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Abstract—The spring loaded inverted pendulum (SLIP) model
has been extensively shown to be fundamental for legged lo-
comotion. However, the way this low-order template model
dynamics is anchored in high-dimensional articulated multibody
systems describing compliantly actuated robots (and animals)
is not obvious and has not been shown so far. In this paper,
an articulated leg mechanism and a corresponding quadrupedal
robot design are introduced, for which the natural oscillation
dynamics is structurally equivalent to the SLIP. On the basis of
this property, computationally simple and robust control methods
are proposed, which implement the gaits of pronking, trotting,
and dynamic walking in the real robotic system. Experiments
with a compliantly actuated quadruped featuring only low
performance electrical drives validate the effectiveness of the
proposed approach.

Index Terms—Compliance and Impedance Control, Legged
Robots, Dynamics Embodiment, Spring Loaded Inverted Pen-
dulum

I. INTRODUCTION

THE benefits of springs in legged locomotion have been

validated in the conceptual work of Alexander [1]. The

hypothesis that the high-dimensional, nonlinear dynamics of

complex legged animals collapses to template models of

strongly reduced order, like the spring loaded inverted pen-

dulum (SLIP) model [2] and extensions [3], [4], [5], [6], [7],

is further supported by experimental results [8]. In particular,

the authors of the review article [9] hypothesize that em-

bodying these template models as invariant (and attracting)

submanifolds into the high order multibody dynamics of

articulated legged systems is crucial to energetically efficient

and performant locomotion.

The fastest mammals on earth are quadrupeds.1 As dis-

cussed above, it is very likely that such a high performance
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1The cheetah can reach a peak velocity of 120 km/h and the antelope

approaches a maximum speed of 88 km/h over a distance of 800m.

Fig. 1. Compliantly actuated quadruped with SLIP-like articulated legs.

is the result of a very optimized, system inherent locomo-

tion dynamics. In the last decades, numerous quadrupedal

robots have been developed, which are based upon hy-

draulic/pneumatic actuators [10], [11], [12], [13], electrically

powered direct drives [14], and compliantly actuated systems

[15], [16], [17].2 The quadruped reported in [10] is composed

of hydraulically/pneumatically powered telescopic legs, which

closely resemble the dynamics of a spring-mass system. On

the basis of such a system, [18], [19] found fundamental

control principles of legged locomotion and demonstrated to

perform effectively in experiments. These findings are fur-

ther augmented and successfully validated on systems, which

exploit also the advantageous properties of segmented legs

such as versatility regarding locomotion in uneven terrain

[11], [20], [21], [22]. All the mentioned quadrupedal robots

have demonstrated remarkable dynamic walking and running

performance. Thereby, a common approach is to implement a

certain interaction or virtual model behavior by joint torque

control, while exploiting physical elasticities mainly to absorb

high frequency external forces, which occur due to ground

impacts of the feet. An exception is MIT’s cheetah [14] with

its electrical direct drives of low inertia and friction. As a result

of electric energy storage capabilities and an very optimized

power train, MIT’s cheetah achieves already high energetic

efficiency. However, all above mentioned robotic applications

of versatile and dynamic legged locomotion require high

bandwidth joint torque interfaces, which are technically costly,

expensive and rather implausible from a biological point of

view3.

2This is only a representative selection of quadrupedal robots.
3Transmission delays in biological motor control systems complicate high

bandwidth torque control.
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Fig. 2. Matching the dynamics of a two-segment leg to the SLIP model: (a)
two-segment leg; (b) SLIP.

In our previous work [23], the theory of so-called eigen-

modes of nonlinear dynamics and a corresponding embodi-

ment procedure are proposed. This paper presents a compli-

antly actuated quadrupedal robot with articulated legs featur-

ing a SLIP-like dynamical behavior embodied as eigenmodes

in the mechanical system design. For configurations in which

the system displays full symmetry, any robot will display this

behaviour. This is validated for the quadrupedal robot at hand.

However, the implemented (vertebrates-like) segmented leg

design features this behavior even for a single leg in contact,

i. e., in a non-symetric configuration. (The implemented leg

design features a SLIP-like dynamics based upon the assump-

tion that the leg mass is negligible compared to the trunk,

i. e., the mass of one leg is lower than 5% of the total mass.)

This is particularly advantageous for dynamic gaits, where in

some phases of the gait cycle only one leg is in stance. On the

basis of these dynamics properties, simple and robust control

methods are proposed, which implement the gaits of pronking,

trotting, and dynamic walking although the performance of the

electrical drives, as used in the robot, is low.

II. ARTICULATED LEG DESIGN WITH SLIP-LIKE

DYNAMICS EMBODIED

At first view, the dynamics of an articulated mechanism, as

e. g., shown in Fig. 2(a) and of the SLIP-like model (Fig. 2(b))

is expected to differ substantially. However, using the method

of modal dynamics matching [23], kinematic, inertial and

elastic parameters can be found such that they match. This

is demonstrated for a mechanically straightforwardly imple-

mentable example.

Consider the structural model of a two-segment leg during

stance (Fig. 2(a)). The leg is assumed to be attached to the

main body (trunk) with very high inertial properties such that

its rotation can be neglected, i. e., the trunk has only the two

translational degrees of freedom of the sagittal plane.4 The

thigh is connected to the trunk by a rotational joint with

coordinate q1. The shank is hinged to the thigh with relative

4Note that this assumption holds especially for quadrupeds, where the fore
and hind legs are configured symmetrically and the center of mass (COM) of
the trunk is located at the center of pivot points of the legs.

coordinate q3. There is a pulley concentric with the hip joint

with relative coordinate q2, which couples to the knee joint

such that q3 = q2 − q1. A point-foot is considered, which is

constrained during stance phases to touch the ground such

that the configuration of the system is determined by the

minimum set of configuration coordinates q = (q1, q2) ∈ R
2.

Assuming that each leg segment has equal length a > 0 and

equal mass ml > 0 concentrated at the segment center, and

assuming further that hip joint and pulley are actuated via

linear springs with spring constants k1 > 0 and k2 > 0, and

actuator positions θ1 and θ2, the dynamics of the structural

two-segment leg model can be expressed in the form

M(q)q̈ +C(q, q̇)q̇ = −∂Ug(q)

∂q

T

−K (q − θ) , (1)

where the 2× 2 inertia and stiffness matrices have the form

M(q) = a2
[

mt +
ml

4

(

mt +
ml

2

)

cos (q2 − q1)
sym. mt +

5ml

4

]

, (2)

K =

[

k1 0
0 k2

]

. (3)

Moreover, C(q, q̇)q̇ denotes the generalized

Coriolis/centrifugal force and Ug(q) represents the

gravitational potential.

The goal is to match the dynamics, as described above, to

the one of the SLIP model. Consider therefore the stance phase

dynamics of the SLIP model expressed in polar coordinates,

mC

{[

x2
2 0
0 1

](

ẍ1

ẍ2

)

+ x2

[

ẋ2 ẋ1

−ẋ1 0

](

ẋ1

ẋ2

)

+

g0

(

− sin(x1)x2

cos(x1)

)}

= −
(

0
∂Ue(x2−r0)

∂x2

)

.

(4)

As schematically sketched in Fig. 2(b), x ∈ R×R≥0 denotes

the position of the mass mC w. r. t. to the pivot point on the

ground expressed in a polar coordinate system. Thereby, x1

represents the polar angle and x2 denotes the radius. Due to

this choice of coordinates, the elastic potential Ue(x2 − r0)
depends only on the displacement in the radial direction (w. r. t.

to the rest length r0 > 0). Note that the nonlinear SLIP dy-

namics features an eigenmode W := {x ∈ R×R≥0 |x1 = 0}
according to Definition 1 (see, Appendix).

To match the structural dynamics model of the two-segment

leg (1)–(3) to the desired SLIP dynamics (4), (1)–(3) is

transformed under the change of coordinates

x̂ = f(q) =

(

q1+q2
2

a
√

2 (1 + cos (q2 − q1))

)

. (5)

Thereby, x̂ ∈ R × [0; 2a] denotes the position of the hip

w. r. t. to the contact point in polar coordinates. Then, choosing

the mass of the legs ml and the ratio of stiffness k2/k1 as

design parameters, i. e., ζ = (ml, k2/k1), it is found that

global matching of eigenvectors is achieved if ml = 0 and

k := k1 = k2, i. e., ζ̂ = (0, 1). Substituting these design
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parameters in (1)–(3) and transforming the resulting dynamics

under the change of coordinates (5), yields

mt

{[

x̂2
2 0
0 1

](

¨̂x1

¨̂x2

)

+ x̂2

[

˙̂x2
˙̂x1

− ˙̂x1 0

](

˙̂x1

˙̂x2

)

+

g0

(

− sin (x̂1) x̂2

cos (x̂1)

)}

= −k

(

2 [x̂1 − θx1 ]
1√

4a2−x̂2
2

[ρ(x̂2)− ρ(θx2)]

)

,

(6)

where ρ(y) := ∓ arccos
(

1− y2

2a2

)

represents an abbre-

viation related to the knee angle q3 = q2 − q1 =

∓
[

arccos
(

1− x̂2
2

2a2

)

− π
]

. Thereby, the negative or positive

sign selects the solutions q3 > 0 or q3 < 0, respectively, and

θx = f (θ) denotes the transformed control input. Indeed,

by equating mt = mC and x̂ = x, it can be seen that

the inertial dynamics of the matched two-segment leg model

(6) and the slip model (4) are equivalent. This is not very

surprising, since the inertia of the leg segments is set to

zero, i. e., ml = 0. Note that the example of [23] does

not require to make this assumption, but the mechanism is

significantly more complex. A prototype of such a pantograph

leg is currently being designed. The assumption of zero leg

mass, as made in (6), is consistent with the common wisdom

of designing the leg segments as light-weight as possible

(cf. the leg design in [24], which places the actuators also

in the trunk and implements a spring acting in the direction of

the leg axis), and results in a much less complex mechanical

design (compared to the example of [23]). In particular, the

decoupled structure of the elasticity as in the SLIP model (4)

is maintained for the segmented leg, cf. (6). For θx1 = 0,

the nonlinear dynamics of the two-segment leg (6) features

an eigenmode Ŵ := {x̂ ∈ R × [0; 2a] | x̂1 = 0} for any

θx2 ∈ [0; 2a]. Note that for a symmetric positioning of legs and

a symmetric distribution of the trunk inertia, the eigenmode Ŵ
can be maintained for the complete quadruped, even in case

of two-segment legs with non-zero inertias. This is validated

after introducing the quadrupedal system design.

III. QUADRUPEDAL SYSTEM DESIGN

The proposed quadrupedal design aims at featuring dynamic

locomotion capabilities based upon low performance (and

low-cost) servo drives. For the dimensioning, a single leg

is considered. Thereby, the task of vertical jumping serves

as a reference. The off-the-shelf high torque servo Savöx

SV-1270TG is selected as servo motor for the series elastic

actuators (SEA). In order to increase the control performance

of the drive and to allow to connect an additional sensor

(to measure the spring deflection and the output position of

the SEA), the build-in electronics of the off-the-shelf servo

is replaced by a customized one. The resulting servo drive

features a maximum (active) torque of 1.3Nm and a maximum

angular velocity of 10.0 rad/s. The selection of the servo

motor yields an estimate of the main body weight. Given

the maximum torque, velocity, and an estimate of the weight

of the single-leg system, the leg-segment lengths and spring

stiffnesses are determined in a series of computer simulation

based optimizations of the jumping height. In this procedure,

total mass 2.5 kg

mass of a leg 0.1 kg

spring stiffness 2Nm/rad

max. energy spring 4 J

joint range hip (fore leg) −75 deg ≥ q1 ≥ 105 deg

joint range knee (fore leg) −120 deg ≥ q2 − q1 ≥ 120 deg

joint range hind leg symmetric

0.3m

0.18m

(a)

servo drives

springs

0.16m

SEA
thigh

SEA
pulley

(b)

Fig. 3. Compliantly actuated quadrupedal robot Bert: (a) dimensions; (b) leg
mechanism.
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Fig. 4. Acceleration field of the compliantly actuated quadruped Bert in
stance: (a) due to potential forces: q̈pot = −M(q)−1∂U(q)/∂q; (b)

Coriolis/centrifugal accelerations: q̈CC = −M(q)−1C(q, q̇)q̇. It can
be observed that the acceleration due to potential forces as well as the
Coriolis/centrifugal acceleration are aligned with the z-axis for a motion
(displacement and velocity) along the z-axis. Thus, the z-axis represents an
invariant set according to Definition 1 in the Appendix.

the insights of the modal leg design, as derived above, are

taken into account such that only two parameters (i. e., the

length of thigh and shank a and the stiffness of both actuated

degrees of freedom k) need to be found. In order to maximally

exploit the potential energy storing capabilities of SEAs, it is

assumed that very low, viscous damping acts only at link side.

This assumption reveals the requirement to implement the SEA

with as few friction as possible in parallel to the spring. In

order to also satisfy the low weight assumption made for the

simulation model, the SEA is realized by a torsional spring.

The resulting mechanical implementation of the compliantly

actuated, modal leg design, as shown in Fig. 3(b), is also

advantageous regarding the installation space, and determines

the width of shoulder and hip of the quadruped (Fig. 3(a)).

The distance of fore hip and hind hip is selected such that the
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gallop gait is possible, i. e., fore-feet and hind-feet motions

can intersect.

The arrangement of the legs as well as the inertial prop-

erties of the main body are chosen to be symmetric such

that the complete quadrupedal system features an eigenmode,

which can be exploited for vertical bouncing motions. This

can be validated by investigating the acceleration fields for

displacements w. r. t. to an equilibrium configuration of the

eigenmode and the field of Coriolis/centrifugal accelerations

as shown in Fig. 4(a) and 4(b), respectively. In more detail,

the task dynamics of the complete quadrupedal system is

considered in a stance phase configuration, where all four

feet are constrained at positions on the ground perpendicular

to hip and shoulder rotation axes5. A symmetric equilibrium

configuration is selected, in which the main body is parallel

to the ground plane. The condition of Definition 1 related

to potential forces is tested by analyzing the direction of

acceleration for translational displacements of the trunk w. r. t.

a ground fixed coordinate system (Fig. 4(a)). The condition of

Definition 1 related to Coriolis/centrifugal forces needs to be

satisfied simultaneously. That is, when the system moves in

a certain direction (i. e., the velocity magnitude is non-zero),

an acceleration results due to the Coriolis/centrifugal forces.

In order that the system continues moving along the same

linear direction, the accelerations due to Coriolis/centrifugal

and potential forces need to be aligned with the velocity as

well as the displacement. This is tested by evaluating the

direction of the Coriolis/centrifugal acceleration for different

velocities expressed in polar coordinates at several configu-

rations (Fig. 4(b)). Thereby, the directions of the velocities

correspond to the relative displacements of the robot w. r. t. the

initial configuration considered for the potential force test. For

instance, if the relative displacement is solely polar (angular),

then also the tested velocity consists only of an angular

component. Both fields display vertical lines of accelerations

such that the existence of an eigenmode can be deduced

according to Definition 1 (Appendix).

IV. CONTROL OF DYNAMIC LOCOMOTION GAITS

The dynamics of multi-legged locomotion such as pronking

and trotting can be approximated by a spring-mass model [25].

As validated above (cf. Fig. 4(a) and 4(b)), for symmetric leg

configurations and contact situations, the compliant quadruped

at hand features an oscillation mode, which corresponds to

such bouncing motions. This intrinsic dynamics behavior can

be directly exploited in the stance phase and combined with

well-studied foot-placement strategies [18] to achieve dynamic

locomotion gaits. However, the spring-mass or SLIP model

is conservative, while the dynamics of the real quadrupedal

system is subject to energetic losses due to impacts and friction

in the joints. To excite and sustain the intrinsic oscillatory

behavior of the real plant, a control method based on switching

of motor positions can be applied along the eigenmodes.

Accordingly, the proposed gait controllers switch the position

5Since all contact points of the legs can move only in parallel planes, only
10 rather than 12 constraints are feasible, i. e., all four contact points are
constrained in vertical and forward/backward direction, but only either the
two left or right feet are constrained in lateral direction.

of the motors triggered by events which depend solely on

states at position level.

A. Pronking

A fundamental difference of the SLIP and the modal leg

dynamics is that for the latter, the polar angle x̂1 is statically

controllable during stance (cf. the right hand sides of (4) and

(6)). This additional input variable θx1 can be utilized to control

the pendulum motion of the trunk in a pronking gait. In [26], it

has been demonstrated for a single-leg system that the simple

switching law

θ(θ−, q) =






f−1(−αl, r0) +wŝ if wT ∂Ue(θ−
,q)

∂q

T
> ǫτw

f−1(αl, r0) if wT ∂Ue(θ−
,q)

∂q

T
< ǫτw

,
(7)

(where f−1 denotes the inverse mapping of (5) and θ− is the

state of θ before the switching instance) suffices to stabilize

a periodic hopping motion. The control (7) switches only

between two equilibrium configurations. The corresponding

motor positions are parametrized in polar coordinates by the

landing angle αl ∈ (−π/2;π/2), the radial rest length r0 > 0,

and the switching amplitude ŝ > 0 along the eigenvector

w = sign(q2 − q1)
(

1 −1
)T

. (8)

The transitions between the two controller states are trig-

gered by approximating the touchdown and takeoff event by

thresholding the generalized elastic force on the eigenmode

wT ∂Ue(θ−
,q)

∂q

T
w. r. t. a constant ǫτw > 0 from below (touch-

down) and above (takeoff), respectively. Therefore, the com-

plete control is determined by only four, intuitive parameters.

In particular, the parameter corresponding to the angle of

attack αl can be considered to regulate the average locomotion

velocity v w. r. t. a desired value vdes, e. g., by an iterative law

of the form

αl(j) = αl(j − 1) + kv(v(j) − vdes) , (9)

which updates αl once per jumping cycle j with a low gain

kv > 0. The control (9) is similar to the step-length adaptation

as proposed by Raibert [10]. The difference w. r. t. Raibert’s

controller is that (9) cumulates the control-error instead of

considering a proportional and feed-forward term, as proposed

in [18].

The single-leg hopping control (7) can be directly transfered

to the quadrupedal system by “linking” the input of all legs

to a single, “virtual” leg, as proposed in [18]. In case of

pronking on spot, this results in a motion, which evolves

ideally in the eigenmode of the plant, although the quadrupedal

system is composed of articulated legs with non-zero mass.6

As such, this pronking control is potentially efficient w. r. t. the

jumping height. However, if the goal is to travel forward, there

are different quadrupedal gaits, which are way more efficient

depending on the desired speed [27].

6This is based on the assumption that the quadrupedal system is symmetric
w. r. t. the vertical axis.
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Stance phase A:
ᾱA : −αsw → αst

ᾱB : αst → −αsw

Stance phase B:
ᾱB : −αsw → αst

ᾱA : αst → −αsw

Extension B:
r̄B : r0 − r̂ → r0

Liftoff A:
r̄A : r0 → r0 − r̂

αA > ǫαfl

αA > ǫαex

Extension A:
r̄A : r0 − r̂ → r0

Liftoff B:
r̄B : r0 → r0 − r̂

αB > ǫαfl

αB > ǫα

αA > ǫα

αB > ǫαex

B A

A B

Leg pairs

Fig. 5. Finite state machine controlling quadrupedal trot. Equilibrium
configurations (motor positions) and link configurations in polar coordinates
are denoted (ᾱi, r̄i) = f(θi) and (αi, ri) = f(q

i
) according to (5),

respectively, where the index i = {A,B} refers to diagonally “linked” leg
pairs. The transition to the liftoff state of leg pair A is triggered when the
link-side leg angle αA is greater than the threshold value ǫαfl

. In this state,
the reference rest length r0 is reduced by an amount of r̂. When the leg angle
αA further hits the threshold value ǫα from below, the reference angle of leg
pair A is changed to −αsw and the reference angle of leg pair B is changed
to αst such that A and B swing forward and backward, respectively. The
extension of the new leg pair in stance B (to the reference rest length r0) is
triggered when the link-side leg angle of the indicated pair αB is greater than
ǫαex .

B. Trotting

The trot control, which will be proposed in the following,

serves as an example to show how the natural oscillatory

dynamics of the quadrupedal system can be exploited to

achieve forward locomotion. The running trot is a dynamic

gait, where diagonal pairs of legs move in phase. While one

leg pair is in stance and transports the center of mass (COM)

forward in locomotion direction, the other leg pair swings

towards the touchdown configuration. The gait can display a

flight phase in between the alternation of these functionalities.

In that case, the total COM needs to oscillate in vertical

direction, since during the flight phase, the height of the total

COM cannot be constant due to gravity. However, from a view

point of energetic efficiency (regarding forward locomotion),

the vertical oscillation amplitude needs to be kept as low as

possible, since due to friction (which is present in any physical

system), any radial motion of the stance legs is subject to

energetic losses, although kinetic energy (of the flight phase) is

partially stored in the corresponding springs. This observation

reveals that a potential source to improve efficiency is given

in the generation of the polar leg motion, which motivates a

controller design based upon the natural oscillatory dynamics

predominantly in this polar direction of the legs, cf. (6).7

The gait control can be described by a finite state machine

(FSM), which switches the equilibrium configurations of the

legs (Fig. 5). The link and motor positions of all legs are

expressed in polar coordinates (5). Diagonal leg pairs are

considered as “linked”. The gait generation is based on the

idea to excite an antiphasic, elastic pendulum motion of the

stance and swing leg pair by moving the motors as few

as possible. This can be achieved by switching the polar

7Note that for implementation based on the SLIP dynamics, e. g., via virtual
model control [28], the motors performing the polar leg motion would require
to move as fast as the corresponding links, since there is no elasticity directly
acting in the polar direction to perform the movement.

Swing phase LH
∆ᾱRF
αst

: 0 → 2
3

∆ᾱLF
αst

: 4
3
→ 2

∆ᾱLH
αst

: 2 → 0
∆ᾱRH
αst

: 2
3
→ 4

3

Extension RF
Liftoff LH

TOLH

TORF

αRH > ǫα

αLH < ǫα

TOLF

Extension RH
Liftoff RF

Swing phase LF
∆ᾱRF
αst

: 2
3
→ 4

3
∆ᾱLF
αst

: 2 → 0
∆ᾱLH
αst

: 0 → 2
3

∆ᾱRH
αst

: 4
3
→ 2

Swing phase RH
∆ᾱRF
αst

: 4
3
→ 2

∆ᾱLF
αst

: 0 → 2
3

∆ᾱLH
αst

: 2
3
→ 4

3
∆ᾱRH
αst

: 2 → 0

Swing phase RF
∆ᾱRF
αst

: 2 → 0
∆ᾱLF
αst

: 2
3
→ 4

3
∆ᾱLH
αst

: 4
3
→ 2

∆ᾱRH
αst

: 0 → 2
3

Extension LH
Liftoff LF

Extension LF
Liftoff RH

αLF < ǫα

TORH

αRF > ǫα

Fig. 6. Finite state machine controlling quadrupedal dynamic walking.
Equilibrium configurations (motor positions) and link configurations in polar
coordinates are denoted (ᾱi, r̄i) = f(θi) and (αi, ri) = f(q

i
) according

to (5), respectively, and the takeoff event is denoted by TOi, where the
index i = {RF,LF,LH,RH} refers to the legs. Note that the commanded
equilibrium configuration is ᾱi = αa + ∆ᾱi. Therefore, e. g., the takeoff
event of the left hind leg TOLH triggers its swing phase, i. e., the reference
angle ᾱLH is changed from αa + 2αst (foot most backward) to αa (foot
most forward). The reference angles of the remaining legs are shifted by one
third of the angular step length 2αst such that the feet move backward. The
extension of the left hind leg and the liftoff of the left fore leg is initiated,
when the link-side angle of the swing leg αLH is lower than the threshold
value ǫα (i. e., when the swing foot has reached its desired forward position).

equilibrium configuration of the stance and swing legs to αst

and −αsw, respectively. Thereby, the sum of the parameters

αst ≥ 0 and αsw ≥ 0 determines the static polar step length.

The current stance phase is initiated depending on the polar

angle of the previous leg pair in stance. Thereby, the threshold

ǫα > 0 determines also the actual dynamic step length. It

becomes evident that there might be an optimal value for

ǫα, which for a given static step length (which determines

the switching amplitude) maximizes the actual dynamic step

length. In between the main two (finite) states of the stance

phase, two more states are required, which initiate the radial

extension and flexion of the swing and stance leg, respectively.

Since the effective inertia of the stance legs is much larger than

that of the swing legs but the stiffness is equal, also the time

constant of oscillation of the stance legs is larger. Loosely

speaking, this means that the swing legs move faster than the

ones in stance. As such, the extension of the swing legs needs

to be initiated before the legs in stance are lifted. This can

be achieved by setting the rest length of the swing legs to

the initial leg length r0 ∈ (0; rmax], when the polar angle of

the legs in stance hits the threshold ǫαex
< ǫα from below.

The liftoff is initiated by reducing the initial rest length of

the stance legs by an amount of r̂ ∈ (0; r0), when the polar

angle of the same leg pair crosses the threshold ǫαfl
> ǫαex

(where ǫαfl
< ǫα) from below. Note that for the legs in
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stance, their rest length is only decreased, which means that

at most the potential energy is removed in the radial direction.

However, although the radial oscillation is not directly excited,

the energy storing capabilities in vertical direction can be

exploited by selecting αst > αsw.

C. Dynamic walking

Quadrupedal walking is a gait for rather moderate locomo-

tion speeds with increased stability against falling (compared

to pronking or trotting). The compliantly actuated quadrupedal

robot, as introduced in Sect. III, is designed for highly dynam-

ical locomotion gaits. In the following, a dynamic walking

control is proposed, which aims at validating that the same

robotic system is also able to perform such “less dynamical”

but more stable (regarding falling) gaits. Quadrupedal walking

is a cyclic motion, where each of the four legs touches down

and lifts off subsequently. Consequently, the legs move shifted

by one fourth of the step length, and the feet touch down in the

order: left hind (LH), left fore (LF), right hind (RH), and right

fore (RF). To achieve a dynamic walking, each foot is lifted

right before the previous swing leg touches the ground. This

leads to phases, where only two legs are in stance. Therefore,

the gait pattern is still not always statically stable.

Due to the SLIP-like dynamics properties of the legs,

as proposed in Sect. II, the dynamic walking control can

be implemented by a FSM, which switches the equilibrium

configurations of the legs in polar coordinates triggered by

state-dependent events (Fig. 6). For instance, starting in the

swing phase of the RF leg, the extension of the RF to the

nominal rest length r0 > 0 and the liftoff of the LH (i. e.,

decrease in rest length by r̂ ∈ (0; r0)) is initiated, as soon as

the polar angle of the swing leg (RF) crosses the threshold

ǫα from below. The swing phase of the LH leg is triggered

by its takeoff event, etc. Thereby, the locomotion speed is

determined by the nominal polar step length 2αst > 0 and the

angle of attack αa. Note that therefore the complete walking

control is parametrized by only five parameters.

V. EXPERIMENTS

The performance of the quadrupedal pronk, trot, and dy-

namic walking controllers, as proposed in Sect. IV, are

validated in real hardware experiments with the compliantly

actuated quadruped introduced in Sect. III. In more detail, a

PD-controller for the position of the servo drives is imple-

mented via pulse width modulation (PWM) on the servo units,

which communicate with a central single board computer

(Odroid XU4), i. e., the servo units receive motor position

commands and send measured motor and link positions at a

rate of 1 kHz. Additionally, the position and orientation of

the main body is measured by an optical tracking system

(not used in the control loop). In the current version, the

quadrupedal system is powered externally via a cable, while

high-level communication such as starting/stopping FSM and

data logging is realized via a wireless Ethernet connection.

A. Pronking

The pronk gait can be used to overcome obstacles. A

reasonable performance measure takes also the jumping height

into account. In the experimental evaluation of the pronking

controller, the jumping distance is considered as performance

measure. It is defined as the geometric mean of the horizon-

tally traveled distance d and the jumping height h = hmax− h̄
of the considered stride, where h̄ denotes the height of the

main body in static stance, i. e., djump =
√
d2 + h2. To this

end, the controller parameters are tuned manually to maximize

the jumping distance djump: the landing angle is selected to be

αl = −0.04 rad, the initial rest length is set to r0 = 0.15m,

the modal switching amplitude and threshold are chosen to

be ŝ = 0.6 rad and ǫτw = 0.35Nm, respectively. This results

in a jumping distance of djump = 0.107m, as indicated in

Fig. 7(a).

B. Trotting

The experiment presented in the following aims at validating

the performance of the natural dynamics based trot control.

Thereby the focus is on steady state locomotion. In order

to approach a phase with approximately constant movement

velocity, the polar angle of the swing leg pair is initially

increased step-by-step until a desired value is reached, i. e.,

αsw = 0.025 rad + j0.005 rad ≤ 0.525 rad, where j ∈ N

iterates over the steps. All remaining controller parameters

are selected as a function of αsw: To exploit the natural

radial oscillation properties, the polar equilibrium angle of the

stance legs is set to αst = 1.25αsw. The displacement of the

initial rest length is selected by r̂ = 0.035m + 0.03 m
radαsw.

Especially, it turned out that a larger displacement for the

hind leg, i. e., r̂hind = 1.3r̂ while r̂fore = r̂, has a stabilizing

effect on the pitch motion of the main body. The thresholds

of the swing leg extension and stance leg flexion are chosen

to be ǫαex
= 0.1αsw and ǫαfl

= 0.3αsw, respectively, such

that both switchings occur after mid-stance, while the swing

legs extend before the stance legs flex. The threshold for the

interchange of swing and stance leg pairs is selected as a

quadratic function of the static polar angle of the legs in swing

(with minimum at αsw = 0), i. e., ǫα = 0.6αsw + 0.3 1
radα

2
sw.

This results in a locomotion velocity (as averaged over three

steps) of vmean = 0.66m/s (Fig. 7(b)). Fig. 7(b) shows also

the commanded motor positions, gait events (triggering the

FSM), and the resulting joint motion, both expressed in polar

coordinates of the hind legs. It can be seen that stable (without

falling) trotting is achieved, although the movement of the

legs is asymmetric, which is a result of imprecisions in the

mechanical realization.

C. Dynamic walking

The dynamic walking control performs for a wide range of

nominal step lengths αst and angles of attack αa, while the

threshold for the swing leg needs to be chosen depending on

the angle of attack, e. g., ǫα = 0.25αa. The nominal rest length

r0 and the decrease in rest length r̂ depend on the weight of

the robot and the stiffness of the SEA springs. In Fig. 7(c),

the experimental results for parameters αst = 25 π
180 rad,

αa = −4 π
180 rad, r0 = 0.152m, and r̂ = 0.06m are shown as

an example. This results in a locomotion velocity (as averaged

over three steps) of vmean = 0.25m/s. Additionally, the
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Fig. 7. Performance of locomotion controllers tested in experiments with the proposed compliantly actuated quadruped. The absolute position of the main
body rb is plotted for (a) pronking; (b) trotting; (c) dynamic walking. The commanded motor positions (expressed in polar coordinates, i. e., leg angle ᾱi

and length r̄i) and gait events are shown for (b) trotting and (c) dynamic walking. In (b) also the measured joint motion is depicted.
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commanded motor positions expressed in polar coordinates

of the legs and gait events (triggering the FSM) are shown. It

can be observed that durations of symmetric gait phases such

as the extension of the RF leg (finite state between events

αLF < ǫα and TORH) and the extension of the LF leg (finite

state between events αRF < ǫα and TOLH) are not equal.

This is as gait events are state-dependend and the plant is

mechanically not ideally symmetric. Nevertheless the proposed

approach allows to achive a stable dynamic walking gait.

VI. CONCLUSION

In this paper, a compliantly actuated articulated leg and

a quadrupedal system are introduced, which have the dy-

namics of the SLIP model (with polar spring) embodied

in the mechanical design. This allows us to realize simple

and robust quadrupedal gaits such as pronking, trotting, and

dynamic walking for robotic systems with low performance

(electrical) drives subject to significant imprecisions in the

mechanical implementation, as validated by experiments. The

embodiment of SLIP dynamics in articualted legs has been

proposed in [29] for a bipedal robot. Thereby, the SLIP model

properties have been validated by numerical simulation of the

dynamics; the advantages regarding the generation of bipedal

gaits have been verified by experiments. In this paper, our

recently proposed theory of eigenmodes of nonlinear dynamics

[23] is applied to mathematically show and experimentally

validate that a low-dimensional fundamental model of dynamic

legged locomotion can be anchored in a compliantly actuated

quadruped as an example of a high-dimensional articulated

multibody system with elasticities.

APPENDIX

Consider the dynamics of the form

M (q)q̈ + b(q, q̇) = − (∂U(q)/∂q)
T
. (10)

Herein, q ∈ R
n denotes configuration variables defined in

Euclidean space, M ∈ R
n×n is the symmetric and p.d. in-

ertia matrix, the generalized Coriolis/centrifugal and damping

forces are summarized in b(q, q̇) ∈ R
n, and U(q) ∈ R≥0

comprises the gravitational and elastic potential.
Definition 1: Let q0 be the equilibrium configuration of the

system (10) and let w be the components of a constant vector
in Euclidean space. Let further ∆q = q − q0 = wz and q̇ =
wż be a displacement and a generalized velocity of amplitudes
z ∈ R and ż ∈ R along w, respectively. Then, w = const.
is an eigenvector of (10), if for any z ∈ R and ż ∈ R ∃z̈ =
z̈(z, ż) ∈ R such that M(q0+wz)wz̈ = −b(q0+wz,wż)−
∂U(q)
∂q

∣

∣

∣

T

q=q0+wz
is satisfied. An eigenvector w with ‖w‖2 = 1

defines a linear transformation of the form ∆q = q−q0 = wz
and q̇ = wż. The motion of (10), which can be parameterized
exclusively by z and ż, is referred to as eigenmode of (10).

REFERENCES

[1] R. M. Alexander, “Three uses for springs in legged locomotion,” Int. J.
of Robotics Research, vol. 9, no. 2, pp. 53–61, 1990.

[2] R. Blickhan, “The spring-mass model for running and hopping,” J. of
Biomechanics, vol. 22, pp. 1217–1227, 1989.

[3] A. Seyfarth, H. Geyer, M. Günther, and R. Blickhan, “A movement
criterion for running.” J. of Biomechanics, vol. 35, no. 5, pp. 649–55,
2002.

[4] H. Geyer, A. Seyfarth, and R. Blickhan, “Compliant leg behavior
explains basic dynamics of walking and running,” Proc. R. Soc. B, vol.
273, no. 1603, pp. 2861–2867, 2006.

[5] H.-M. Maus, J. Rummel, and A. Seyfarth, “Stable upright walking and
running using a simple pendulum based control scheme,” in Proc. Int.
Conf. Climbing and Walking Robots, 2008, pp. 623–629.

[6] H.-M. Maus, S. Lipfert, M. Gross, J. Rummel, and A. Seyfarth, “Upright
human gait did not provide a major mechanical challenge for our
ancestors,” Nature communications, vol. 1, p. 70, 2010.

[7] J. Rummel, Y. Blum, H. M. Maus, C. Rode, and A. Seyfarth, “Stable
and robust walking with compliant legs,” in Proc. of IEEE Int. Conf. on
Robotics and Automation, 2010, pp. 5250–5255.

[8] R. Full and D. Koditschek, “Templates and anchors: neuromechanical
hypotheses of legged locomotion on land,” J. Exp. Biol., vol. 202, no. 15,
pp. 3325–3332, 1999.

[9] P. Holmes, R. Full, D. Koditschek, and J. Guckenheimer, “The dynamics
of legged locomotion: Models, analyses and challenges,” SIAM Review,
vol. 48, no. 2, pp. 207–304, 2006.

[10] M. H. Raibert, “Four-legged running with one-legged algorithms,” in
Int. Symp. on Robotics Research. Cambridge: MIT Press, 1985, pp.
311–315.

[11] M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and B. Team,
“Bigdog, the rough-terrain quadruped robot,” in Proc. of the World
Congress, vol. 17, no. 1, 2008, pp. 10 822–10 825.

[12] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell, “Design of hyq–a hydraulically and electrically
actuated quadruped robot,” Proc. of the Inst. of Mech. Eng., Part I: J.
of Systems and Control Engineering, vol. 225, pp. 831–849, 2011.

[13] C. Semini, V. Barasuol, T. Boaventura, M. Frigerio, M. Focchi, D. G.
Caldwell, and J. Buchli, “Towards versatile legged robots through active
impedance control,” Int. J. of Robotics Research, vol. 34, no. 7, pp.
1003–1020, 2015.

[14] S. Seok, A. Wang, M. Y. M. Chuah, D. J. Hyun, J. Lee, D. M. Otten,
J. H. Lang, and S. Kim, “Design principles for energy-efficient legged
locomotion and implementation on the mit cheetah robot,” Trans. on
Mechatronics, vol. 20, no. 3, pp. 1117–1129, 2015.

[15] A. Sproewitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, and
A. Ijspeert, “Towards Dynamic Trot Gait Locomotion—Design, Control
and Experiments with Cheetah-cub, a Compliant Quadruped Robot,” Int.
J. of Robotics Research, vol. 32, no. 8, pp. 932–950, 2013.

[16] M. Hutter, C. Gehring, M. Bloesch, M. Hoepflinger, C. D. Remy, and
R. Siegwart, “Starleth: A compliant quadrupedal robot for fast, efficient,
and versatile locomotion,” in Int. Conf. on Climbing and Walking Robots,
2012, pp. 483–490.

[17] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, et al., “Anymal-a
highly mobile and dynamic quadrupedal robot,” in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems. IEEE, 2016, pp. 38–44.

[18] M. H. Raibert, Legged Robots That Balance. MIT Press, 1986.
[19] ——, “Trotting, pacing and bounding by a quadruped robot,” J. of

Biomechanics, vol. 23, pp. 7983–8198, 1990.
[20] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. Hoepflinger, and

R. Siegwart, “Control of dynamic gaits for a quadrupedal robot,” in
IEEE Int. Conf. on Robotics and Automation, May 2013, pp. 3287–
3292.

[21] M. Hutter, C. Gehring, M. A. Höpflinger, M. Blösch, and R. Siegwart,
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jumping of compliantly actuated hoppers based on discrete planning and
switching control,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2015, pp. 5802–5808.

[27] D. F. Hoyt and C. R. Taylor, “Gait and the energetics of locomotion in
horses.” Nature, 1981.

[28] J. Pratt, P. Dilworth, and G. Pratt, “Virtual model control of a bipedal
walking robot,” in IEEE Int. Conf. on Robotics and Automation, 1997,
pp. 193–198.

[29] C. Hubicki, J. Grimes, M. Jones, D. Renjewski, A. Sproewitz, A. Abate,
and J. Hurst, “Atrias: Design and validation of a tether-free 3d-capable
spring-mass bipedal robot,” Int. J. of Robotics Research, vol. 35, no. 12,
pp. 1497–1521, 2016.


