a resolution of 

0.1mm. 

3.3 Multiple bubble pressure surge 

25 circular bubbles were positioned in equal distance from each other for this simulation. 

This way the pressure wave cannot travel upstream without passing a liquid vapour 

interface. The bubbles all have a diameter of 13 nodes and a distance of 52 nodes from 

each other. The fluid properties are the same as for the simulation with a single bubble. 

The results are shown in Figure 5 and Figure 6. 

Till time t = 0.776 ms the behaviour of the pressure wave is comparable to the single 

bubble case. At time t = 0.97 ms there is no pressure wave front visible anymore in 

between the bubbles, but the pressure inside of the bubbles is a good indication on where 

the pressure surge is at the moment. After 1.941 ms it is obvious that the speed of sound 

is lower than in the single phase case of the first simulation presented in this paper (284 

m/s).  

There is strong attenuation of the pressure wave. One has to keep in mind that the model 

in use showed numerical dissipation of pressure (see section 3.1), but nevertheless it is 

obvious that diffraction and reflection of the pressure wave at the phase interface also 

play an important role in attenuation.  

As in the single bubble case bubble collapse is not visible, which is unexpected. 

 
Figure 5: 25 bubble pressure surge simulation,  

0.194 ms to 0.573 ms 
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4 CONCLUSION 

Three pressure surge simulations with liquid nitrogen have been performed in order to 

show the applicability of the Lattice Boltzmann Method. LBM has been chosen for the 

simulations because it is able to simulate temperature as well as two-phase flow, by using 

a multi-speed finite difference approach and an additional force term.  

In the simulation of a single phase liquid, the LBM performs well in predicting the speed 

of sound and it has overall stability, while showing minor shortcomings in the pressure 

attenuation and the maximum pressure peak of the pressure surge.  

In two-phase flow simulations the LBM makes it easy to track pressure waves traveling 

over vapour-liquid interfaces. By the simulation of a single bubble in a liquid, we could 

show the complex interaction of the pressure wave with the bubble interface.  

 
Figure 6: 25 bubble pressure surge simulation, 

0.631 ms to 1.941 ms 
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Finally a duct filled with bubbles was simulated. Strong pressure wave attenuation could 

be observed due to multiple wave scattering in the bubble cloud.  
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