Overview on testing parallel code & performance engineering

Melven Röhrig-Zöllner (SC-HPC)
Schedule

Part 1: Testing parallel code

• Levels of parallelism
• New “parallel” bugs
• Tools for specific bugs
• Unit tests
• Conclusion

Part 2: Performance engineering

• CPU architecture
• Performance modeling
• Performance “bugs”
• Finding bottlenecks
• Conclusion
Levels of parallelism: **SIMD**

- **SIMD:** *“single instruction, multiple data”*
- Also called SIMT ("*single instruction, multiple threads*") on GPUs

- **Example:** AVX-floating point unit of the CPU:
 (FMA operation calculates 4 double-precision fused multiply-add commands in one step)

 \[
 \begin{pmatrix}
 d_0 \\
 d_1 \\
 d_2 \\
 d_3 \\
 \end{pmatrix}
 \leftarrow
 \begin{pmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3 \\
 \end{pmatrix}
 \cdot
 \begin{pmatrix}
 b_0 \\
 b_1 \\
 b_2 \\
 b_3 \\
 \end{pmatrix}
 +
 \begin{pmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3 \\
 \end{pmatrix}
 \]

- **Requirement:** **Alignment of data** (pointer addresses must be a multiple of 32 bytes)
 - Handled by the compiler
 - Debugging only needed for hand-written SIMD code
 \[\Rightarrow\text{not further discussed here}\]

Levels of parallelism: **multi-threading**

- **Threads**: "lightweight processes"
 - Own execution stack
 - Shared data & resources (like files)

- Requires **synchronization**
 - to access shared data & exchange results
 - to access unique resources

- **Programming models**:
 - Work sharing
 - Tasked based
 - Master-worker / Thread-pool, …

- **Programming “languages”**:
 - Languages: C++11, Java, Python
 - Directives: **OpenMP** with C/C++/Fortran
 - Libraries: Qt (high-level), pthreads (low-level), …
Levels of parallelism: *multi-processing*

- Processes: “*individual execution contexts*”
 - Own execution stack & data
 - Shared OS environment

- Requires inter-process *communication*
 - Shared data (files, memory)
 - Message passing

- Programming models:
 - Server-client
 - SPMD (“*single program multiple data*”)
 - PGAS (“*partitioned global address space*”)

- Programming “languages”:
 - SPMD: MPI + C/C++/Fortran
 - PGAS: GASPI, C++Dash, Fortran’08
 - ...
New “parallel” bugs: **race conditions**

- Concurrent access to the same data element:
 - Read + write
 - Write + write

- Common pitfall for multi-threading

- **Non-deterministic** ⇒ difficult to reproduce & examine

- Another example TOCTTOU (“time of check to time of use”)
 - See programming challenge
 - Also possible over network (client-server scenario)
New “parallel” bugs: **deadlocks**

- **Circular blocking waiting:**
 - 2 or more threads / processes
 - waiting while blocking other resources

- Rare, but no easy recovery / avoidance

- **Non-deterministic** ⇒ difficult to reproduce & examine
Tools for specific bugs: compiler instrumentation

Sanitizer options for modern GCC and Clang
- For C/C++/Fortran on Linux
- Quite fast
- Need to recompile everything
- Readable output with debug symbols
- Open Source: https://github.com/google/sanitizers/wiki

Not specific to parallel programs:

- **Address** sanitizer:
 - Detects **invalid memory access**
 - Detects memory (de)allocation errors
 - Activated with `-fsanitize=address`
 - Crucial for low-level or parallel code

Thread sanitizer:
- Detects **race conditions** and **deadlocks** for multi-threaded programs
- Activated with `-fsanitize=thread`
- Possibly reports false positives

Undefined behavior (UB) sanitizer:
- Finds unexpected bugs
- UB: special cases with no guaranteed behavior
- Activated with `-fsanitize=undefined`
- Useful from time-to-time...
Tools for specific bugs: **valgrind**

- **Debugging tool**
 - For Linux
 - Extremely slow
 - Works with (almost) all executables
 - Readable output with debug symbols
 - Open Source: http://valgrind.org/

- **Helgrind (or DRD) tool:**
 - Detects **race conditions** and **deadlocks** for multi-threaded programs
 - Run with `valgrind -tool=helgrind <exe>`
 - Possibly reports false positives

Not specific to parallel programs:

- **Memcheck tool:**
 - Detects **invalid memory accesses**
 - Detects memory (de)allocation errors
 - Detects uninitialized data
 - Run with `valgrind --tool=memcheck <exe>`
 - **MPI-support** to detect MPI buffer errors (needs special compiler flags + LD_PRELOAD)
 - Sometimes reports false positives
 - Crucial when address sanitizer is no option

- **Performance tools** (**cachegrind**, etc.):
 - Not so useful as the hardware is emulated…
Tools for specific bugs: **must**

- **MPI communication checker**
 - Detects MPI usage errors
 - Detects deadlocks with MPI
 - Will detect data races with one-sided communication in MPI
 - Run program with `mustrun -np <n> <exe>`
 (instead of `mpirun -np <n> <exe>`)
 - Open Source: https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST
Unit tests: problems from the wild (1)

• Setup:
 • parallel unit tests with
 • 2 processes
 • Output on process 0

• Same error on all processes

⇒ Error reported correctly
Unit tests: problems from the wild (2)

- Setup:
 - parallel unit tests with
 - 2 processes
 - Output on process 0

- Error only on process 1

⇒ Error not reported!
Unit tests: **problems from the wild (3)**

- **Setup:**
 - parallel unit tests with
 - 2 processes
 - Output on all processes

- Error only on process 1

⇒ **Multiple processes write into the same file!**
Unit tests: **problems from the wild (4)**

- **Setup:**
 - parallel unit tests with
 - 2 processes
 - Output on process 0

- Error only on process 1, process 0 waiting

⇒ **No output & program does not terminate!**
Unit tests: our solution

• Setup:
 • parallel unit tests with
 • 2 processes
 • Global assertions and output

• Error only on process 1

⇒ Error reported correctly, program terminates!
Unit tests: frameworks

- For C/C++: googletest+MPI
 - Thread-safe, but no multi-threading functions
 - MPI support from SC-HPC: https://gitlab-ee.sc.dlr.de/HPC/googletest_mpi
 - Open Source (no MPI): https://github.com/google/googletest

- For C/C++: Trilinos package Teuchos
 - Tools package of Trilinos
 - Large library for scientific computing
 - Open Source: https://trilinos.org

- For Fortran: pFUnit
 - Supports OpenMP and MPI
 - Developed by the NASA

- For Java: (JUnit??)

- Others???
Unit tests: **test setup**

- To detect (all important) bugs:
 - Run tests with different tools
 - Vary number of threads / processes

 ⇒ Drawback: exploding number of combinations

- Limited time / resources:
 - Automation with CI (e.g. Jenkins)
 - Start with simple tests (1 process/thread)
 - Combine tests for “orthogonal” problems
Conclusion

• Parallel code is complex & **non-deterministic**:
 • Multiple levels of parallelism
 • Different programming models
 ⇒ New **parallel bugs** (data races, deadlocks)

• **Tool support** is crucial:
 • Problems not easy to reproduce (in debugger)
 • Tools can help to detect bugs
 ⇒ Choose correct tool(s) for your use case.

• **Parallel unit tests:**
 • Serial frameworks may lead to more problems.
 ⇒ Tests should support the desired parallelism.
 • Test setup (combine tools and #threads/procs)

• Not handled:
 • more subtle errors like starvation
 • differing results through non-ordered operations
Schedule

Part 1: Testing parallel code

• Levels of parallelism
• New “parallel” bugs
• Tools for specific bugs
• Unit tests
• Conclusion

Part 2: Performance engineering

• CPU architecture
• Performance modeling
• Performance “bugs”
• Finding bottlenecks
• Conclusion
CPU architecture: computing units

- Intel “Skylake” Gold (SC HPDA cluster) core:
 - 2 FMA (fused multiply-add) units
 - **SIMD** width: 512 bit (e.g. AVX512):
 fits 16 single or 8 double precision numbers
 - **Latency**: 4 cycles (FMA/add/sub/mul)
 - Other operations (div, sqrt) are much slower

⇒ **Need lots of independent “multiply-additions”**
 (e.g. 128 to fill the pipeline of 1 core)
CPU architecture: memory hierarchy

- Intel “Skylake” Gold (SC HPDA cluster) socket:
 - 14 cores per socket
 - 3 cache levels with:
 - L1 cache (32kB, 4 cycles latency)
 - L2 cache (1MB, 14 cycles latency)
 - L3 shared cache (19MB, >50 cycles latency)
 - “Slow” main memory
 (94GB per socket, >400 cycles latency)
 - Caches organized in lines of 64 bytes and optimized for “streaming accesses”

⇒ Need lots of contiguous accesses to a small data set
Performance modeling: roofline

- The **roofline model**
 - applicable **peak performance**: \(P_{\text{max}} \left[\frac{\text{Flop}}{s} \right] \)
 (of the required operations)
 - computational intensity: \(I \left[\frac{\text{Flop}}{\text{byte}} \right] \)
 (“work” per byte transferred of the algorithm)
 - applicable **peak bandwidth**: \(b_s \left[\frac{\text{byte}}{s} \right] \)
 (of the slowest data path utilized)
 - Expected performance: \(P = \min(P_{\text{max}}, I \cdot b_s) \)

⇒ A lot of problems are **memory-bound**
(nice hack: we can do more operations for free)
Performance modeling: workflow

1. Analyze algorithm:
 - Calculate computational intensity
 - Estimate working set size (does it fit into L3?)

2. Benchmark
 - Select relevant operations (FMA or pure add?)
 - Calculate peak performance (CPU family specific)
 - Measure peak bandwidth (system specific)

⇒ Goal: Hit the right bottleneck!
 (and publish that your code is as fast as it gets)

General remarks:
 - works well for “simple” computational kernels
 - assumes the problem is big/parallel enough
 - Predictions are almost 100% accurate for large contiguous main memory accesses
 - Non-contiguous accesses have overhead (e.g. consider cache lines and cache misses)
 - It’s hard to tune code to obtain ≥ 10% peak...
Performance modeling: automated in ESSEX

- Generic interface for a roofline model (#ops, #bytes, relevant benchmark)
- All kernel functions are modeled (just provide #ops, etc)
- Small benchmark gathers data on startup
- “realistic” variant models strided data accesses & cache line size

⇒ Summary with biggest deviations:

<table>
<thead>
<tr>
<th>function(dim) / (formula)</th>
<th>total time</th>
<th>%roofline</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>phist_Dmvec_times_sdMat_inplace(nV=4,nW=4,*iflag=0)</td>
<td>6.156e+00</td>
<td>11.7</td>
<td>174</td>
</tr>
<tr>
<td>STREAM_TRIAD((nV+nW)nsizeof(ST))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHIST PerfCheck: Anasazi BKS with $n_b = 4$ gives lines like this:

<table>
<thead>
<tr>
<th>function(dim) / (formula)</th>
<th>total time</th>
<th>%roofline</th>
</tr>
</thead>
<tbody>
<tr>
<td>phist_Dmvec_times_sdMat_inplace(nV=4,nW=4,dV=85,*iflag=0)</td>
<td>6.013e+00</td>
<td>23.8</td>
</tr>
<tr>
<td>STREAM_TRIAD((nV+nW)nsizeof(ST))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance “bugs”: false sharing

- Scenario:
 - Cache line modified by threads on multiple cores (e.g. different elements in a small chunk of 64b)
 - System must guarantee cache coherence
 - Code completely correct – no data race, etc.

 ⇒ Behavior:
 Cache line written to main memory and reloaded

- Mitigation:
 - Work on **local data** where possible
 - Avoid array[nThreads], add **padding** to 64b (e.g. in C: `double array[8][nThreads];`)
Performance “bugs”: NUMA effects

• NUMA (non-unified memory access):
 • Faster/slower access to different memory parts
 • Systems with multiple CPU sockets
 (each socket has its own memory banks)
 • Some AMD CPUs
 (NUMA in a single socket)

• Mitigation:
 1. Pinning: bind processes and threads to cores
 2. First-touch policy: memory belongs to the
 NUMA domain that uses it first. (not trivial!)
Finding bottlenecks: measuring with ScoreP (1)

• Tool to measure performance:
 • Compiler wrapper for C/C++/Fortran
 • Nice and easy-to-use
 • Supports multi-threading & -processing (OpenMP and MPI)
 • Useful for a fast & rough overview
• Open Source:
 http://www.vi-hps.org/projects/score-p/
• Basis for more advanced tools: Scalasca, Vampir …
Finding bottlenecks: measuring with Scorep (2)

- **Workflow:**
 - Instrument compiler with ScoreP wrapper (e.g. CXX=scorep-g++ cmake <path>)
 - Run test case
 - Investigate measurement overhead (using scorep-score)
 - Filter out small functions (SCOREP_FILTERING_FILE, simple text format)
 - Rerun test case…

 ⇒ **Ensure same runtime as without ScoreP**

- **Hardware counters:**
 - CPU measures itself!
 - Available in ScoreP through PAPI
 - Open Source: http://icl.utk.edu/papi/
 - Real run-time data per function about Operations, cache accesses, …
 - Interesting points:
 - Vectorized (SIMD) vs. non-SIMD FP ops
 - Achieved memory bandwidth
 - Cache misses
 - However: not all CPUs provide correct results (tool will usually not provide counters then)
Conclusion

- Know your architecture:
 - **SIMD** operations
 - Memory / **cache hierarchy**
 ⇒ Ideally: lots of similar operations on small data

- Setup a model:
 - Simple model of algorithm + hardware
 - Compare actual & predicted runtime
 ⇒ Goal: **hit the right bottleneck**

- Avoid pitfalls like false sharing, NUMA, …
 - Use tools for timings and hardware counters
 - Read a book:
 Hager & Wellein: “Introduction to High Performance Computing for Scientists and Engineers”, 2018

- Practical observations:
 - Optimized vs. normal code: factor >100
 - Problems: vectorization, temporary objects, …
References

