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The structure of electrodes for proton-exchange membrane fuel 

cells and electrolysers has an important impact on performance 

and degradation. Ionomer films covering Pt/C agglomerates in 

fuel cell electrodes have a thickness in the range of 4 to 15 nm 

and differ from the bulk structure with their mostly lamellar films. 

The formation of such nanothin films deposited by drop-casting 

and self-assembly was studied by atomic force microscopy. For 

different equivalent weights and different solvents of Aquivion® 

and Nafion® dispersions, the size and structure of the dispersion 

particles, of sub-monolayers, single and multilayers was 

investigated on graphene, platinum, mica, and silicon. The size of 

dispersion particles strongly depends on the solvent. On 

hydrophobic graphene, the height of ionomer bundles and layers 

measures 1.5 nm, significantly less than the 2.5 nm height found 

on hydrophilic Pt, Si, and mica. 

 

 

Introduction 

 

Fuel cell electrodes are typically porous compounds of few nanometer-sized catalyst 

particles deposited on mesoporous carbon with diameters of 10-30 nm, mixed with an 

ionically conducting binder, mostly Nafion or Aquivion ionomers are used; nevertheless 

also electrode designs without ionomer using water as ionically conducting phase were 

also successfully applied (1–3). The carbon particles form agglomerates that are (partly) 

covered by ionomer and have an average size in the range of 100 nm as reported in ref. 

(4). The performance and duration of polymer electrolyte fuel cells depend on all 

components, although, the nano-structured electrodes have a large impact. The detailed 

nanostructure of the electrodes determines the macroscopic properties of the membrane-

electrode-assembly (MEA) and thereby performance and degradation. It was reported 

that, i.e. the ionomer fraction and the kind of solvent, which have an impact on the 

structure of the ionomer layers, influence the MEA properties (5–7). For example, the 

average specific conductivity of the electrodes decreased with smaller film thickness (8). 

Furthermore, it was reported that for differently prepared MEAs the irreversible 

degradation rate was smaller for MEAs with initially thinner ionomer layers (4). The 

ionomer coverage of the agglomerates depends on the local surface energy of the carbon 

and thereby also on Pt loading (9). 

 

Since the reduction of platinum loading as precious metal with limited resources and 

high prizes is an issue, its impact on the fuel cell performance was studied. A reduced Pt 

loading leads to an increase of surface energy with an impact on the ionomer coverage 
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(9). Below a Pt loading of 0.15 mg·cm
-
², an increasing transport resistance was found. 

The analysis performed by i.e. Mathias et al. concluded that the transport of oxygen 

through the Nafion layers is the major cause (10). Recently, an alternative explanation 

was provided by Muzaffar et al. stating that water layers covering the catalyst 

agglomerates are the main reason for the additional transport resistance (11). In this 

analysis the authors assume a partly ionomer coverage of the Pt-carbon agglomerates. In 

this case oxygen penetrates the agglomerate mainly through the gas/water interface 

without necessity to permeate through the ionomer. 

 

Since the detailed structure of the electrodes is of importance, an analysis of their 

nanostructure was performed (4,12). The ionomer phase is very sensitive to varying 

humidity and temperature and reacts with immediate dimension changes. An meaningful 

analysis of the electrodes needs to be performed at controlled humidity and temperature 

close to operational conditions to ensure the significance of measurements for fuel cell 

operation (13). Shrinkage/extension leads not only to changes in film thicknesses but also 

to a different ionomer coverage of the agglomerates (4,12). In this respect as suitable 

analysis method atomic force microscopy (AFM) was used in this study. With material-

sensitive AFM tapping mode, a high contrast between the ionomer- and the Pt/C phase, 

i.e. adhesion force, deformation or stiffness mapping allows to study the distribution and 

size of the ionomer phase (Figure 1a) (4,13). High-resolution AFM adhesion mapping 

that exhibits the ionomer as bright phase showed separated ionomer films wrapped 

around the partly ionomer covered agglomerates with few embedded ionomer clusters 

(Figure 1b). The ionomer layers range in size from 4 to 15 nm. After fuel cell operation, 

the thickness further decreased caused by chemical degradation (4,14). From i.e. 

modeling studies it was concluded that these nanothin films have a minimum thickness of 

4 nm and represent only one ionomer backbone layer that covers a water film at the 

hydrophilic surface or two backbone bilayers with a sandwiched water film, depending 

on the substrate surface energy (15,16). The nanothin films in the electrodes were found 

to be mostly lamellar, deduced from the linear swelling of the ionomer films with 

humidity increase (15,16). For thicker ionomer films and low water content modelling 

shows that the formation of inverted micelles instead of layers becomes more 

advantageous (15,16). It is well-known that the properties of such thin films differ 

strongly from that of the bulk ionomer, for example in conductivity as reported i.e. by 

Paul et al. from the analysis of self-assembled Nafion films on different substrates. The 

thickness of these self-assembled films was mainly dependent on the ionomer 

concentration with a minimum of 4 nm (1,8). A review of the properties of ionomer in 

PEMC electrodes can be found in ref. (1); a general review on ionomers can be found in 

ref. (18). 

 

In a typical ink for fuel cell electrode preparation, i.e. for air brush spraying, 

doktorblade, or screen printing deposition, the concentration of ionomer is in the range of 

0.1-4 %, respectively. Depending on the ionomer concentration and local surface energy 

which is determined by, i.e the fraction, size, and type of Pt and carbon, a formation of 

sub-monolayers or closed ionomer layers by self-assembling is expected. For this reason, 

the initial stages of formation of such nanothin films on model surfaces were studied.  
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Figure 1.  (a) AFM adhesion mapping of an electrode cross-section, bright color indicates 

ionomer, (b) high-resolution adhesion mapping of ionomer layers between agglomerates, 

(c) distribution of Aquivion film thicknesses at 40 % RH at a new anode cross-section, 

and (d) distribution of film thickness at new (blue) and 1100 h operated (red) anode 

cross-sections; the lengths refer to the total image size. 

 

 

Dispersion Particles 

 

The size and agglomeration of PFSA has been studied mainly for Nafion dispersions 

(19–23). Most authors report cylindrical aggregates or bundles. Their size and shape 

depends on the solvent and the equivalent weight of the ionomer. Ghelichi and Eikerling  

reported from a general modelling approach including a variety of different ionomer 

architectures that the particle size depends on the detailed molecular structure and the 

properties of the solvent (24). The bundles have a dense hexagonal packing consisting of 

ionomer backbones, the sulfonic acid groups are oriented to the sides. With increasing 

hydrophobicity the bundles became larger, while an increased density of sulfonated side-

chains lead to a decrease in size. Small coulombic interaction leads to a decrease, strong 

interaction to an increase in bundle size. Welch et al. reported on Nafion particle sizes in 

pure and varying fractions of water/2-propanol solvents (21). They found well-defined 

cylindrical particles with a size of approximately 15 nm x 4.6 nm in glycerol, large 200 

nm aggregates in water/isopropanol mixtures, and a random-coil conformation in N-
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methylpyrrolidone. Large secondary clusters of 200-400 nm were also measured in 

isopropanol/alcohol (IPA) by Ngo et al. (5). The Nafion molecules formed primary 

aggregated particles at medium IPA fractions, in dilute IPA/water solutions within the 

range of 20-45 wt.%, these primary aggregated particles formed secondary ionic clusters 

via inter-sulfonate ionic aggregations. The primary aggregated particles changed from 

rod-like to coil-like structure above an IPA concentration of 70 wt.%. From the included 

TEM images the bundle sizes were estimated in a range of 10 to 10² nm. 

 

In order to get a first insight into the film formation in electrodes, model experiments 

using drop-cast deposition of ionomer from dispersion were performed. The size of the 

particles in dispersion, the first stages of sub-monolayer coverage to monolayer coverage, 

and the formation of closed films were studied with AFM. As hydrophilic and 

hydrophobic substrates including the materials relevant for electrodes, mica, Si, a Pt(110) 

single crystal, a Pt sputter layer, and graphene sheets detached from highly oriented 

pyrolytic graphite (HOPG) crystal were chosen.  

 

 

Experimental 

 

The AFM measurements were performed with a Bruker Multimode 8. The material-

sensitive evaluation delivers, i.e. adhesion force, stiffness, and deformation. Details can 

be found in ref. (25–27). For ionomer deposition, water-based and hydro-alcoholic 

dispersions of Nafion
®

 1100 with an equivalent weight (EW) of (1100±20) g·mol
-1

 SO3H, 

and different grades of Aquivion
®

 PFSA were used: D83-25BS (830±20) g·mol
-1

 SO3H, 

water based) and D79-25BS (790±20) g·mol
-1

 SO3H (water-based). 

 

 
 

Figure 2.  (a) Experimental procedure for sub-monolayer preparation by drop casting 

from ionomer concentration of 0.0025-0.005 wt.%, evaporation time 1 h for water-based 

and 1 min for alcoholic dispersions, (b) film formation by self-assembling from 

dispersion with 0.25 wt.% ionomer and subsequent blowing off the residual dispersion. 

 

For size determination of the dispersion particles and sub-monolayer films with AFM, 

a drop with an ionomer concentration between 0.0025 wt.% and 0.005 wt.% of water-

based or hydro-alcoholic ionomer dispersion was placed on the substrates (“drop-

casting”) and dried at room temperature (RT); in case of water-based dispersion for 1 h 
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and 1 min for hydro-alcoholic dispersions (Figure 2a). Nanothin films were prepared by 

self-assembling for 2 h in 0.25 wt.% ionomer dispersion with subsequent blowing off the 

residual solvent with argon similar to the procedure described by Paul et al. (Figure 2b) 

without further curing (28). For comparison of the ionomer coverage on Pt and Si 

substrate self-assembled on the same sample, the Pt sputter layer was partly removed 

from the Si substrate using a razor blade. 

  

Before ionomer deposition, the surfaces of all substrates were examined by AFM on 

their roughness and cleanliness. The AFM determined Ra roughness values are given in 

brackets. A freshly flame-annealed Pt(110) crystal (Ra=0.2 nm), a Pt-sputter film on Si 

(Ra=0.8 nm), cleaned by a mixture of 3 parts of H2SO4 acid and 1 part of 30 vol.% of 

H2O2 solution, a Si wafer (Ra=0.1 nm), freshly cleaved mica sheets (Ra=0.044 nm), and 

graphene sheets, freshly detached from a highly oriented pyrolytic graphite crystal 

(Ra=0.023 nm), were used as substrates.  

 
 

Figure 3.  (a) AFM height image of drop-cast water-based Aquivion D79-25BS film from 

0.005 wt.% ionomer dispersion on mica with selected area for determination of film 

thickness, (b) distribution of height values. 

 

As depicted in Figure 3, the height of clusters and bundles was determined by a 

height histogram (Figure 3b) across the selected area, marked in Figure 3a. The peak 

distance was used as a measure for the average height. The width and length of the 

cylindrical bundles was estimated from a number of height profiles to have an impression 

on the size. The scales of the images are either given via scale bars or the length of the 

whole image is noted. 

 

 

Results and Discussion 
 

Size and Structure of Dispersion Clusters and Sub-Monolayer Films 

 

As a main analysis method, we determined the size of clusters by AFM after 

deposition on flat substrates. In Figure 4a,b, Nafion clusters from hydro-alcoholic (Figure 

4a) and from water-based (Figure 4b) dispersion were placed on a flat mica surface by 

drop-casting with a low ionomer concentration. For AFM measurements areas with a 

small coverage were examined. The clusters originating from the alcoholic dispersion 

were more spherical with a width of roughly 10-30 nm and a length of roughly 30-100 

nm. The majority of clusters originating from the water-based dispersion were more 

cylindrical and these bundles had a width of approximately 10 nm and a length of 

approximately 50-100 nm. Mostly fibrillary, rod-like bundles were reported for Nafion. 

The sizes derived by AFM are in agreement with the reported values, i.e from Ngo et al. 
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and Welch et al. (5,21). Loppinet et al. found smaller rods with only 2 nm radius by 

small angle neutron spectroscopy (SANS) (22). 

 

Although the sizes measured by AFM fit to most of the literature data, due to 

convolution of the AFM tip with the polymer, the width (but not the height) of the 

bundles appears larger. To minimize this influence, ultra-sharp AFM tips were used in 

addition. Furthermore, a larger size measured by AFM may result from an additional 

clustering on the surface during solvent evaporation.  

 
 

Figure 4.  AFM height images of Nafion 1100, drop-cast on graphene sheets, (a) from 

hydro-alcoholic dispersion, clusters of 10-30 nm x 30-100 nm, (b) from water-based 

dispersion, cylindrical bundles of 10 nm x 50-100 nm; the lengths refer to the total image 

size. 

  

Thickness of Sub-Monolayer Films 

 

In Figure 5, a sub-monolayer film and multilayers deposited on mica from water-

based Aquivion D79-25BS dispersion are presented. The formation of multilayers is 

visible in the topography image of Figure 5a. The first step height was 2.1 nm high at the 

dense edge. At the terrace, large holes down to the substrate are present and the film 

height measured 2.6 nm. The second layer had a thickness of 2.0 nm, the step to the third 

layer was 2 nm. The layer morphology is different. The higher-resolution image of the 

first layer (Figure 5b) shows the dense edge without holes, the thinner films indicate a 

decreased water layer directly at the edge. With increasing distance from the edge, many 

large holes are present. The structure of the second layer (Figure 5c) is different and 

consists of more isolated cylindrical bundles that form a connected network. No holes 

down to the substrate were detected any more. The third layer has a dense granular 

surface. An area on the substrate with low and high cluster density in one layer is shown 

in Figure 5d.  
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Figure 5.  AFM images of drop-cast water-based Aquivion D79-25BS dispersion on mica 

(a) topography image of position with 4 layers, (b) high-resolution image of first layer 

with dense edge and 2.1 nm step height at edge and 2.6 nm within terrace, (c) high-

resolution image of the second layer with 2.0 nm step height within terrace, (d) 

topography image with different ionomer density in one layer, (e) height profile along the 

line in (d), (f) topography image of the area covered with isolated bundles, (g) high-

resolution topography image with individual Aquivion clusters of 2.5 nm height, (h) 

corresponding adhesion force mapping of (g) with low adhesive cylindrical bundles of 20 

x 44 nm, (i) corresponding deformation mapping of (g), and (j) zoom into the 

deformation mapping with internal higher deformable zig-zack and lamellar lines with ≈ 

5 nm width. 

 

In Figure 5e the height profile along the line of Figure 5d is presented. The isolated 

and the densely packed bundles have the same height of 2.5 nm and represent a single 

ionomer layer. The densely packed area still has many pin-holes. The isolated bundles 
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have a width of approximately 20-30 nm. The higher resolution topography image in 

Figure 5f,g exhibits a progressive network formation of the cylindrical bundles. These 

bundles have a granular structure along their length (Figure 5g). A comparison of the 

corresponding topography (Figure 5g), adhesion (Figure 5h), and deformation (Figure 5i) 

mappings of the same area exhibits a different structure of the granules depending on the 

measured property. In the adhesion mapping (Figure 5h), the dark isolated granules along 

the cylinders are indicative of ionic domains and have a size of roughly 20 nm x 44 nm. 

The deformation mappings of these areas show an internal structure (Figure 5i). The 

high-resolution stiffness mapping (Figure 5j) exhibits highly deformable, zick-zack or 

lamellar lines that can be assumed as positions of backbone bundles with an AFM-

measured size of ≈5 nm. 

 

Ionomer on Different Substrates 

 

A comparison of the polymer structure on substrates with different surface energy is 

presented in Figure 6. On hydrophilic mica and Si, the sulfonic acid groups that terminate 

the side chains and form the ionic phase are attached to the water layer at the substrate; 

on graphene the ionomer backbone chains are directly attached to the hydrophobic 

surface (15,16). Without the underlying water layer, the layer height is smaller. Figure 6a 

exhibits the topography image of one bundle of water-based D83-25BS dispersion on 

hydrophilic Si. The polymer bundle measures more than 1 micrometer in length. The 

bundle exhibits a granular structure along its chain. In the adhesion force mapping 

(Figure 6b), these grains are of ionic nature according to their low-adhesion. The polymer 

is curved around a flat, 2 nm-high island with extremely high adhesion, most-likely 

covered with a water layer attached to the ionic clusters of the polymer. A statistical 

evaluation of D83-25BS bundle height on Si is shown in Figure 7b. 

 

The same ionomer deposited on a graphene surface has formed highly branched 

polymer bundles. A high-resolution deformation image is given in Figure 6c. The 

polymer bundle has a width of 20 nm and a height of 1.5 nm. On the hydrophobic 

substrate, the ionic domains are most-likely oriented upwards to the bundle top and are 

not stretched to both sides of the bundle. From measurements of the step heights on 

Aquivion membranes, a corresponding step height was determined. It relates to the size 

of the main chain and the length of the half-stretched side chains (29). The bundle in 

Figure 6b is formed of two parallel structures decorated with highly deformable double 

spots, most-likely formed by the two side-chains oriented to the top; also the height of the 

polymer bundles is smaller than on mica and Si. 

 

On hydrophilic substrates such as mica or Si, the ionic domains formed by the side 

chains are assumed to be attached to the substrate and are oriented to both sides of the 

polymer bundle resulting in a bundle thickness of 2.5 nm. This explains the larger bundle 

width on mica and Si compared to graphene. The absence of a water layer below the 

polymer is the cause of the smaller height on graphene. The height of small ionomer 

layers that are formed along steps of the graphene edges (Figure 6d) also measures 1.5 

nm; the ionomer dots on these small films represent the initial growth of a second layer 

with a total height of 2.3 nm. 
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Figure 6.  AFM topography image of water-based D83-25BS dispersion with a 

concentration of 0.0025 wt.% of ionomer, (a) on Si with a bundle length of 

approximately 1 µm, (b) corresponding adhesion force mapping of (a), (c) high-

resolution AFM deformation mapping on graphene with bundles of 20 nm width and 1.5 

nm height, and (d) area with small layers on graphene with 1.5 nm-thick first layer and an 

initial second layer of ionomer spots with a total height of 2.3 nm; the lengths refer to the 

total image size. 

 

A comparison of the resulting Aquivion D83 film structure on Pt and Si by the same 

drop-cast coating leads to completely different coverage. On Pt, a closed film with a 

thickness of 8 nm was formed at the center of the drop (Figure 7a), whereas on Si, a loose 

network of 2.5 nm-thick cylindrical bundles covers 41 % of the surface (Figure 7b). This 

significant difference emphasizes the importance of the local surface energy for ionomer 

film formation. 

 

 
 

Figure 7.  (a) AFM topography image of drop-cast, water-based D83-25BS dispersion 

with a concentration of 0.005 wt.%, (a) simultaneously drop–casted, half-Pt coated Si 

substrate, close to drop center, measured at 50 % RH, and (b) network-like ionomer 

coverage on Si side at right with 2.5 nm height of bundles (height histogram in the inset); 

the lengths refer to the total image size. 
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Comparison of Coating Methods 

 

Depending on the position within the drop the local ionomer concentration can vary 

and a loose ionomer coverage with isolated clusters (Figure 4 and 5) or the formation of 

layers (Figure 5d) or multilayers (Figure 5a) was observed. Furthermore, the cluster 

structure depends on the solvent, as the size of dispersion clusters is different (Figure 4). 

A major influence on the orientation of bundles and the film thickness results from the 

substrate surface energy (Figure 6). Even in case of two hydrophilic substrates as Pt and 

Si, the coverage is influenced by i.e. the surface roughness (Figure 7). The minimum 

layer thickness of dense Nafion and Aquivion films depends on humidity and substrate 

surface energy and  is ≈ 4 nm for Nafion and due to the shorter side-chains ≈ 3.6 nm for 

Aquivion (30,31). This thickness was also found by modeling of humid Nafion on 

substrates with different surface energy (15,16). The thickness that results from coating 

by self-assembling strongly depends on the ionomer concentration and only slightly on 

the emersion time (32).  

 

From the experiments it can be derived that depending on the deposition procedure, 

either layers of 1.5 nm or 2.5 nm for hydrophobic or hydrophilic substrates, respectively, 

or dense ionomer films with a minimum thickness of approximately 4 nm are formed. 

During self-assembling in a large volume, the ionomer concentration in the dispersion 

stays constant during deposition. A continued interaction of already deposited ionomer 

and dispersion particles finally leads to an equilibrium in the resulting film morphology, 

density, and thickness. In this situation the minimum film thickness observed is 4 nm, a 

higher concentration leads to thicker films. 

 

 
 

Figure 8.  AFM topography images of water-based D79-25BS, (a) drop-cast from 0.005 

wt.% ionomer dispersion on a Pt(110) single crystal surface, measured at RH 50 %, a 

profile line across the bundles overlaid, (b) larger area of the same sample as shown in 

(a), and (c) dense 10 nm-thick film from 0.25 wt.% ionomer dispersion after self-

assembly for 2 h on a Pt sputter layer, measured at 50 % RH; the lengths refer to the total 

image size. 

 

The difference in resulting ionomer layer by drop-cast and self-assembling is shown in 

Figure 8. In Figure 8a,b, a drop-cast ionomer coating of water-based D79-25BS from 

0.005 wt.% on a Pt(110) single-crystal surface is given after 1 h of evaporation. The 

crystal was chosen as substrate due to its low surface roughness. Distinct cylindrical 
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bundles with a height of 2.3 nm, derived from the overlaid profile line, were formed. In 

Figure 8c, the ionomer coverage after 2 h of self-assembling in the same ionomer 

dispersion with a concentration of 0.25 wt.% resulted in a dense film with a thickness of 

10 nm as visible in the overlaid profile line across the edge (Figure 8c).  

 

In a deposited drop of dilute dispersion, the situation is different. Due to the solvent 

evaporation during drop casting, the initial ionomer concentration increases and local 

differences at the edges and the center of the substrate occur. Due to the low total 

amount, after some time all clusters in the liquid are deposited on the surface and no 

further growth or structure change of the initially deposited bundles occurs. In this case 

the layers consist of more or less loosely connected single bundle-height layers or loose 

networks.  

 

Consequences for Ionomer Film Formation in Electrodes 

 

In a typical ink for fuel cell electrode preparation the concentration of ionomer is in 

the range of 0.1-4 wt.%. After ink preparation, self-assembling of the ionomer on the 

Pt/C particles is taking place at constant high ionomer concentration in the dispersion. 

Under this condition, the formation of dense layers with a thickness of at least 4 nm can 

be assumed. It was observed in the experiments that the first 4 nm thick layer attached to 

the substrate cannot be easily removed, i.e. by blowing with argon, whereas thicker 

residuals could be removed by this procedure. From the self-assembling experiments one 

would expect that the ionomer film thickness that depends on the ionomer concentration 

in the ink would be much larger. Following the results of Paul et al., for a concentration 

of 5 wt.% of Nafion a thickness of up to 300 nm was measured. Therefore, additional 

factors may influence the final thickness in the electrode. One possibility is a removal of 

the topmost material due to the coating method such as spraying; another influence is the 

final MEA processing. Most of the MEAs are hot-pressed after preparation. The heating 

above the glass temperature under high pressure most-likely further changes the ionomer 

films within the electrodes. It can be assumed that under these conditions of high 

temperature and pressure a lamellar ionomer structure is favored over a cluster-like. Also 

in this case, the topmost fraction of the soft thicker ionomer films may be squeezed out to 

open pores and may form ionomer agglomerates resulting in thin remaining ionomer 

films around the agglomerates. This process needs be further studied. 

 

 

Conclusions 

 

The formation of sub-monolayer and nanothin ionomer films from Nafion and 

Aquivion PFSA dispersions was studied to get insight into the formation of ionomer 

films in fuel cell electrodes. The ionomer was deposited on Pt, single crystal and sputter 

layers, and carbon, materials used in electrodes, and on flat hydrophilic Si and mica. By 

drop-casting of dilute dispersions, isolated dispersion clusters were observed on flat 

substrates and the size and morphology were analyzed by material-sensitive AFM. In 

case of water-based dispersions, the mostly cylindrical bundles were formed. They 

consisted of smaller spherical clusters, identified by adhesion force mapping as ionic 

domains. The resulting ionomer coverage was dependent on the coating method. Due to a 

locally different ionomer concentration during evaporation and a fast depletion of the 

ionomer in the solvent, different ionomer coverage occurred on the samples. At positions 
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with higher concentration within the drop, a connected network of the bundles and also 

multilayers of up to 4 layers were formed. The height and width of the bundles and their 

branching depended on the substrate energy. At comparable humidity, on hydrophobic 

graphene bundles and layers of 1.5 nm-thick were formed; on the hydrophilic substrates, 

the thickness was 2.5 nm. Dense ionomer films were received by self-assembling from a 

constant ionomer concentration; after sufficient time the formation of at least 4 nm-thick 

films occurred. It is assumed that in an ink for electrode preparation a similar process 

takes place and for typical ionomer concentrations of 0.1-0.3 wt.%, the ionomer 

deposition on Pt/C particles immediately starts and ionomer films of 4 nm and thicker are 

formed. The final structure of the ionomer films in the electrodes is assumed to be further 

changed by a final hot-pressing step that is assumed to lead to thinner lamellar films.  
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