Institute of Engineering Thermodynamics

Techno-economic evaluation of a new Biomass-to-Liquid process concept for reduced biofuel production cost

<u>Simon Maier¹</u>, Ralph-Uwe Dietrich¹, Sanna Tuomi², Johanna Kihlman², Tim Böltken³, Manuel Selinsek³, Jiří Hájek⁴ ¹Deutsches Zentrum für Luft- und Raumfahrt, Stuttgart, Germany ²VTT Technical Research Centre of Finland Ltd, Espoo, Finland ³INERATEC GmbH, Innovative Chemical Reactor Technologies, Karlsruhe, Germany ⁴Unipetrol Centre for Research and Education, a.s, Litvínov- Záluží, Czech Republic

COMSYN¹ project – Motivation

- Compact and efficient process designs to enable reduced biofuels production costs via FT-synthesis
- Identification of optimal process design for maximization of energetic efficiency \bullet
- Approach: Different cases utilizing the FT-tailgas as energy provider in the gasification step
- Detailed analysis of the influence of FT performance parameters on the overall process concept

Analysis of three possible once-through process configurations			Results		Case 1	Case 2	Case 3
Case 1	Case 2	Case 3	Power consumption	MW_{e}	8.1	7.4	7.1
 Basic project configuration Autothermal reforming with air 	 Autothermal reforming with air CO₂ removal after guard bed ➢ Operating at 5 bar ➢ 80 % CO₂ is absorbed 	 Allothermal reforming ➢ Required heat is provided by an additional burner ➢ No air is led into the reformer 	FT-product	t/h	2.6	2.7	3.1
			Energy flows Fuel Unused FT-tailgas	MW _{LHV}	31.9 33 3	32.6 33.6	38.3 22.2
Basic process conditions			Excess heat (> 400 °C)	MW _{th}	20.4	19.3	22.2
 Biomass input: → 40 t/h > moisture content: 50 wt% > LHV: 8.73 MJ/kg → Total energy input: 97 MW 	 FT operating conditions: ➢ 20 bar, 240 °C ➢ Chain growth rate: 0.81 (incl. adjustments for CH₄ and C₂H₆) ➢ CO conversion: 74.6 % 	 FT-product separation: > 1st stage: 20 bar, 20 °C > 2nd stage: 1 bar, 10 °C FT-product: > C₅₊ (LHV_{FT-Product} = 44 MJ/kg) 	Efficiencies BtL _{LHV-based} Fuel + FT-tailgas	% % 0/	30.2 62.0	31.2 63.4	36.8 58.1
			Carbon usage	%	81.4	21.3	25.0

Exemplary results: Influence of FT performance parameters

The **red** line in Figure 1-A indicates how much energy the FT-tailgas needs to contain to provide the required amount of heat in the DFB

 \rightarrow Eliminating certain parameter combinations and setting a limit for the potential BtL-efficiency for each process setup (Figure 1-B, Figure 2, Figure 3)

compression work allows Lower potentially higher BtL-efficiencies

Allothermal reforming allows the FT synthesis to work less effective and still achieve the same maximum BtLefficiency as case 2

COMSYN

Acknowledgments

The effect of the FT performance parameters on the overall process of three different once-through process designs has been analyzed Decreasing the amount of inerts throughout the lacksquareprocess allows high BtL efficiencies at moderate FT performance parameters

Summary

- ¹⁾ www.comsynproject.eu
- Identification of optimal process design based on experimental data and future development curves Detailed techno-economic evaluation and life-cycle assessment

Outlook

- Implementation of fuel upgrading section
- Business cases for different countries \bullet

Project coordinator: Johanna Kihlman Further information in the industry session: 'An industrial approach to thermochemical biomass conversion' (Session code: ICO.8)

COMSYN project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727476

Knowledge for Tomorrow

Wissen für Morgen **Deutsches Zentrum** für Luft- und Raumfahrt