Spectral Enhancement of Multispectral Imagery Using Partially Overlapped Hyperspectral Data and Sparse Signal Representation

Naoto Yokoya1, Uta Heiden2, and Martin Bachmann2

1RIKEN
2German Aerospace Center (DLR)
SPACEBORNE IMAGING SPECTROMETERS have tradeoffs between spectral resolution, spatial resolution, swath width (temporal resolution), and signal-to-noise ratio.

- **Spectral bands:**
 - Sentinel-2: 13 bands
 - EnMAP: 244 bands

- **Temporal resolution:**
 - Sentinel-2: 5 days
 - EnMAP: 27 days

- **Spatial resolution:**
 - Sentinel-2: 10 - 20m
 - EnMAP: 30 m
SPECTRAL ENHANCEMENT OF SENTINEL-2 WITH ENMAP

Can we create EnMAP-like data for Sentinel-2 coverage?
OUR ALGORITHM: CONCEPT

Prepare a coupled library by using spectral simulation based on spectral response function (or spatial correspondence)

For a given target pixel

1) Find K nearest neighbors in Sentinel-2 (e.g., Euclidean distance, spectral angle distance)

2) Represent the Sentinel-2 spectrum at the target pixel by a linear combination of K nearest neighbors

3) Reconstruct the EnMAP-like spectrum at the target pixel using the coefficients learnt in Sentinel-2 and K nearest-neighbor pixel spectra from EnMAP
Our Algorithm: Formulation

Assume that each missing spectrum can be approximated by a linear combination of the observed spectra:

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$

S2 can be approximated by EnMAP with spectral degradation (Spectral Response Function: $\mathbf{R} \in \mathbb{R}^{B_m \times B}$)

$$\mathbf{y}_m = \mathbf{R}\mathbf{A}\mathbf{x} + \mathbf{n}_m$$

$$\mathbf{y}_m = \mathbf{A}_m\mathbf{x} + \mathbf{n}_m$$

Estimate coefficients

$$\min_{\mathbf{x}} \| \mathbf{y}_m - \mathbf{A}_m\mathbf{x} \|_2^2$$

s.t. $\mathbf{x} \geq 0$, $\|\mathbf{x}\|_0 < K + 1$

Reconstruct the EnMAP-like spectrum

$$\hat{\mathbf{y}} = \mathbf{A}\hat{\mathbf{x}}$$
STUDY AREA: SAN JOSE, COSTA RICA

- HyMap imagery acquired over a west side of San Jose, Costa Rica, in 2005
- Main land covers include:
 - Photosynthetic vegetation
 - Non-photosynthetic vegetation
 - Bare soil

EVALUATION METHODOLOGY: RECONSTRUCTION

\[Y \in \mathbb{R}^{B \times P} = [y_1, \ldots, y_i, \ldots, y_B]^T = [y_1, \ldots, y_j, \ldots y_P] \]

- Peak signal to noise ratio (PSNR)
 \[
 \text{PSNR} = \frac{1}{B} \sum_{i=1}^{B} 10 \log_{10} \left(\frac{\max(y_i)^2}{\|y_i - \hat{y}_i\|_2^2/P} \right)
 \]

- Spectral angle mapper (SAM)
 \[
 \text{SAM} = \frac{1}{P} \sum_{j=1}^{P} \arccos \left(\frac{y_j^T \hat{y}_j}{\|y_j\|_2 \|\hat{y}_j\|_2} \right)
 \]

Quality Measures

- \(B \): # of bands
- \(P \): # of pixels
- \(y_i \): \(i \)-th band
- \(y_j \): \(j \)-th pixel

EVALUATION METHODOLOGY: UNMIXING

HyMap (4 m GSD) → Reference EnMAP → Sentinel-2 → EnMAP-like Data

Endmembers
Photosynthetic vegetation
Non-photosynthetic vegetation
Bare soil
(Use endmembers in [1])

Abundance Maps

Quality measure
Root mean squared error (RMSE)
\[\text{RMSE} = \sqrt{\frac{1}{MP} \left\| \mathbf{A} - \hat{\mathbf{A}} \right\|_F^2} \]

Abundance matrix:
\[\mathbf{A} \in \mathbb{R}^{M \times P} \] (M: # of endmembers)

EVALUATION METHODOLOGY: BENCHMARKS

• Use a spectral resolution enhancement method (SREM) proposed in [3] as the benchmark method for both reconstruction-based and unmixing-based evaluation
 • SREM estimates linear transformation matrices for different endmembers that convert multispectral signatures to hyperspectral ones

• Use Sentinel-2 (S2) data as another benchmark for unmixing-based evaluation to investigate whether reconstructed data have added values in application

VISUAL COMPARISON: COLOR COMPOSITE & SAM

Reference SREM Ours

RGB = (2209, 2098, 627) nm

SAD (degree)

Setting of our method
Distance metric: SAD
K: 7
Impact of Spectral Enhancement on Unmixing

Reference
Sentinel-2
SREM
Ours

Photosynthetic vegetation
Non-photosynthetic vegetation
Bare soil

Endmembers

IMPACT OF SPECTRAL ENHANCEMENT ON UNMIXING

Reference: Sentinel-2, SREM, Ours

Endmembers

Photosynthetic vegetation

Non-photosynthetic vegetation

Bare soil

NUMERICAL EVALUATION

Accuracy of reconstruction and unmixing

<table>
<thead>
<tr>
<th></th>
<th>PSNR (dB)</th>
<th>SAM (deg)</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>∞</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>---</td>
<td>---</td>
<td>0.108</td>
</tr>
<tr>
<td>SREM</td>
<td>46.86</td>
<td>1.454</td>
<td>0.101</td>
</tr>
<tr>
<td>Ours</td>
<td>50.01</td>
<td>0.830</td>
<td>0.064</td>
</tr>
</tbody>
</table>

* S2: Sentinel-2

PSNR plot

SAM histogram

Reconstruction Unmixing
IMPACT OF K, SIMILARITY METRIC, & NONNEGATIVITY

Similarity metric & nonnegativity =

- **E-LS**: Euclidean distance and least squares (without nonnegativity)
- **E-NLS**: Euclidean distance and nonnegative least squares (with nonnegativity)
- **S-LS**: SAD and least squares (without nonnegativity)
- **S-NLS**: SAD and nonnegative least squares (with nonnegativity)
IMPACT OF OVERLAPPING SCENARIOS

- Our method assumes that spectral signatures of all materials in the S2 coverage are included in the EnMAP coverage (If not, reconstruction performance decreases)
- More overlaps lead to better reconstruction accuracy

Scenario 1
PSNR: 50.01
SAM: 0.830

Scenario 2
PSNR: 50.09
SAM: 0.861

Scenario 3
PSNR: 50.53
SAM: 0.854

Scenario 4
PSNR: 52.62
SAM: 0.644
CONCLUSION

- Proposed a sparse representation based method for spectral enhancement of multispectral imagery using partially overlapped hyperspectral data

- Demonstrated the advantage of the proposed method in terms of reconstruction accuracy compared to the benchmark method using simulated EnMAP and Sentinel-2 data

- Demonstrated the effectiveness of the proposed method for discriminating non-photosynthetic vegetation and bare soil via spectral unmixing

- Different spatial resolutions will be handled by combining the proposed method with data-fusion-based spatial-resolution enhancement techniques

- Will be tested on DESIS and Sentinel-2