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Abstract: The upraise of autonomous driving technologies asks for maps characterized bya broad 

range of features and quality parameters, in contrast to traditional navigation maps which in most 

cases are enriched graph-based models. This paper tackles several uncertainties within the domain 

of HD Maps. The authors give an overview about the current state in extracting road features from 

aerial imagery for creating HD maps, before shifting the focus of the paper towards remote sensing 

technology. Possible data sources and their relevant parameters are listed. A random forest 

classifier is used, showing how these data can deliver HD Maps on a country-scale, meeting 

specific quality parameters. 
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1. Introduction 

Within the last decade, the research on fully autonomous vehicles (AV) has progressed so much 

that what started as a vision is quickly becoming a reality. Nowadays it is recognized that the 

increasing usage of AV will have beneficial influence on a broad range of socio-economic and 

transportation factors in our society, for instance energy consumption and air pollution, land use, 

and car ownership. The increasing usage of AV will therefore be beneficial not just for the single 

owners of the cars, but also for society as a whole [1]. A recent overview about challenges and 

opportunities concerning AV is given in [2]. Besides of Mobility on Demand (MoD) and car-sharing, 

AVs are probably the key challenge for future Intelligent Transportation Systems (ITS). 

Nowadays cars, both Commercial-of-the-Shelf (COTS) and research platforms, are equipped 

with a broad range of different sensors, e.g., camera-based systems, Lidar, Radar, Ultrasonic, 

Infrared, Odometry sensors and Global Navigation Satellite System (GNSS) receivers. Advanced 

Driver Assistance Systems (ADAS) make extensive use of the information acquired from these 

sensors to accurately estimate the vehicles position and pose, and to actively map its surroundings. 

The combination and harmonization of the permanently recorded heterogeneous data stream is a 

key factor for achieving a reliable and consistent view of the vehicles in a close-range environment. 

The perception of the environment remains the biggest challenge to solve, in order to achieve a 

reliable, smooth and safe driving [1]. Weather conditions like rain and fog, rapidly changing 

illumination caused by shadowing, or a corrupted GNSS positioning signal caused by multipath 

effects, are just examples of what has to be taken into account for real world applications. In addition 

to hardware components, algorithms play a key role for AVs. Publicly available benchmark datasets 
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have therefore been published in the past to provide a reliable source to evaluate and compare 

algorithms performance in environment perception [3]. 

1.1. HD Maps for Ego Positioning 

A High Definion Map (HD Map) can contribute to this task by spanning an expectation horizon 

of what should be seen and at which position objects should be located [4]. Concerning GNSS-based 

positioning within an urban environment, especially if a car is traveling along an urban canyon, 

signal reception is affected by strong biases caused by multipath effects and atmospheric 

propagation delays. Obst et al. [5] therefore propose the usage of a 3D digital map to overcome these 

issues for vehicle localization. Within this map, potential multipath situations can be predicted and 

identified through a probabilistic ray-tracing model. Tao and Bonnifait [6] proved that both the tight 

and loosely coupling of GNSS with 2D lane marking maps may increase the accuracy and integrity 

of the positioning information, particularly when these are computed autonomously. The same 

authors also implemented a road invariant Extended Kalman Filter which makes use of Lane 

Markings for the enhanced estimation of GPS errors. Using images and HD Maps has been proven to 

be especially reliable at reducing the lateral error in GNSS positioning [7]. A recent example is given 

in [8], based on the data-set provided by the University Grand Challenge at ITS World Congress 

2016 in Melbourne. Bauer et al. [9] used a HD Map derived from georeferenced aerial orthophotos 

with a spatial resolution of 10 cm, and digital elevation and surface models with resolutions of 2 m 

and precisions of 20 cm for precise urban vehicle localization. The experiments showed a significant 

positioning improvement pinpointing out the high potential of HD Maps. 

In situations where no GNSS signal is available, the impact of HD Maps for positioning raises 

significantly. Schreiber et al. [10] proposed an approach which is completely independent of GNSS 

and solely based on highly accurate maps. This focuses on the precise localization relative to the 

given map that is necessary for path following, with experiments showing that localization accuracy 

is in the range of the map accuracy: therefore, they conclude that future work should focus on the 

mapping process. Burgard et al. [11] pointed out that for an AV the localization requirements are in 

the order of decimeters, which makes GNSS alone insufficient to meet these requirements. The 

experiments reported therein using a HD Map resulted in a relative lateral localization error to the 

HD Map which was mostly within 5 cm. 

1.2. HD Maps for Scene Understanding 

Besides the contribution to a highly accurate vehicle positioning with and without GNSS, HD 

Maps can help in holistic 3D scene understanding. Wang et al. [12] generated 3D HD Maps using 

volunteered geographic information from the OpenStreetMap project. Their 3D object detection 

algorithm was validated on the KITTI dataset [3], outperforming the baseline in all metrics and 

tasks. 

As a result of the unpredictable activity of pedestrians, bicyclists and traffic movement, 

travelling urban environments with AVs is probably the most challenging scenario. The DARPA 

urban challenge 2007 can be marked as a key event addressing such a scenario. Several research 

groups from around the world participated in this challenge, with the team AnnieWAY reporting 

about their experiences [13]. Whilst no prior HD Map was available, their system combined the 

spatial information from the sensors to generate a 2D map of the environment on the fly. More 

specifically, this map was centered at the vehicles position and moving with it. For environmental 

perception an occupancy grid with a spatial resolution of 15 cm was generated. 

1.3. Experiments on Public Roads Using HD Maps 

Almost all car manufacturers are nowadays carrying out experiments with modified vehicles 

on public roads demonstrating their current abilities. One of the most remarkable experiments was 

carried out by Daimler in 2013, in which a modified Mercedes Benz S 500 traveled the so-called 

Bertha Benz Memorial Route, a 103 km long route in the southwestern part of Germany connecting 
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the cities of Mannheim and Pforzheim. Unlike the majority of other research vehicles, the car comes 

with no costly LiDAR. The HD Map played an important role to ensure localization. The subsystem 

Localization comprises the modules (a) Lane-Marking-Based Localization, (b) Feature-Based 

Localization and (c) Localization Fusion, where (a) and (b) are complementary vision algorithms. 

The used HD Map contained significantly more information than typical navigation maps. All static 

environmental properties which are necessary for driving but cannot be reliably detected by sensors 

were stored, e.g., the layout of drivable lanes [14].  

The BMW Group also reported about experiences, results and lessons learned from automated 

driving on Germany’s Highways, where the main routes are around Munich and the highway 

between Munich and Nuremberg, better known as DigitalesTestfeld Autobahn. The used HD Map 

was generated from a small number of vehicles equipped with the same sensors as the later used 

AV. It was pointed out that the data had to be harmonized and that the HD Map comprises two 

layers: a semantic geometric layer and a localization layer. For more details concerning BMW’s 

experiences, we refer to the prospective published in [15]. 

There is a broad agreement on HD Maps being a key technology for AVs [4]. Both commercial 

players, Daimler and BMW, pointed out that the generation and provision of HD Maps is currently 

one of the main challenges when it comes to autonomous driving. Aeberhard et al. [15] explicitly 

asked for validation and certification of large-scale digital maps. Ziegler et al. [14] stated that for the 

generation of digital maps not only the technical performance, but also the scalability of the chosen 

solutions in terms of a commercial roll-out is pivotal. 

1.4. Descriptive Parameters, Metrics and Content of HD Maps 

Here, we introduce needed definitions and clarifications. Whilst all the aforementioned papers 

and experiments deal with HD Maps, the content of such maps and the meanings of the given 

accuracy statements are quite inhomogeneous. Concerning the contents, the lowest common 

denominator is that all HD maps featured a lane markings detection step. Focusing on the term 

accuracy, there’s a rich literature dealing with its specification for mapping products, and giving 

guidelines on how these quantitative parameters should be derived, which perfectly works also 

nowadays. Macfarlane and Stroila [16] from HERE addressed the wording Uncertainty in the 

domain of autonomous driving, as from a mapper’s prospective especially (a) Uncertainties in 

Object Detection and Localization and (b) Temporal Map Uncertainties are of interest. For (a) we 

have to distinguish between relative and absolute accuracy, where both quantities can be given. In 

most papers it is stated that a relative accuracy of 10 to 20 cm was used, whereas almost no 

statements are given concerning the absolute accuracy. This may be reasonable from a practical 

point of view where the most important issue is to ensure a stable relative positioning of the AV with 

respect to its surroundings. Nevertheless, the absolute accuracy is the most meaningful quality 

measure when it comes to spatial applications, therefore it should not be simply neglected. For (b) a 

mapping product relies always on a given date of data acquisition. As the road network is 

recognized as a highly vital environment, where changes can appear everywhere at any time, the 

update rate and the time stamp stating the time an object was detected play an important role. 

To the best of our knowledge, most map makers currently use data recorded by probes or a fleet 

of vehicles. Massow et al. [17] presented an approach on how to handle, maintain and exploit the big 

amount of data recorded by probes. Furthermore, three different data layers were identified: (a) the 

road geometry, (b) the road furniture, and (c) dynamic data. The road geometry and its surrounding 

furniture can be considered as base map where an absolute accuracy statement is useful, whereas 

dynamic data such as information about accidents do not need to be included. The authors 

furthermore developed a Map Evaluation Tool (AET), which performs a metric evaluation on the 

absolute positioning accuracy of the map. Dabeer et al. [18] presented recent results concerning an 

end-to-end system for crowdsourced 3D maps for autonomous driving. Their error metrics also 

include absolute positioning accuracy. 
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1.5. HD Maps and Aerial/Satellite Imagery, Literature Review 

Aerial images have been used for a long time for the extraction and description of 

transportation infrastructure. Kim et al. [19] proposed the extraction of road feature information by 

combining several image processing algorithms into a sophisticated system. The authors proposed 

transfer learning approach using fully convolutional neural networks (FCNNs) to extract the roads 

firstly and afterwards with the segmentation of the lane marking in the masked image using the first 

step. This approach has been common in the majority of the current methods to extract 

lane-markings in remote sensing. The main contribution of the authors is the usage of FCNNs 

instead of the traditional methods.  

In the algorithm proposed by Jin et al. [20] the roads are extracted firstly and afterwards Gabor 

filters are applied in order to highlight for the lane markings. This step is followed by the 

thresholding algorithm of Otsu to achieve binary segmentation. The outputs are then produced by 

either morphological operations or support vector machines (SVMs). 

Despite obtaining good results in highways, this approach yields some false positives in the 

objects represented by white linear features, such as the boundaries of bridges over highways. Also 

lines belonging to vehicles might be misclassified as they are inside the road regions. In addition, 

lane-marking extraction was not investigated into detail and only one output image was provided. 

In their work, objects like trees over highways and roads or not well-visible lane markings on the 

surface of roads were mentioned to be a main reason leading to a perturbation of the final results. To 

address the mentioned problem, Jin et al. [21] proposed a newer approach consisting of the 

centerline of the road extraction step, the road surface detection and in the end pavement markings 

extraction. However, this approach is also heavily dependent on the road-mask components. 

Despite having superior performance over previous methods, this approach exhibits low accuracy 

with regards to lane-marking detection without road mask.  

Jin et al. [22] used hierarchical image analysis based on color component analysis and wavelet 

transformation to detect the position of roads in a first step, then applied Gabor filtering to extract 

road lane markings. The authors used an unsupervised algorithm to segment the road area in the 

first. Afterwards, a contrast measurement was deployed in order to improve the quality of the 

lane-marking extraction assuming that the difference between the pixel intensity of lane-markings 

and the surface of road is noticeable. In the next step, morphological features were applied to 

smooth the edges in the shadow areas. Finally, the extracted lane-markings were improved using a 

modified Wang-Zangen algorithm as well as a line fitting step using least square regression. Despite 

an extension of lane-marking to rural areas, without road area masking step, this method would 

suffer from a considerable amount of false positives. 

Unlike the two aforementioned works, Hinz and Baumgartner [23] proposed a methodology for 

urban areas using multi-view imagery as well as the usage of context information. The author used 

the detected thin lines as a sign for the existence of a road. Despite of having very good performance, 

the proposed method requires several images from different view angles of an area of interest. Mnih 

and Hinton [24] also focused on urban areas, but used unsupervised classification for feature 

extraction and neural networks to finally detect roads in a reliable and robust manner. In addition to 

methods relying only on aerial imagery, the usage of additional images collected by vehicles gave 

promising results. Mattyus et al. [25] gave an example of the combined parsing of both ground and 

aerial images to generate HD Maps and to extract road topology from aerial imagery [26]. Their 

methods is based on Markov Random Fields as well as the combination of parsed aerial and ground 

imagery data in order to produced detailed results. Even though, these road masks could be utilized 

for lane marking localization, they can’t be deployed directly to improve the lane marking 

extraction. More complete overviews about the extraction of roads and road features from aerial 

imagery are given in [27, 28]. 

The main advantage of airborne remote sensing is its ability of covering large areas in short 

time within a reasonable budget. This point addresses the need to provide a scalable map 

production tool chain which Ziegler et al. [14] asked for. In the case of road networks, special 

advantages with respect to ground based systems are; (a) the independence concerning actual traffic 
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situations (e.g., traffic jams, acceleration/braking for following traffic participants), (b) the point of 

view where occlusions caused by ground-based obstacles are minimized, and (c) the broader field of 

view where also features not immediately in line-of-sight by vehicles can be detected. Aerial 

imagery has furthermore proven its ability in serving as a reliable source for retrieving road related 

features (e.g., lane markings, land marks) which can be used for the generation of HD Maps. 

We propose to generate at least static basic HD Maps using aerial imagery giving the absolute 

accuracy as spatial quality measure. A not yet outdated overview on how such quality measures are 

generally given for mapping products is given by Greenwalt [29]. These basic HD Maps with a given 

absolute accuracy can then act as reference point for further dynamic map contents, recorded by 

fleets of probes. The content of such basic HD Maps are road markings, which are already earlier 

identified as the smallest common denominator of the HD Maps used in the referenced works. They 

are easily to identify in aerial imagery given a suitable spatial resolution and are the main describing 

features of nowadays road networks, where most or even all further information of interest for AVs 

can be derived from a complete lane marking HD Map. 

Following the mentioned works, the approaches by Javanmardi et al. [30] and Huang et al. [31] 

applied adaptive threshold in aerial imagery. Javanmardi et al. [30] approach consists of several 

steps which include the processing of digital surface model (DSM), the removal of vehicles by 

multiple images and finally the utilization of an adaptive thresholding in order to extract lane 

marking. As it can be seen, lane markings are not extracted directly and the usage of third party data 

is necessary for the removal of non-lane marking objects.  

Tournaire and Paparoditis [32] proposed dashed-line and zebra crossing extraction by using the 

obtained information of the primitives extracted from the images together with a reconstruction 

process. They only addressed the rectangular shape lane markings and their geometric properties 

were studied to extract them. 

In order to grasp the hidden pattern in the features of the lane marking via an end-to-end 

feature learning approach such as deep learning ones, Azimi et al. [33] proposed Aerial LaneNet 

approach to extract lane marking by learning them. They introduced the first lane-marking 

segmentation dataset in the remote sensing area called AerialLanes18. They utilized a modified fully 

convolutional neural network and modified it to be able to extract tiny lane-markings from aerial 

images which are hard to detect for convolutional neural network given the fact that these methods 

suffer to detect small objects and the lane-markings appear to be very small. They enhanced the 

accuracy of their approach by using wavelet transforms combined with convolutional neural 

network and used a custom loss function to address the issue of unbalanced ratio between lane 

markings and non-lane markings in their dataset. They cropped high-resolution aerial images into 

patches to be fed into their methods and in the end; they are stitched together based on the specific 

policy. In our work, we did not compare our results with the results of this method. 

Lane marking extraction has also been studied in in-situ imagery. Lee et al. [34] proposed a 

convolutional neural network (CNN) based with multi-task purpose for joint lane-marking 

extraction and classification given the fact that their images contained different weather and 

lightning conditions. Gurghian et al. [35] proposed a CNN-based method for lane-marking 

extraction on right and left sides of a car. Even though, these methods achieve a very high accuracy, 

but their main focus is not on the small size of lane-markings. As mentioned, lane-markings have a 

tiny size in aerial imagery and should be given a special attention. 

1.6. Aim of This Paper 

This contribution tackles the overlapping topics of HD Maps, Computer Vision and Remote 

Sensing. The whole process from orthorectified image data towards the final HD Map is described, 

with a special focus on image segmentation and pattern recognition for identifying the relevant 

features describing the transportation system and its nearby environment. 

The possibility of using aerial and very high resolution satellite imagery as data source for 

generating HD Maps is discussed. Section two describes shortly the used data. A methodological 
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view by means of image classification is given in Section 3. The effectiveness of the proposed 

algorithm is tested, results are presented and discussed in Section 4. We conclude in Section 5. 

2. Materials/Image Data  

In contrast to imagery collected by vehicles, orthorectified aerial and satellite imagery comes 

with one or several descriptive parameters, easing the mapping process based on such images. The 

Ground Sampling Distance (GSD) gives a strict connection between pixel spacing and real world 

distances. Some camera systems offer the possibility of collecting imagery with a side-looking view, 

and the viewing angle is given. Another interesting parameter given for most aerial imagery 

products is the acquisition date/time. In combination with a surface model which is in most cases 

available for optical flight campaigns, shadow masks which are extremely useful for several 

subsequent image processing steps can be computed. 

Some countries distribute aerial imagery acquired by their governmental institutions under a 

free-and-open data policy. For instance, the United States Geological Survey (USGS) offers aerial 

imagery of the whole United States with GSD’s down to the decimeter level. European entities, for 

instance the German Federal Mapping Agencies, now tend to follow this trend: the federal states of 

Hamburg, Berlin and North-Rhine Westfalia run open-data web portals were orthophotos with a 

spatial resolution of 20 cm are available and distributed under a free-and-open data policy. We used 

digital orthophotos with a GSD of 20 cm provided by the Bavarian Agency for Digitisation, 

High-Speed Internet and Surveying. The data were derived from the Bavarian Flight Program with 

an image overlap of 80% along track and 50% cross track. Since 2017, the actualization was decreased 

from a 3-year- to a 2-year-cycle. In the current Bavarian Flight Program 2018, the southern part of 

Bavaria (appr. 40.000 sqkm) will be covered with a GSD of 20 cm. The contractors use common 

digital high resolution sensors e.g., UC Eagle or DMC II/III. The parameters of the spectral resolution 

are 5 channels (PAN, R, G, B, NIR) and a color bit depth of 16 bit.  

In 2018 the generation of orthophotos will change to true-orthophoto [36]. The basis for the 

generation of true-orthophotos is the orthogonal projection with a Digital Surface Model (DSM) 

from aerial imagery in a grid spacing of 20 cm. True-orthophotos avoid occluded areas or 

displacements from e.g., buildings—an important advantage in inner cities. 

The imagery comes in a tiled fashion where the tile size is 5000 × 5000 pixels. In the experiments 

seven tiles where used for training (train/validation equals 70%/30%) and three for testing. The total 

length of the motorway depicted in the imagery is greater than 10 km. As the two driving directions 

are divided into two roads, with both having a minimum of three lanes, the total lane is longer than 

120 km. The imagery depicts a part of the motorway A9 between Ingolstadt and Munich, which is 

publicly well known as Digital Motorway Test Bed, operated by the German Federal Ministry of 

Transport and Digital Infrastructure. 

3. Methodology 

Most algorithms dealing with image segmentation and pattern recognition for HD Map 

creation consist of two steps. On the first stage, a raw division between the road network and its 

surroundings is done. By doing so, the search space for the second stage is in most cases shrinked by 

several order of magnitudes. The second stage deals with the determination of lanes, road markings 

and other descriptive parameters of the transportation systems. 

3.1. Raw Image Segmentation 

Depending on the environment, the road determination can be undertaken using simple or 

sophisticated algorithms, with the latter integrating assumptions about the color and shape of roads. 

Recent contributions show promising results concerning the extraction of road topology from aerial 

imagery [24]. Given the impact and completeness of volunteered geographic open data projects such 

as OpenStreetMap (OSM), road network masks can also be generated by combining the 

georeferenced images with such data bases. The creation of buffer nets based on the OSM road 
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network where the buffer size depends on the road classes, the rasterization of the result and their 

combination with the aerial images leads in most cases to an accurate search space fitting. 

Figure 1 depicts such a buffer net, on which we apply an algorithm for the classification of lane 

markings, where the orientation angle � of the road is an obligatory input parameter. As roads are 

represented as polylines within the OSM data model, the approximated angle can be retrieved using 

Equation(1), where ��, �� and ��, �� are the points between which the angle is computed. 

� =  tan��
�� − ��

�� − ��

 (1) 

 

Figure 1. OpenStreetMap mask showing color-encoded road direction angle. 

3.2. Image Classification—Lane Marking Determination  

The determination of the lane model is achieved by classifying the lane markings. In our 

experiments, we used a Random Forest classifier which is well-known for being robust to overfitting 

due to its stochastic nature. All of the employed features highlight the unique radiometric and 

spatial appearance of lane markings. Five features are used, namely the three components of the 

RGB image converted to the HSV (Hue, Saturation, and Value) space, a special intensity-based 

image filter and a Gabor filter. 

The HSV representation is preferred, as unicolor pixels (low Saturation) with high intensity 

(high Value) can be identified faster than in raw RGB color space, where the dependency between 

the three channel values has to be taken into account. Figure 2 depicts the HSV transformation 

where Fig. 2 (a) is the RGB input image and Fig. 2 (b, c, d) are the HSV components. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 2. RGB to HSV components: (a) RGB, (b) Hue, (c) Saturation and (d) Value. 

The specific offset in color appearance between lane marking and road is emphasized by 

introducing a fourth feature, which is described in Equation(2). This is computed as the brightness at 

position �� minus the mean brightness �̅ in a circular surrounding (inner radius 0.5 m, outer radius 

2 m), divided by the standard deviation within the circular surrounding. Figure 3 shows the 

behavior of this filter. 

�(�, �)  =  
�� − �̅

�
�

���
∑ (�� − �̅)��

���

 
(2) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. (a) typical situation on motorway, (b) result of intensity-based filtering of (a), (c) subset of 

(a) with shadow, (d) result of intensity-based filtering of (c). 

The spatial characteristics of the road markings are given by a specific length, width and 

orientation. A directed texture descriptor such as the Gabor filter, where certain parameters such as 

the wavelength �, the direction � and the bandwidth must be set, can be used to highlight lane 

markings. The angle � is derived from the pre-introduced OSM mask, while the wavelength � 

relates to the specific width of lane markings in our images (here approximately four pixels). The 

result of the Gabor filtered image consists of a real and imaginary part of a complex number. In our 

approach, we neglect the imaginary part and use the real part, where the general formulation is 

given in Equations(3)–(5). Figure 4 visualizes the Gabor filtering. 

�(�, �, �, �, �, �, �)  =  exp(−
�′� + ���′�

2��
) cos(2�

��

�
+ �) (3) 

where 

�′ =  � cos(�) + � sin(�) (4) 
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�� =  −� sin(�) + � cos(�) (5) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. (a) RGB image showing motorway, (b) Result of Gabor Filtering of pre-masked aerial 

imagery, (c) subset of (a), (d) Result of Gabor Filtering of (c). 

Based on this features, a random forest classifier was trained and applied. During the training 

phase, experiments were carried out for hyper parameter tuning. The classifier consists of 300 trees 

having a maximum tree depth of 13 and minimum 700 samples per leaf. The used image patch size 

per sample is 7 × 7 pixels. As the ratio True Positives to True Negatives is quite unbalanced (most of 

the imagery is background), we used a synthetic ratio of 1:5 during the training for ensuring the 

classifier to get a good understanding of how a lane marking should look like. 

4. Results and Discussion 

4.1. Results 

Three images were used for evaluation of the trained classifier. As figures of merit we report 

Accuracy (Equation(5)), Sensitivity (Equation(6)) and Intersection over Union (IoU, Equation(7)). All 

of the three are ratios considering two or more of the following values: TruePositives, True 

Negatives, False Positives, and False Negatives. Due to the unbalanced nature of the problem 

(almost 100% true negatives), we consider accuracy as an inappropriate measure, but include it for 

completeness. Table 1 gives the metrics on each of the three test images and the ratio for the three 

test images. 

�������� =  
�� + ��

�� + �� + �� + ��
 (5) 

����������� =  
��

�
 (6) 

��� =  
��

�� + �� + ��
 (7) 

Table 1. Classification results for three test images. 

Scene Accuracy Sensitivity IoU 

1 0.99 0.54 0.5 

2 0.99 0.65 0.6 

3 0.99 0.62 0.59 
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Mean 0.99 0.6 0.56 

4.2. Discussion 

Several aspects can lead to false predictions. One of the more dominant error sources is 

represented by man-made features sharing similar colors and shapes with lane markings. Figure 5 

gives an example about such a situation. Figure 5a depicts the used Ground Truth in cyan, whereas 

in 5b the prediction in magenta is shown. Figure 5c gives the RGB input image, while Figure 5d 

represents the Ground Truth (cyan) and prediction (magenta) overlaid on the grayscale version of 

the input image. Between the two inner guardrails a long solid line is predicted, which is obviously 

wrong. The two roads are divided by concrete barriers which look like bright lines (almost white) in 

the imagery (ref. Figure 5c); however, these are no lane markings, and therefore this mis-prediction 

lowers the quality of the overall results. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. (a) Ground Truth, (b) Prediction, (c) Image, (d) Overlay of Ground Truth and Prediction. 

Figure 6 gives a closer look at another error source. Due to the harsh environment situation on 

motorways, the colors and shapes of lane markings may differ. Furthermore, the concrete itself can 

exhibit several disturbing features, such as small cracks, potholes or simply unbalanced stress on the 

different lanes, which make spatially limited reparations necessary. Figure 6 illustrates such a 

situation, where 6a is the RGB input image, 6b is showing the Ground Truth in cyan and 6c is 

showing an overlay of Ground Truth (cyan) and prediction (magenta) on a grayscale version of the 

image. We observe that the classifier seems to underpredict the lane markings in situations where 

the marking color is washed out. The two directions of the road can easily be distinguished by 

defining them as the bright one (lower one) and the dark one (upper one). In the second case, we 

observe that the road surface already shows brighter areas bordering the single lanes, even if there is 

no road marking. This is caused by heavy usage of the road, where the vehicles weight tends to 

deform the road surface, while areas which are probably characterized by less traffic appear 

brighter. 
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(a) 

 
(b) 

 
(c) 

Figure 6. (a) Image, (b) Ground Truth, (c) Overlay Ground Truth and Prediction. 

In previous works, shadows and changing illumination conditions have been identified as a 

major error source. The employed algorithm is quite robust against such influences, due to the usage 

of Gabor features. Figure 3 gives a good example about the strong influence of shadows on 

intensity-based features. Figure 3c, d highlight how shadows destroy the relevant information as the 

foreground/background intensity ratio decreases. Figure 4c, d shows the reliability of Gabor features, 

which have a beneficial influence on the overall classification results. 

In our experiments, occlusions by cars had no negative influence on the overall results as all 

occluded lane markings were not part of the Ground Truth. However, having the goal of generating 

country-scale HD maps in mind, a preprocessing of the imagery would be necessary. As the images 

overlap, being the vehicles moving objects, a median filtering would probably be enough to remove 

most cars from the input orthophoto mosaic.  

Our experiments focused on motorways. The presented algorithm would deliver comparable 

results in urban situations, as shape and color of lane markings would just change marginally. In 

urban environments the aforementioned error sources, namely shadows and occlusions, will have a 

much higher impact as a higher number of man-made objects close to the roads and a significantly 

higher traffic participant intensity are expected. 
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5. Conclusions 

In this paper we analyzed the possibility of creating HD Maps for autonomous driving using 

aerial imagery. Using a current test site in Germany, we derived a HD Map using a novel image 

segmentation algorithm, which combines OSM data and aerial imagery from the Bavarian Agency 

for Digitisation, High-Speed Internet and Surveying. The quality metrics prove that the proposed 

algorithm is able to produce reliably and efficiently HD Maps for large areas.  

The used imagery is available on a country scale (for all federal states of Germany) and it is 

frequently updated, therefore the proposed algorithm could be used to produce a base map for all 

motorways in Germany. Several other European countries (e.g., Austria, France) run comparable 

programs with slightly differing spatial and temporal resolutions: however, by combining existing 

image databases, it is possible to create a VHR orthophoto mosaic at a continental scale. The used 

OSM data for masking and derivation of the road orientation angles could be replaced by more 

reliable data sources, possibly provided by official national mapping agencies.  

The usage of such a base map with its given high geometric stability may be useful for several 

purposes, for instance: (a) to create an expectation horizon for classifying the objects within the 

neighborhood of the car, (b) to validate the cars observations and the created live map, and (c) to 

raise the absolute accuracy of the position estimation. In the future an in-depth analysis has to be 

done on the possibility of merging aerial with probe-based imagery. 

Nowadays car-makers ask for lightweight mapping formats such as OpenDRIVE or Navigation 

Data Standard (NDS). Due to their shape, size and orientation, the raw binary lane markings can be 

translated towards an object-specific description. The goal is to achieve a vectorized description of 

the transportation network on a lane level, which is georeferenced and includes at least a basic 

topology. The binary lane marking classification could serve as a starting point for the creation of 

more sophisticated navigation maps. 

The validation of existing maps by means of geometry is already an use-case [37] and should be 

studied in depth in the future. The development of a reliable validation procedure of maps based on 

aerial imagery may be of interest for a broad range of stakeholders within the domain of AD. The 

German Aerospace Center recently released a new dataset in order to stimulate new contributions 

and out-of-the-box solutions for the automotive industry [38]. 
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