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Abstract: The problem of generating periodic solutions for a fully actuated robot is considered
in this work. The result is achieved by extending the concept of limit cycle control via
energy regulation, in order to guarantee passivity of the closed-loop system. Such a feature
is particularly relevant in case of physical interaction with the environment, since a non-passive
system could cause problems in terms of stability, robustness and safety. As energy-based limit
cycle control can be used also for regulation control, the paper extends as well recent results in
passivation of projection-based null space compliance control to the case of adjustable maximum

allowed activity in the system.
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1. INTRODUCTION

Several challenging dynamic tasks that robots are required
to solve nowadays can be described as periodic tasks, e.g.
running, walking, object manipulation and crank turning
in McGeer (1990); Geyer et al. (2006); Garofalo et al.
(2012); Petric et al. (2014). This is often the case whenever
it is more important to stay on a prescribed orbit in
the state space, rather than following the exact position
in time along the desired curve. For these applications
tracking a trajectory might not be the best solution, as
already addressed in Westervelt et al. (2007). The need
to control the energy for periodic locomotion shown in
Garofalo et al. (2012), has inspired Garofalo et al. (2013);
Garofalo and Ott (2016, 2017) to propose many different
feedback control laws in order to produce asymptotically
stable closed orbits both for rigidly and elastically ac-
tuated robots. Nevertheless, these control laws do not
guaratuee the passivity of the system with respect to the
external forces and the collocated velocities. This is a
key point in view of recent findings in Stramigioli (2015),
formally proving that passivity is a necessary requirment
to ensure stable interaction with any passive environment.
In pursuing an era in which robots physically interact with
their environment and with humans, such a requirement
becomes of paramount importance. Since Garofalo and
Ott (2019) applies the energy-based limit cycle control
for locomotion (interaction between the robot and the
floor) and Garofalo and Ott (2016) uses it for human-robot
interaction, in this work the necessary modification for the
passivation of the controller is considered.

Related works are Li and Horowitz (2001); Duindam
and Stramigioli (2003); Taniguchi and Fujimoto (2009);
Canudas-de-Wit et al. (2002). Compared to Canudas-de-
Wit et al. (2002), in the energy-based limit cycle control
the solution of the problem is based on the nullspace
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Fig. 1. Conceptual illustration of the main idea of the
energy-based limit cycle controllers. The limit cycle
L4 is generated regulating an energy function, after
that the system has been forced to evolve on a
submanifold A of the state space.

decomposition introduced in Park et al. (1999). In this
way, the controller takes advantage of the dynamic prop-
erties of the system and does not completely alter its
original dynamics through feedback linearization. While
Li and Horowitz (2001); Duindam and Stramigioli (2003);
Taniguchi and Fujimoto (2009) force the system to follow
a close integral curve of a vector field via passive control
actions, here the limit cycle in the state space is obtained
by regulating an energy function on a submanifold of the
configuration space, as it is conceptually sketched in Fig. 1.
Additionally, relating the input to the energy in the system
allowed Garofalo and Ott (2017) to extend the method
to elastic actuators. This energy function consists of the
physical kinetic energy and a potential energy. The latter
represents an additional design element in the controller
for rigid actuation, while it is the physical potential energy
for compliant actuation; see Garofalo and Ott (2017).



As energy-base limit cycle control is a generalization of
regulation control (because setting the desired energy to
zero makes the limit cycle collapse into an equilibrium
point), the paper extends as well recent results in pas-
sivation of projection-based nullspace compliance control
found in Dietrich et al. (2016). Switching from a positive
desired energy to zero desired energy, the controller can
be used for limit cycle control or compliance control.

The contributions of the paper are summarized in the
following. Firstly, the passivation of projection-based null
space compliance control is reformulated and additional
modifications are made to guarantee the finite-time con-
vergence of the auxiliary variables and a better numerical
conditioning of the tank dynamics, guaranteeing that no
energy in the tank remains unused. Secondly, the max-
imum level of activity allowed in the system is made
adjustable, by adding the equivalent of a release valve
to the energy tank. Finally, the results are extended for
limit cycle control, providing a passive method to produce
periodic behaviors in a robotic system.

The paper is organized as follows. Section 2 presents
notation and model. In Section 3, the passivation of
projection-based null space compliace control is reviewed
and then modified in Section 4. Section 5 introduces the
passive energy-based control for limit cycle and compliance
control. Section 6 collects simulations and experimental
results. Finally, Section 7 summarizes the work.

2. NOTATION AND MODEL

The considered robotic systems are modeled by the non-
linear differential equations:

M(q)§+C(q.4)g+9(q) =T+ e, (1)
where g,¢ € R"™ (n is the number of joints) are the
link positions and velocities, which constitute together the
state of the robot. It is used M € R™*"™ to denote the
symmetric and positive definite inertia matrix, C € R"*"
a Coriolis matrix satisfying M = C + C7 and g € R”
the gravity torque vector. Altogether they will be referred
to as dynamic matrices. The torques 7 € R™ produced by
the motors are an input to the system, together with the
external torques 7. € R™.

Finally, the notation |z]? = |z|Psgn(z) is used for a
variable z € R™ and a scalar p € R, where the operators
have to be understood as acting on each components of z.

2.1 Coordinate transformation

The main task that the robot has to execute is given by
a function = x(q) and it provides the configuration in
which the robot will produce the periodic motion when
the limit cycle control is used. Given m < n, the Jacobian
matrix J(q) € R™*" of the mapping © : R* — R™
is assumed to have full rank. This allows to rewrite the
dynamics of the system with a new set of coordinates, as in
Park et al. (1999); Ott et al. (2008). First, a null space base
matrix Z(g) € R™~")*" is computed * , which allows to
obtain the directions orthogonal to the submanifold, then
Z(q) is used to compute a dynamically consistent? null

I Te. it fulfills the condition J(q)ZT (q) = 0.
2 Le. it fulfills the condition J(q)M ~!(q)NT(q) = 0.

space map N(q) € R~ which will be part of the
extended Jacobian matrix Jn(g) € R™*", such that

{Zj =Jn(9)d = L{T((‘ZI))] g, (2)
where N(q) = (Z(q)M(9)Z"(q)) Z(q)M(q) and v

are additional null space velocities, i.e. describing the
motion of the robot that does not interfere with the main
task. One can show that by this choice the extended
Jacobian J n(q) is non singular and the inverse is

Iy'(@) = [T (q) Z"(q)] . (3)

where J 7 (q) denotes the dynamically consistent weighted
pseudo inverse defined as

-1
T (q) = M~ (@) (@) (T@M (@I (@) . (4)
The joint velocity can thus be computed from the Carte-
sian velocity and the null space velocity via
G=J""(q)E+Z" (g . (5)

From (2) and (5) it is straightforward to rewrite (1) in the
extended velocity coordinates as

A(q) m +T(q.q) [Z,"] =Jy' (q) (T +Te— g(q)) , (6)
with the matrices® A(q) and I'(g,q) given in Ott et al.

(2008) and having the notably structure

A = )

As above, for ease of presentation, the dependencies will
be dropped in the remainder of the paper whenever this
will not cause any ambiguity.

. Fw ]-‘a:n
I'(q,q) = [_FT T }
rn

3. PROJECTION-BASED NULL SPACE
COMPLIANCE CONTROL

In this section, first it is reviewed the original projection-
based nullspace compliance control of Ott et al. (2008) and
then the recent modification from Dietrich et al. (2016),
which yields a passive closed-loop system. The controllers
are reformulated and modified to facilitate the extension
to the energy-based limit cycle control in Section 5.

3.1 Non-passive compliance control

The goal of the controller is to guarantee the fulfillment of
the main task, i.e. x, & — 0 ast — oo, and the subordinate
task of minimizing a potential energy function U(q) within
the nullspace of the main task. The classic controller in Ott
et al. (2008) can be expressed as

oo (5] [5) o

which consists of gravity compensation, a power-conserving
compensation of the velocity-dependent couplings between
the two tasks due to the Coriolis matrix and a spring-
damper-like action for the execution of the tasks. The
matrices K,, D, € R™™ and D, € RO—m)x(n-m)
are positive definite. If U(q) is chosen such that it has a

3 Notice that using a dynamically consistent null space map the
matrix A(q) is block diagonal.



constrained global minimum at g = g, on the submanifold
defined by z(q) = 0, i.e.
Ulg) 20, U(q) =0 < g=4q,, Yq:x(q)=0 (3a)
x(qy) =0, (8b)
then the asymptotic stability of the equilibrium point
(g, %,v) = (qy,0,0) is shown with the positive semi-
definite Lyapunov functions

V, = %(:&TAZ:;C + wTKwa:) (9)

1
V= 50" Ao+ Ulg) (10)

via a conditional stability analysis. Nevertheless, choosing
S1 =V, +V, as candidate storage function does not allow
to show the passivity of the system with respect to the
input 7. and output . That is because

Sy =-a&'Dyi —v'Dyv+ &t JTIVU + ¢T .
?5) Sl S qTTe )
since the third term in S; is not always non-positive.
In Dietrich et al. (2016), a controller that leads to a

passive closed-loop system has been proposed, which will
be adapted and then modified in the following.

3.2 Passive compliance control

To obtain a passive system, the new storage function
1
$1=3 (:i:TAxa': toT Ao+ T K,z + 52) L UG (11)

is considered, in which s € R is the level in the energy tank
and q is an auxiliary configuration variable. The dynamics
of the newly introduced quantities are given by

Zv else
and
1
P (d:TDxa’: +o"Dyv+ TS) (13)
s
T
. T 74T -
o [(q q) K,—-z'J ]VU(q) s> € (14)

0 else ,

where € is a small positive value and K, € R™" is
a positive definite matrix. The physical meaning is the
following. The level in the tank keeps track of the energy
dissipated by the system and the possible activity due to
the coupling between the potential U and the main task.
Activity in the system is allowed as long as the system
has dissipated at least as much energy in the meantime,
i.e. s > €. A higher initial level of the tank can be chosen
to further increase the admissible level of activity in the
system. When the tank gets empty, i.e. s < €, g starts
deviating from g, meaning that the null space control
performance is sacrificed in order to maintain passivity
of the system. This is due to the fact that the modified
control replaces VU(q) in (7) with VU(§). Also, it is
not difficult to show that with these choices the system
is passive with respect to the external forces and the
collocated velocities, since Sz = ¢” Te.

4. AN IMPROVED PASSIVE COMPLIANCE
CONTROL

Consider the following new candidate storage function

Ss = (:)’:TAw:k + oA v+ :ETKJC:B) +s+U@§) ,

(15)

DN | =

in which, with a slight abuse of notation and remembering
the notation |z]? in Section 2, the new dynamics of the
controller states are

and
=& Dy +v  Dyv+ 75 + Te (17)
_ [(K,,Lq — q]%)T - :bTJ+T} VU(§) s>0
0 else
(18)
. {(;KSS;g ZI;? AN S3>0 (19)

where Ky > 0, S3 = S3 — 54 and constant Sy > 0. As
before, assuming to have enough energy in the tank (i.e.
s > 0), ¢ will converge to g, but here the convergence
happens in finite time, see Levant (1993), and not just
exponentially. Additionally, the dynamics of the tank is
not anymore numerically ill conditioned when the level
approaches zero and (unlike in Section 3.2) no energy in
the tank remains unused, i.e. € = 0. The role of S, is to
limit S5 (and therefore the level in the tank) after physical
interaction between the system and the environment. If
not specifically taken into account, this value could get
incremented at the end of an interaction and potentially
grow unbounded, with possible undesired effects, since the
level in the tank represents an upper bound for the allowed
level of activity in the system. In Section 6, it is presented
an example illustrating this phenomenon.

Differentiating S3 with respect to time and using the
control (7) in which VU(§) replaces VU(q), one gets

S3 - SS =T+ q.TTe S qTTe . (20)
Taking into account the dynamics (17), s is guaranteed
to be always nonnegative, i.e s > 0. As a consequence,
S3 will be also always nonnegative and, given (20), it is a
storage function with the closed-loop system being passive
with respect to the input 7. and output ¢. From (20) and
the expression of 7, it is clear that S3 can increase only
due to T.. For 7. = 0, S3 either decreases towards Sy
(when S3 > Sy) or it stays constant (when S3 < Sy).
Therefore, by adding 7. in (17), the tank releases energy
when the level is too high (release valve). It follows that
a meaningful choice for Sy is 0 < Sy < Ss(t), where
S3(to) is the initial value of the storage function. For values
outside this interval, S5 will reach the closest bound, i.e.
0 for Sy < 0 and S3(tg) for Sy > 0. A choice which is
always valid is for example to set S; as the initial level in
the tank, i.e. S¢ = s(to). In view of the energy flows within
the system depicted in Fig. 2, it follows that as ¢ — co then
q — gy, x, &, v = 0, and therefore s — s, < Sy, with
Seo < 84 if and only if energy has been removed during an
interaction with the environment.
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Fig. 2. Unidirectional energy flows within the closed-loop
system. The dotted lines represent the energy at
t = ty, the continuous one the levels at t; > tg.

5. PASSIVE ENERGY-BASED CONTROL

In this section, the previous results will be adapted to
obtain an energy-based limit cycle controller. The first step
in an energy-based control is the definition of an energy
function. In view of (8) and the fact that g, is an unique
constrained minimum, the function

H = SA0” +U(g) ~ Ulay) (21)

is an energy function conditionally to the execution of
the main task. Implicitly it has been assumed v € R, i.e.
m = n— 1. Garofalo et al. (2013); Garofalo and Ott (2016,
2017) show that this is a requirement when the controller
is used for periodic motions, but it is not necessary when
the energy-based control is used for compliance control.
Defining H = H — Hy, with constant Hy > 0, the set

ta={(a.q) | T =0, == =0}

defines a closed orbit in the state space for Hy; > 0 and
a point for Hy; = 0. As rule of thumb, one can choose U
to influence the shape of the orbit and Hy for the size. In
Garofalo et al. (2013), a controller is derived that satisfies
the main task and renders L4 asymptotically stable for
the whole system; the proof relying on a conditional
stability analysis. For Hy = 0, the limit cycle collapses
into an equilibrium point and the controller can be used
for compliance control. Nevertheless, as in Section 3.1, the
coupling between the main task and the energy regulation
task did not allow to find a storage function to show the
passivity of the closed-loop system w.r.t the input 7. and
output g, or (equivalently) w.r.t the port

f T . 7, _T
<[fz sl > with f: =Jy Te, (22)
ie. f, and f,, are the components of the external torque
Te in the main and secondary task, respectively. Since

for the energy control H is relevant, the aim is to show
the passivity using the output® Hv rather than v. Also,
while the 1-DoF case has this passivity port, such property
could not be shown in Garofalo et al. (2013) for the n-DoF
case. Therefore, in the following a solution to overcome this
problem is proposed.

Consider the control law with tank dynamics

4 This implies some robustness to f, after convergence, since fy,
does not change the storage function for H = 0.

-D, T T K, x
o T xT Tn_ _ T

reoe i ([ ] 1] - [%eta)) o0
$ =&  Dyd + dyv?H2 + Horg + 7o, (24)
in which § is obtained through (16) and 75, 7. are given
in (18)-(19), respectively. The key point in (23) is that the
velocity feedback in the null space is proportional to the
energy error. Therefore, energy can be both injected and
removed from the system, guaranteeing the attainment of
the desired value. Additionally, U(q) replaces U(q) as in

Section 4. Defining, S4 = Sy — Sg, Sq > 0 and

Sy = %(:&TA@ 2T Kya + Fﬂ) s, (25)

one obtains after lengthy, but simple derivations
HIZ?Z*KHU2I~{*TS+Ufn, (26)
So=Si=r + & f, + Hofp <@"f, + Hofo . (27)

Therefore, Sy is a storage function with the closed-loop
. . . . T T
system being passive with respect to the input [ I fn]
~ T . . .
and output [2” Hv] . The same considerations as in
Section 4 hold here concerning the role of S; and 7.

The previous results are summarized in the following

Proposition 1. Given the system (1) and the main task
x = z(q), let K, K, D, be positive definite matrices,
K, also diagonal and K, d,, > 0. Additionally, consider
the dynamics (16) and (24) with the energy functions (21)
and (25). Then the control input (23) leads to

A+ (rx n Dx)a': Y K,z=f,

i (28)

A+ (Do duly )0 + ZVU(@) = f |
which is passive with input [ fz fn]T, output [:&T H U]T
and storage function Sy.

6. VALIDATION

The controller proposed in Section 5 is evaluated first in
simulation and then in an experiment. The simulation is
used to compare it with the control law in Section 3.2.
Therefore, the desired energy value is set to H; = 0 in
order to solve a regulation task. On the other hand, in
the experiment this value is set to Hy = 2J to show the
capability of the controller to generate a periodic motion.

6.1 Simulations

The planar robot in Fig. 3 is considered in the simulation.
The specifications of the robot, the controller parameters
and the definition of the test case are taken from Dietrich
et al. (2016). The main task requires the robot to reach
a desired position of the end-effector, while the secondary
task specifies the position for the first joint and the end-
effector orientation. The desired values are chosen in such
a way that the secondary task is partially in conflict with
the main one. Additionally, at ¢ = 1s a sinusoidal external
force at the end-effector is applied along the horizontal
position. The duration of the signal is 1s and it has a
frequency of 3 Hz and amplitude of 60 N.

Fig. 4 collects the results of three simulations. In two
of them, it was used the controller of Section 3.2. As in



Fig. 3. Planar robot with 4 revolute joints used in the
simulation in its initial configuration. Each link has a
point mass of 1kg, placed in the middle of the link of
length 0.5 m.

30

Task

Nullspace

Tank

Storage

—— w/o refilling === w/ refilling ==- w/ energy

Fig. 4. Energy values obtained during three different
simulations. In the shaded area, an external force is
acting at the end-effector.

Dietrich et al. (2016), once all the dissipated energy is
redirected towards the tank, while the tank is not refilled
at all in the other. The controller (23) is used in the
last simulation. The main task is executed perfectly in all
cases, while the error of the secondary task cannot go to
zero due to the interference with the main one. While the
performance of the robot are similar, a different state is
reached for the tank, which can effect the future evolution
of the system. Without refilling the tank gets empty. In
contrast, the level grows due to the external force using
the refilling. Finally, thanks to the release valve the level
in the tank goes back to its initial value.

6.2 Ezrperiment

The control law (23) is evaluated in an experiment with the
humanoid robot TORO, which is described in Englsberger
et al. (2014).

Desired configuration and constraint function In this ex-
ample, the constraint submanifold is given directly in joint

ny)
o
e

e e i e AR R e

Fig. 5. TORO in the handshake configuration.

space. TORO is using its legs to maintain balance, while
the 12 joints of the arms are forced on a submanifold
defined by the constraint functions

where g, is used to couple the elbow joint of the right
arm to the first joint of the shoulder of the same arm, i.e.
de, = 5q1 while the rest of the entries are zero. Finally g, is
chosen to be the desired configuration shown in Fig. 5. It is
worth to notice that choosing ¢4, = 0, then the condition
xz(q,) = 0 is satisfied.

Potential function A simple choice for the virtual poten-
tial is given by

1
Ula) = 5knllg —aal® . (30)

where k,, = 40Nm/rad. U(q) so defined is clearly positive
definite for (g) = 0 and has its minimum at q,.

Results Given the definition of x(q), the result will be a
handshaking motion in which the first shoulder joint works
as limit cycle generator with the elbow joint coupled to it.
The remaining ones will keep the desired position. Fig. 6
shows the measured H, for H; going from 0 to 2J and
back. This initiates and stops the handshaking motion.

Discusston In Fig. 6 the energy oscillates around its
desired value, although convergence was theoretically ex-
pected. Measurement noise, flexibility of the structure, the
movement of the lower body which is not fixed to the
floor and model uncertainties are a possible cause for this
phenomenon. The mismatch between the real model and
the one used by the controller and the limitations of the
balancing controller are supposed to be the main reason
for the oscillations in the recorded signal. The behavior
can be reproduced in simulation when using an incorrect
model for the controller and disappears when the model is
perfectly known. The experiment gives the opportunity to
test the robustness of the proposed approach. Although
it was not formally shown, the behavior results to be
periodic even if the energy error does not converge exactly
to zero, showing that the effect of the model uncertainty
is a distortion of the expected attractive closed orbit.
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Fig. 6. Results of the experiment with TORO. Left: energy plot. Right: phase plot for the elbow joint.

7. CONCLUSION

The paper walks the reader through the derivation of a
novel control law for passivation of energy-based limit
cycle control. The method is similar to the passive
projection-based null space compliance control, but it ex-
tends it in different ways. A release valve is added to
the energy tank to limit the energy that can accumulate
during interaction, as well as modification that improve
the convergence rate and numerical conditioning. Finally,
an important extension consist in the ability to use the
controller for generating periodic behaviors, i.e. limit cy-
cles. These techniques have been used recently for physical
human-robot interaction and locomotion tasks, although
passivity with respect to the external forces and collocated
velocities had not been taken into account. Therefore,
the proposed method represents a key extension for all
these applications in which the passivity of the system
is a paramount requirement to guarantee the stability,
robustness and safety during the interactions.
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