
ProToS: Automation of Flight Control Procedures for

the European Data Relay System

Philipp Hamacher∗ Thorsten Beck†

Deutsches Zentrum für Luft- und Raumfahrt e. V., German Aerospace Center

Münchener Straße 20, 82234 Weßling, Germany

The European Data Relay System (EDRS) offers a high-speed communication service
between satellites, spacecraft, UAVs, and ground stations, using a relay satellite constella-
tion in geostationary orbit, equipped with high-end laser communication terminals (LCTs).
As part of the ESA ARTES 7 program, EDRS is realized as a public private partnership
with DLR GSOC responsible for the Devolved Payload Control Center (DPCC) of EDRS-A,
and the Satellite Control Center (SCC) of EDRS-C, the latter being scheduled for launch
in 2018.

The EDRS service level agreement foresees continuous payload utilization, up to 200
links per day over the expected lifetime of 15 years, with a targeted service availability of
at least 99.6% over 60 days and an order reaction time well below one hour; a task that can
hardly be managed in a manual or semi-automated operations concept. All payload and
most platform operations for EDRS-C are therefore executed using a procedure automation
framework, the GSOC Procedure Tool Suite (ProToS).

This paper shall give a conceptional overview of the ProToS execution and automation
framework as well as the mission specific configuration for EDRS-C.

I. Introduction

The automation of spacecraft monitoring and control operations has become increasingly important
at the German Space Operations Center (GSOC). Currently, two different approaches are being used,
depending on the satellite’s orbit. An example for the automation of a low earth orbit (LEO) mission is
TerraSAR-X/TanDEM-X which extensively makes use of automatic commanding. Among various ground
support activities, the main task for this LEO automation is to establish the command link setup and to
reliably send the prepared timeline of telecommands (TCs) to the on-board schedule.3 A different automation
concept is used for missions in geostationary orbit (GEO); since there is a continuous TM/TC link available,
routinely performed tasks can be triggered and executed automatically in real-time which allows for additional
functionality, including analysis and reaction to live telemetry. This was already implemented at GSOC for
the mission EDRS-A.9 This GEO automation concept is currently the prime focus for ProToS because it is
expected to offer the most potential in saving work effort for routinely performed tasks.

The monitoring and control system (MCS) ”GECCOS”,2 which is operational at GSOC, was contiuously
modernized and enhanced since it was forked from ESA’s SCOS-2000. This system already provides a
mechanism to support simple command execution flows based on TM parameters and TC acknowledges;
nevertheless, this mechanism was only partially used in an operational surrounding because generation of
compatible TC sequences is complex and the monitoring during execution is not intuitive. This problem was
approached by using an external tool which allows the definition of complex execution workflows in form of
flight control procedures (FCPs). Initially, the commercial software MOIS7 was used for this purpose. The
FCPs would then be exported to an MCS compatible format and processed by multiple tools until they could
be executed.

∗Mission Control and Data Systems Engineer, Mission Operations Department, German Space Operations Center
†System Engineer, ARPnet IT Services UG, 82234 Weßling

1 of 10

American Institute of Aeronautics and Astronautics



On the basis of the MOIS FCP exchange format, ProToS was developed at GSOC1 to fulfill required
constraints which arose for checkout activities for the mission Eu:CROPIS. Today, ProToS allows user friendly
access to all necessary aspects of FCP activities which includes generation, instantiation, execution and
automation in a single tool. This integrated architecture reduces error sources by minimizing the number of
software interfaces and facilitates the workflow for the operation engineers. Additionally to this integrated
FCP management, special focus was given to increase functionality and flexibility of the automation engine to
allow modification of operation tasks during system runtime. In the future, the system is expected to reliably
manage the complex task of commanding and supervising the continuous payload operations for EDRS-C.

II. System Architecture

This section shall provide an overview of the main ProToS software components as well as the operational
surrounding under which the software will be deployed.

A. Technologies

ProToS is written in Java and is based on the Eclipse Rich Client Platform (RCP). Eclipse, widely known as
an integrated development environment (IDE), was built in a modular way, allowing reusage of its abundant
and well tested core components. The minimum set of these core components resembles the RCP platform.10

For ProToS, the revised Eclipse4 (e4) version is being used which offers additional functionality like a
dependency injection framework, a dynamic graphical user interface (GUI) or CSS styling. An overview of
the e4 technologies can be seen in figure 1.

Figure 1: Eclipse4 SDK11

A large variety of open-source plugins is avail-
able as extensions for the e4 platform under the
commercial-friendly Eclipse Public License12 (EPL).
The following plugins are used within ProToS:

• CDO:4 An extension for the eclipse model-
ing framework (EMF). This plug-in allows to
share data objects among multiple clients. All
changes are handled by a transaction based
modification mechanism which is persisted by
either an object oriented or relational database
backend. A locking framework allows safe mod-
ification of objects in a multi-client environ-
ment. Object repositories of arbitrary size are
supported by using a caching mechanism to
only load required objects into the computer’s
memory.

• Nebula Nattable:5 A highly configurable
spreadsheet viewer and editor.

• Nebula Grid:6 A GUI widget which is used in
ProToS to display FCPs in the editor as well
as in the executor. The tree-like structure allows to display the logical control flow of a procedure
and a custom renderer can be used to show graphical elements which are not part of the standard
implementation.

B. ProToS Software Architecture

ProToS shall support all main activities related to flight control procedures which consist at GSOC of the
following four tasks:

1. Procedure generation and version control

2. Instantiation of variable values

2 of 10

American Institute of Aeronautics and Astronautics



3. Procedure execution

4. Automation activities

Each of these tasks requires its own graphical user interface. For this, ProToS makes use of the Eclipse4
dynamic GUI model which allows the definition of individual perspectives. The idea of such perspectives
is, that the same window can be used to display different elements, depending on the task that is to be
performed. The user can easily switch from one perspective to the other without losing the respective state
of each task.

ProToS is realized as a client/server application. The default use-case of multiple clients connecting to a
common server is shown in figure 2a. This architecture allows many subsystem engineers to collaboratively
work on FCPs without adjacent change merging and validation strategies. For some setups, it may be
desirable to use ProToS in a single-user environment in order to keep the system as simple as possible (figure
2b). The modular Eclipse plug-in framework allows ProToS to include server and client in a single application,
effectively making it a standalone application. This is useful for subsystem engineers who may need to
develop procedures without currently being able to connect to the network. Another use-case was the setup
for assembly integration and test (AIT) facilities for the mission Eu:CROPIS.

(a) Client/Server (b) Standalone

Figure 2: Deployment scenarios1

An overview of the main interactions between the three different software instances: client, server and
MCS can be seen in figure 3. The functionality of CDO (section II A) to share data objects among multiple
clients is essential for the ProToS application workflow and is used for the communication between server and
client. The interface to the MCS is realized by using the middleware CORBA (Common Object Request
Broker Architecture).

Figure 3: Operational overview

By the approach to perform the client-server com-
munication via state changes on the shared data
model, it is possible to ensure that all clients are
seeing the same information without the implemen-
tation of complex notification based state machines.
For critical changes, a locking mechanism enforces
that only one client may modify the content of an
object. For non-critical changes, CDO’s fail-safe
transaction based modification method is sufficient
which will only allow changes without any interme-
diary commits from other sources. If any content of
a transaction cannot be committed, the responsible
source is notified with an appropriate exception. The
client can then decide to roll-back any local changes
or to resolve the conflicts by a merge strategy. A good example is the current implementation of the FCP
executor. Once a client decides to start the execution of an FCP, it will set a flag in the appropriate shared
object and commit the changes to CDO. This change will be received by the ProToS server as well as all
other clients. The server will check the request and then start or deny the execution of the procedure and
finally set another status flag accordingly.

3 of 10

American Institute of Aeronautics and Astronautics



This process is shown in figure 4 where the ”Execution State” and ”Procedure Object” elements represent
the previously mentioned shared EMF objects. All changes in the execution state will be available to any
client connected to the server, making it able to monitor the whole process. The currently executed procedure
is available to all clients who open the execution perspective.

Figure 4: Server/Client communication via shared data containers

The schematic design of the execution perspective is shown in figure 5a and an actual example is shown in
figure 5b. For clients that only observe the execution process, the ”Procedure Call Tree” and the ”Procedure
View” parts are the only relevant parts. The ”Procedure View” displays the ”Procedure Object” (figure
4) which is currently in-line for execution. If the procedure contains references to other procedures (i.e.
procedure calls), a tree structure containing all sub-procedures is shown within the ”Procedure Call Tree”
control. A client may inspect any of the loaded procedures without affecting the execution process.

The actual FCP execution logic is running directly on the ProToS server. This ensures, that no active
client is required in order to perform automated tasks and it minimizes the communication delay to the
MCS. During FCP execution, a configurable state flow calculator decides which statement is to be run next,
depending on the outcome of the previous statements, much like it is the case in a programming language.
This includes processing of step types like ”if-then-else” or ”while” routines. Configurable, for example, is the
behavior after failed TCs or TM checks. The execution may be required to continue or it may be necessary
to do a safety stop, depending on the current operational scenario. Any of the authorized clients may then
decide to resume or to cancel the FCP execution via the ”Execution Control” (figure 5a) which is able to
change the ”Execution State” shown in figure 4.

The ”On-The-Fly Instantiator” control can be used to modify variable content of the procedure like TM
values or TC parameters, and it is mainly used for AIT activities. During routine operations, it will not be
part of the perspective because instantiation is considered to be a designated operational step before an FCP
is approved for execution. The AsRun archive on the bottom right allows quick access to historic data which
can be loaded to the regular procedure view for inspection and re-execution.

(a) Schematic Design (b) Implementation

Figure 5: ProToS Execution Perspective

4 of 10

American Institute of Aeronautics and Astronautics



C. Automation Concept

In order to fulfill the challenge to automatically manage many different tasks, including payload operations
as well as some routine satellite bus operations, a highly flexible automation engine needed to be developed.
A number of requirements were identified as necessary to support this goal:

• Comprehensive overview of running automation tasks

• Grouping of different tasks for different operational scenarios

• Access to live TM/TC data from the MCS

• React to and perform operating system operations (e.g. reaction to new files)

• Modification and creation of new tasks during application runtime

• Versioning as well as import/export of tasks

The ProToS client GUI provides a perspective to maintain and observe the state of any running automation
task. By defining different ProToS login authorization roles, we can allow some users to see the current
state of the automation, while others may be able to start/stop, change exisiting or create new tasks during
runtime.

Figure 6: Automation Profiles

Automation tasks are grouped as logical units
into different automation profiles. This architecture
allows a well-defined change of the automation be-
havior from one mode to the other, an example being
nominal and contingency mode.

A version control mechanism was implemented
on top of the profile grouping. This is nec-
essary to perform well-defined transitions from
an active automation definition to a newly ad-
justed one, always having the possibility to
revert any changes if the operational behav-
ior is not as desired. Each version of the
automation profiles can be exported and im-
ported to a standard XML file which allows
to develop automation profiles outside of the
operational environment and to transfer them
once they are validated and ready to be de-
ployed.

As a wrapper for the automated task, we need a
well-defined trigger mechanism to initiate their execution. Currently, the following events are foreseen to be
relevant and are implemented as available templates.

• Single execution at a given time reference

• Recurring with a given time period

• MCS event

• Flight-Procedure event

• File system event

In order to achieve the required flexibility for the actual content of the automation tasks, Java source code
is being used directly as the input, meaning basically no restriction on the potential functionality. Compilation
during runtime is possible by using the javax compiler API which is part of the java development kit (JDK)
since Java SE 6.8 The only restriction being, that a JDK needs to be installed on the operational ProToS server
machine in contrast to the usual java runtime environment (JRE). Authorized clients will be able to attach

5 of 10

American Institute of Aeronautics and Astronautics



Java code to an automation task, and the server will perform the compilation. In case of compilation errors,
the client is informed with an appropriate message. Once the code was successfully compiled, the .class file
will be saved as binary content within the automation task. This process is shown in figure 7. Once the com-
piled class is available in the automation task, it can be run by using the Java dynamic class loading mechanism.

Figure 7: Server/Client communication via shared data containers

The automation interface which allows dynamic code contribution leaves open questions regarding security.
Since the new code may not necessarily come from trusted sources, countermeasures against malicious content
need to be taken. As a first consequence, only a few designated administration users will be able to modify
source content for automation tasks. In the future, if the automation engine shall be available for external
partners, a combination of secure connections via VPN, ProToS login credentials and the usage of the Java
SecurityManager8 is imaginable.

III. Automation Concept for EDRS-C

EDRS-C represents the second node of the EDRS space data-highway and is scheduled for launch in the
first half of 2019. The overall coordination of nodes, the link planning and all customer interaction is carried
out by the EDRS Mission Operations Center (MOC), operated by Airbus DS, thereby providing the basis
for scheduling and commanding of inter-satellite link requests through the EDRS-C satellite control center
(SCC).

The Satellite Control Center of EDRS-C is part of the DLR GSOC multi-mission control center environment,
with DLR being responsible for the safe operation of both satellite platform and payload. As mentioned
before, the EDRS service-level agreement poses very ambitious requirements on service availability, reaction
times and reporting, which is why all payload and most platform operations performed by the SCC were
designed to be automated, using the ProToS automation engine.

Two operational phases need to be distinguished in the EDRS-C automation concept:

1. Launch and Early Orbit Phase (LEOP): during LEOP, ProToS will aid the operations personnel in the
semi-automated execution of FCPs, enabling the user to trigger and interact with the procedure control
flow in real-time, receiving procedure-based telemetry feedback and command acknowledgments, all in
a single view.

2. Routine operations: during routine operations, the EDRS-C satellite will be under permanent control
by the ProToS automation engine. This includes all payload operations and most platform routine
maintenance tasks, e.g., the execution of station keeping maneuvers (SKMs). The automation engine is
designed to supervise the complete cycle of telecommand uplink and execution, as well as reaction moni-
toring of telemetry. Updates to the onboard mission timeline are scheduled and uplinked autonomously,
typically triggered via high-level request files from ground or by on-board events.

We will focus in this section on the routine operations phase for which the following recurring and
event-driven activities have been implemented in ProToS:

1. Procedure request processor (file system event-triggered)

2. Processing delay & ranging activities (recurring task)

3. Confirmation message generator (procedure event-triggered)

6 of 10

American Institute of Aeronautics and Astronautics



4. Link session info/report generator (procedure event-triggered)

5. On-board schedule report generator (file system event-triggered)

6. OBT sync request generator (MCS event-triggered)

7. LCT alignment matrix calibration (procedure event-triggered)

8. Status report generator (recurring task)

In the following, these automated activities are described in more detail.

A. Procedure request processor

The procedure request processor is triggered on occurrence of new XML request files, originating from the
Mission Operations Center or the SCC-internal planning component. Each valid request file can trigger the
immediate instantiation and execution of one or several flight procedures, using the requested procedure
templates and the instance values provided in the request. The instantiated procedure is added to the internal
execution stack, together with information on the type of request. The following EDRS request types are
supported:

• Payload Link Configuration Request: MOC request, triggering the configuration and execution of link
requests.

• Payload Routine Configuration Request: MOC request, triggering the generic execution of flight
procedures, taken from a pre-defined subset of all procedures)

• Payload Configuration Deletion Request: MOC request, triggering the removal of requests from the
on-board time line.

• Forward Tasking Data and Deletion Requests: MOC request, triggering the upload and deletion of user
data, used for link requests in forward direction

• SCC Internal Request: e.g. station-keeping maneuvers, on-board time synchronization, upload of
on-orbit propagtors)

The request processor represents the heart of the EDRS-C automation, since most of the satellite command
load will be generated by this task. It is also the most critical task, as for instance an incorrect execution of
a station-keeping maneuver can directly affect satellite health and payload safety. Therefore, any unhandled
anomaly during procedure execution immediately interrupts the request execution and an operator alarm
message is generated. And therefore, only a subset of EDRS-C procedures have been cleared for automated
execution and this generally comes with tighter requirements regarding procedure development (safety checks,
abort conditions, etc.) and procedure validation.

B. Processing delay & ranging activities

The EDRS-C ranging concept foresees a five minutes long ranging measurement executed every three hours.
During ranging, it may become necessary to pause all commanding activities. Therefore a procedure execution
delay will be implemented as an optional recurring task. Its execution time is synchronized with the scheduled
ranging activities, i.e. every three hours starting at midnight (0:00 UTC) and with a duration of 10 minutes.
During this time the task ensures that the processing of procedures is delayed which includes execution of
automated procedures, as well as manually executed procedures. For procedures not already in progress, the
delay affects the complete processing including telemetry checks. If a procedure is already in progress, the
execution is halted only when the active statement is a telecommand. Other statements (telemetry checks,
waiting steps) are executed as usual. After the task duration elapsed, processing of requests is resumed in the
order of arrival.

7 of 10

American Institute of Aeronautics and Astronautics



C. Confirmation message generator

Updates to the execution state of active procedures trigger the confirmation message generator task, which is
responsible for the creation of XML confirmation messages to MOC. Messages are generated per request,
which may consist of more than one procedure. The request execution state is derived from all procedures
in the execution history that share the same request id (i.e. of all procedures associated with a particular
Payload Configuration, Forward Tasking Data, Deletion or Internal Request). This allows autonomous, quasi
real-time reporting of uplink and execution states of high-level MOC requests.

D. Link session info and link session report generator

During each EDRS link session, the automation engine collects telemetry and listens to on-board event
packets to generate the link session info and report messages for MOC. TM acquisition is synchronized with
the execution time of link sessions and the task is therefore configured as a procedure-triggered automation
task. The link session info message uses on-board events to determine the exact moment in time when the
link acquisition succeeded, sending this information back to MOC in form of an XML message. Over the
course of link session execution, during pointing, acquisition and communication phase, a number of session
specific TM parameters are recorded. After session finalization, the recorded values are compiled into the
Link Session XML Report and delivered to MOC.

E. On-board schedule report generator

In order for the SCC to schedule or delete payload configurations, the status of the on-board time-tagged
command schedule has to be made available to the SCC scheduling component, i.e. the link management
system (LMS).13 Most input to this report stems directly from the on-board queue model (OBQM), modelled
inside the MCS where the status of every released TTC is tracked using acknowledgments received in telemetry.
The MCS writes the content of the OBQM to a report file, which is then read by this automation task. The
task supplements the report with request related information and generates a new report in XML format
which is forwarded to the LMS, containing for every TC its request id, TC id, APID, source sequence counter,
UTC execution time and load status.

F. OBT synchronization request generator

The EDRS-C platform hosts an on-board clock which is automatically synchronizing the clock of the LCT
payload. After initial synchronization however, the clock is expected to drift, so onboard time (OBT)
synchronization has to be repeated each time the delta between OBT and GPS time exceeds a configurable
threshold. The OBT sync request generator monitors the OBT-ground time difference, which is provided by
the MCS in form of a derived parameter. As soon as the time difference exceeds a configurable threshold
for a configurable number of consecutive telemetry samples, the task generates a sync request containing
the time difference. This request is provided in XML format to the LMS. After request generation, a
configurable dead-time is maintained in which the task does not poll the time difference, in order to account
for commanding delays caused e.g. by SKMs during which time synchronization must not be scheduled. An
additional safety is put in place in order to deal with large clock drifts attributed to on-board anomalies:
time differences larger than n seconds (where n is configurable with default 2) do not trigger a sync request.
Instead an alarm message is sent to an operator.

G. LCT alignment matrix calibration

The LCT array is exposed to thermal fluctuations and its alignment matrix thus has to be recalibrated
from time to time. An alignment matrix update is calculated by the flight-dynamics system (FDS) of the
SCC, based on the input provided by this automation task. During each link session the Automator will
automatically collect this telemetry with a polling time of once every 4 seconds and provide a report to FDS
in form of an XML file, provided that the link request was reported successful.

H. Status report generator

This automation task regularly provides the status of ground-segment, satellite platform and LCT payload to
internal and external monitoring components. Telemetry is acquired with a configurable frequency (once

8 of 10

American Institute of Aeronautics and Astronautics



every two minutes by default) and sent out in form of an XML file. In case of processing errors or anomalies,
this task automatically generates an alarm message that notifies an operator for further investigation.

IV. Conclusion

This paper aimed to provide insight into the automation framework which will be used to handle the
challenging operational requirements of the project EDRS-C. An overview of the planned automated activities
was given which will be carried out during the different phases of the mission. The underlying software
application ProToS was described in some technical detail, focussing on the executor and automation engine.

Reliable data on the performance of the automation framework is expected to be collected after the launch
of the EDRS-C satellite, currently planned for 2019. Future work will include usability optimizations of
ProToS in order to create a platform which is suited to support different needs in a multi-mission environment.
Additionally, it shall be investigated if and how it may be possible to provide encapsulated ProToS functionality
to external partners outside of the control room. Different scenarios are imaginable and need to be thoroughly
examined especially regarding security constraints.

Glossary

TM Telemetry

TC Telecommand

LEO Low Earth Orbit

GEO Geostationary Orbit

GSOC German Space Operation Center

EDRS European Data Relay Satellite System

ProToS Procedure Tool Suite

FCP Flight Control Procedure

MCS Monitoring and Control System

GECCOS GSOC Enhanced Command and Control System for Operating Spacecrafts

ESA European Space Agency

EMF Eclipse Modeling Framework

CDO Connected Data Objects

CSS Cascading Style Sheets

AIT Assembly, Integration and Test

MOC Mission Operation System

SCC Satellite Control Center

LMS Link Management System

FDS Flight Dynamics System

OBT On-board time

LCT Laser Communication Terminal

9 of 10

American Institute of Aeronautics and Astronautics



Acknowledgements

The authors would like to acknowledge the other two ProToS team members Leonard Schlag and Stefan
Gärtner, who made substantial contributions to the success of this software project.

References

1Beck T., Schlag L., Hamacher, P. “ProToS: Next Generation Procedure Tool Suite for Creation, Execution and Automation
of Flight Control Procedures,” SpaceOps 2016, Daejon, Korea, 2016

2Stangl C., Lotko B., Geyer M., Braun A., Oswald M. “GECCOS – the new Monitoring and Control System at DLR-GSOC
for Space Operations, based on SCOS-2000,” SpaceOps 2014, Pasadena, U.S.A., 2014

3Zimmermann S., Schulze D., Stangl C., “Command Chain Automation,” SpaceOps 2014, Pasadena, U.S.A., 2014
4CDO Model Repository, https : //www.eclipse.org/cdo/
5Nebula Nattable, https : //www.eclipse.org/nattable/
6Nebula Grid, https : //www.eclipse.org/nebula/widgets/grid/grid.php
7RHEA Group, “White Paper: MOIS - Manufacturing and Operations Information System,” 2014,

http : //www.rheagroup.com/wp− content/uploads/2015/07/MOISW hitepaper.pdf
8Java SE 1.8 Documentation, https : //docs.oracle.com/javase/8/docs/api/
9Beck, T., Schmidhuber, M., Scharringhausen, J.C., “Automation of Complex Operational Scenarios - Providing 24/7

Inter-Satellite Links with EDRS,” SpaceOps 2016 Conference, Daejeon, Korea, 2016
10Eclipse Foundation Wiki, “Rich Client Platform,” https : //wiki.eclipse.org/Rich Client P latform
11Eclipse Foundation Wiki, “Eclipse 4 SDK,” https : //wiki.eclipse.org/Eclipse4
12Eclipse Public License - v 1.0, https : //eclipse.org/org/documents/epl− v10.php
13Göttfert, T., Wörle, M. T., Prüfer, S., Lenzen, S., “Operating and Evolving the EDRS Payload and Link Management

System,” SpaceOps 2018 Conference, Marseille, France, 2018

10 of 10

American Institute of Aeronautics and Astronautics


