Clustering of Hybrid Rocket Combustion Data

WAW Machine Learning 3 19.-20. November 2018

Alexander Rüttgers (SC-HPC)
Anna Petrarolo (RA-TRS)

Knowledge for Tomorrow

Project ATEK (Antriebstechnologien und Komponenten für Trägersysteme)

- Project aim: Cost reduction of spacecraft systems by using reusable or less complex propulsion technologies
- Project inspired by private American space transport companies
- Tasks:
 - Numerical simulation and data analysis
 - Experiments / technical construction
 - Flight operation
- Participants: 8 different DLR institutes

Hybrid rockets in ATEK

- RA-TRS investigates new hybrid rocket fuels on a paraffin basis
- **Aim:** better theoretical understanding and optimization of combustion process
 - analysis of hydrodynamic instabilities
 - understand effect of the fuel's viscosity and surface tension on satellite droplet breakup (due to Kelvin-Helmholtz instability)
 - achieve higher regression rates / burn rates of the solid propellant
- combustion is captured with high-speed video camera
- Data analysis is performed by SC-HPC

Experimental measurements by RA-TRS

	Table 2:	Test matrix
est no	Fuel	$\dot{m} \circ [a/e]$

Test no.	Fuel	$\dot{m}_{Ox}[g/s]$	CH* filter
203	6805+5% polymer	50	-
234	6805+5% polymer	100	-
243	6805+5% polymer	10	-
253	6805	50	-
284	6805	50	√

- combustion tests were performed with 4 different paraffin-based fuels in combination with gaseous oxygen
- + different fuel configurations
- video camera (1024 x 1024 pixels) captures 10 000 frames / second

Experiment 284

Video: fuel = pure paraffin

oxygen mass flow = 50 g/s,

CH*-filter (i.e. wavelengths emitted from CH* are filmed)

experiment 3 s = 30~000 frames / 8GB data per experiment

Clustering of data matrix S

- Cluster analysis is used to group a set of objects in such a way that the objects in the same group are similar (in some sense) to each other.
- Our aim: clustering of combustion data = identify different phases of the flow

Centroid-based clustering (K-means++)

- Input: data matrix S, number of centroids K
- K-means iteratively minimizes an objective function

$$J = \sum_{i=1}^{K} \sum_{x_j \in C_i} ||x_j - \mu_i||^2$$

with x_j as set of observations and with μ_i as centroids of the K clusters C_i

- Algorithm can converge to local optimum solutions
- Number of clusters K is not directly clear

Strategies to avoid drawbacks of K-means

Avoid local optimum solutions

- Algorithm is run multiple times (here: 10-times)
- Take solution with smallest J (not a big difference in our case)
- Implementation of K-Means++*
 - Choose the initial centers less randomly

Selection of K in K-means?

- Detailed analysis of J depending on K
 (here: algorithm is used for K= 2, ..., 10)
- Runtime of algorithm at least linearly in K
- Note that an optimal K is often problem dependent

Analysis of objective function J depending on K

Evaluation function f(K)* with J(K) as minimum of J for K clusters

$$f(K) = \begin{cases} 1, & \text{if } K = 1\\ \frac{J(K)}{\alpha_K J(K-1)}, & \text{if } J(K-1) \neq 0, \forall K > 1\\ 1, & \text{if } J(K-1) = 0, \forall K > 1 \end{cases}$$

$$\alpha_K = \begin{cases} 1 - \frac{3}{4d}, & \text{if } K = 2 \text{ and } d > 1,\\ \alpha_{K-1} + \frac{1 - \alpha_{K-1}}{6} & \text{if } K > 2 \text{ and } d > 1. \end{cases}$$

where d is number of dimensions and α_K is a weight factor.

• For high problem dimensions $f(K) \approx J(K)/J(K-1)$ for all K>1and f(K)=1 otherwise.

Pham, Dimov, and Nguyen. Selection of k in k-means clustering. Journal of Mechanical Engineering Science, 2005.

Estimate number of clusters *K*

Figure: Evaluation function f(K) to determine the number of clusters K.

Figure: Distribution of the frames in 5 experiments to their corresponding clusters.

Figure: Distribution of the frames in experiment 203 to K=5 and K=7 clusters.

Experiment 284 with *K*=7

cluster 1
(1320/30000 frames)
ignition phase
(ignition comes from
bottom of the chamber)

cluster 2
(2942/30000 frames)
burn phase without
energy from outside
(ignition valves closed)

cluster 3
(3493/30000 frames)
fuel slap burns in the
middle (oxygen mass
flow increases)

Experiment 284 with *K*=7

Experiment 284 with *K*=7

cluster 7
(194/30000 frames)
flame extinguishing
phase (oxygen valve
closes, nitrogen purge)

Comparison: centroids – individual frames

experiment at t = 0.7006 s

centroid 3

experiment at t = 2.3576 s

centroid 7

Conclusion and outlook

- Analysis of turbulent combustion experiments with a pressure of 15 bar 30 bar in combustion chamber.
- Clustering is very time consuming at the moment (about 1.5 days per experiment for sequential code)
 - Usage of the HPDA cluster from SC for this problem
 - HeAT Helmholtz Analytics Toolkit (see talk by Martin Siggel)
 - Mini batch K-means++ instead of K-means++?
 - Dimensionality reduction with an autoencoder + clustering of reduced dataset
- Comparison with different approach (e.g. density-based clustering, hierarchical clustering, ...)

Thank you for your attention!

