
D
ra

ft

Globally Consistent Dense Real-Time 3D Reconstruction
from RGBD Data

Rafael Weilharter1,2, Fabian Schenk1, Friedrich Fraundorfer1

Abstract— In this work, we present a dense 3D reconstruction
framework for RGBD data that can handle loop closure and
pose updates online. Handling updates online is essential to get
a globally consistent 3D reconstruction in real-time. We also
introduce fused depth maps for each keyframe that contain
the fused depths of all associated frames to greatly increase
the speed for model updates. Furthermore, we show how we
can use integration and de-integration in a volumetric fusion
system to adjust our model to online updated camera poses.
We build our system on top of the InfiniTAM framework to
generate a model from the semi-dense, keyframe based ORB
SLAM2. We extensively evaluate our system on real world and
synthetic generated RGBD data regarding tracking accuracy
and surface reconstruction.

I. INTRODUCTION
In recent years, the ubiquity of inexpensive RGBD cam-

eras, pioneered by the Microsoft Kinect, has led to a series
of applications for 3D scene reconstruction in areas such
as augmented/virtual reality, robotics, gaming and general
3D model estimation. Modern 3D reconstruction systems
have to provide a globally consistent model on large scale in
real-time. This does not only require a robust camera pose
estimation algorithm but also on-the-fly model updates that
incorporate loop closures and pose refinements. The robust
camera motion estimation process is the main difference
between current systems and divides them roughly into three
categories.: (i) Iterative closest point (ICP) methods aim
to align 3D points but require sufficient 3D structure and
a correspondence matching step [7], [10]. Instead of point
clouds, (ii) direct methods estimate motion by processing
image information directly. Dense [8] and semi-dense [3],
[5] variants based on the photo-consistency assumption exist.
This makes these approaches especially susceptible to illumi-
nation changes and direct methods are typically restricted to
small inter-frame motion. (iii) Feature-based methods extract
features, match correspondences and estimate motion by
minimizing the reprojection error [4], [9]. The extracted
features are more robust to illumination changes than the
direct methods based on the photo-consistency assumption
and are also suitable for larger inter-frame motions.

Regardless of the applied method, many systems rely
solely on frame-to-model tracking to estimate the camera

*This work was financed by the KIRAS program (no 850183, CSIS-
martScan3D) under supervision of the Austrian Research Promotion Agency
(FFG).

1Institute of Computer Graphics and Vision (ICG), Graz University of
Technology, Styria, Austria

2Ludwig Boltzmann Institute for Clinical Forensic Imaging (LBI CFI),
Graz, Styria, Austria
rafael.weilharter@student.tugraz.at
{schenk, fraundorfer}@icg.tugraz.at

movement in real-time and sequentially build a dense 3D
model [10], [7]. While such systems are real-time capable
they accumulate significant drift over time and usually cannot
correct this drift by revisiting the same place (see Fig. 1). To
tackle this problem, more advanced Simultaneous Localiza-
tion and Mapping (SLAM) systems perform loop closure and
pose graph optimization to reduce the drift. However, such an
approach is computationally very expensive and often only
acquires a semi-dense [5] or sparse map [9]. If in addition a
dense 3D model is desired, the SLAM system usually relies
on expensive hardware, e.g. the Bundle Fusion system [3]
only runs on a combination of an NVIDIA GeForce GTX
Titan X and a GTX Titan Black.

Fig. 1: Reconstructed dense 3D models: No update vs our
system with keyframe based depth map fusion and global
model update. We can see the effects especially in the upper
left corners where a loop closure occurs.

In this paper, we propose a real-time dense 3D recon-
struction method that successfully combines the state-of-
the-art ORB SLAM2 system [9] with the dense volumetric
fusion framework InfiniTAM [7]. To validate our method, we
compare the trajectory estimations and surface reconstruction
accuracy of several methods on the standard TUM RGBD
benchmark dataset and the synthetic ICL NUIM dataset. The

Proceedings of the OAGM Workshop 2018 DOI: 10.3217/978-3-85125-603-1-25

120

D
ra

ft

key contributions presented in this work can be summarized
as:
• Implementation of a de-integration method which al-

lows to refine and alter the 3D model online when large
changes in the estimated trajectory occur, e.g. in the case
of a loop closure detection.

• A global model update which can delete and merge
keyframes in retrospect.

• A keyframe based depth fusion, where we fuse in-
formation of frames into their respective keyframes
instead of integrating them directly into the model.
This significantly speeds up the re-integration process
required for a global model update.

• An extensive evaluation of both, the trajectory error and
the surface reconstruction error on several benchmark
data sets

II. RELATED WORK

In the past decades, 3D reconstruction has been a very
active research field when we focus on work that utilizes
RGBD data. Kerl at al. [8] proposed a combination of
photometric and geometric error minimization in their vi-
sual SLAM system. To reduce the acquired drift, they use
keyframes: Every new frame is at first matched to the latest
keyframe and as long as there is not too much difference,
i.e. the camera has not moved to far, no drift is accumulated.
Furthermore, when revisiting a previously seen region old
keyframes can enforce additional constraints on the pose
graph, also known as loop closures. Although this system
is capable of real-time performance on a CPU, it can not do
so at a full resolution of 640×480.

ORB SLAM 2 is a state-of-the-art feature-based SLAM
system for monocular, stereo and RGBD cameras that runs
in real-time on a single CPU. It estimates the camera motion
by minimizing the reprojection error and implements loop
closure, relocalization, map reuse and bundle adjustment for
pose refinement. All these methods show promising results
regarding runtime and tracking accuracy, but either generate
no [8] or only a sparse global 3D model [9], [4].

One of the first systems to achieve a dense 3D recon-
struction in real-time, by exploiting the massively parallel
processors on the GPU, was the KinectFusion [10]. The
KinectFusion system estimates the current sensor pose with
an ICP algorithm and integrates the aquired data via trun-
cated signed distance function (TSDF). In order to achieve
real-time performance, the algorithms for both tracking and
mapping are fully parallelized. However, the KinectFusion
system, which spawned several re-implementations and fur-
ther works, lacks the scalability for larger scenes due to
memory issues (addressing and/or lack thereof).

In order to tackle the problem of a large memory footprint,
research on sparse volumetric representations [11], [12] has
sprouted. These works successfully use either octrees or hash
tables to refer to allocated memory blocks efficiently. One of
the works that is able to achieve a very high framerate while
reconstructing a dense 3D model is InfiniTAM [7]. It models
the 3D world as voxel blocks using a TSDF representation. In

order to reduce memory usage, only the scene parts inside
the truncation band, i.e. the voxels close to a surface, are
usually represented densely in an 8× 8× 8 block. A hash
table manages these voxel blocks to guarantee a constant
lookup time (in case of no collisions).

ElasticFusion [14] reconstructs the 3D world as a number
of circular surfels that correspond to the surfaces in the
real world. Managing and processing these surfels requires a
strong graphics card and is not capable of large-scale recon-
structions. Dai et al. proposed BundleFusion [3] that models
the world with a voxel block hashing framework [11]. They
always optimize over all previously seen frames, generating
a globally consistent model. To handle this large amount of
data, they utilize two strong graphics cards.

In contrast to [14], [3], we present a framework that
generates a globally consistent, dense model in real-time on
a consumer graphics card. While pose estimation runs on
CPU, the 3D model is generated and processed on the GPU.
Most volumetric fusion frameworks do not allow to correct
the model [7], [11], [10], e.g. after loop closure (see Fig. 1).
We propose several extensions to [7] that enable on-the-fly
corrections to generate a globally consistent model in real-
time.

III. GLOBALLY CONSISTENT DENSE 3D
RECONSTRUCTION

In this paper, we present a real-time 3D reconstruction
framework that works with RGBD data. We combine the
accurate trajectory estimation of ORB SLAM2 [9] with the
volumetric fusion implementation from InfiniTAM v2 [7].
We add novel techniques to InfiniTAM in order to support
global model updates that arise from e.g. loop closure. This
includes a de-integration method, a global model update step
and fusion into the depth maps of keyframes to enable fast
real-time processing.

A. Camera Model

We receive an RGBD frame at each time step t that
consists of an RGB image It and a depth map Dt . We expect
It and Dt to be aligned and synchronized, such that at a
certain pixel position ~x = (x,y)> the RGB values are given
as It(~x) and the corresponding depth as Dt(~x). Then the
homogeneous 3D point ~X = (X ,Y,Z,1)> in the respective
camera coordinate system can be computed from ~x and the
corresponding depth Z = Dt(~x) with the inverse projection
π−1:

π−1(~x) = ~X =
(x− cx

fx
Z,

y− cy

fy
Z,Z,1

)>
, (1)

where fx, fy are the focal lengths and cx, cy are the principal
points. Similarly, the pixel position ~x can be recovered from
~X as:

π(~X) =~x =
(X · fx

Z
+ cx,

Y · fy

Z
+ cy

)>
. (2)

B. Rigid Body Motion and Warping Function

We restrict the motion between frames to a rigid body
motion g ∈ SE(3). A common representation for g is as

121

D
ra

ft
Fig. 2: Our system takes as input the estimated poses from ORB SLAM2 and the RGBD data from the sensor. If the current
frame is not a keyframe, we update the corresponding depth map. Otherwise we fuse its depth image with the pointcloud
and update the global model. In case that a keyframe has been deleted, we de-integrate it and fuse its information into the
next best (closest) keyframe. If not, we de-integrate the frame with its old pose and re-integrate it with its new pose.

transformation matrix T comprising a 3×3 rotation matrix
R ∈ SO(3) and a 3×1 translation vector t:

T4×4 =

[
R3×3 t3×1

0 1

]
. (3)

The transformation of a point ~X under motion g can be
written as:

g(~X) = ~X ′ = T4×4~X . (4)

The rigid motion g only has 6 degrees of freedom, thus
T with its 12 parameters is over-parametrized. We use a
minimal representation as twist coordinates ξ defined by the
Lie algebra se(3) associated with the group SE(3). From the
6-vector ξ the transformation matrix T can be recovered by
the matrix exponential T = exp(ξ).

We define the full warping function τ that re-projects
~x from frame j with depth D j(~x) to frame i under the
transformation matrix Ti j as:

~x′ = τ(ξi j,~x,D j(~x)) = π(Ti jπ−1(~x,D j(~x))). (5)

C. Combining ORB SLAM2 and InfiniTAM

Fig. 2 shows the interaction between ORB SLAM2 and
InfiniTAM. Note that our contributions are depicted in green.
We feed the RGBD data (either acquired live via sensor, or
from a dataset) into the ORB SLAM2 system and receive the
estimated poses for every frame. Then we update our depth
maps and adjust the global model if necessary before we
integrate the new information into the volumetric represen-
tation of InfiniTAM. We explain our depth map and global
model updates in detail in the following sections.

D. Model Updates by Re-Integration

We reconstruct our scene geometry by sequentially fusing
RGBD data into the TSDF representation. The TSDF is

defined as:

T (~V) = max

(
−1,min

(
1,

Dt(π(~V))−Z
µ

))
, (6)

where ~V = (X ,Y,Z)> is a voxel given by its center coordi-
nates, π(~V) computes the projection of the voxel onto the
depth image, while Dt(π(~V)) is the measured depth at the
calculated image location. Since π(~V) maps the voxel into
the camera frame, Z is the distance between the camera and
voxel along the optical axis. There are only values between
-1 and 1 allowed, corresponding to the distances −µ and µ
respectively (thus truncated). As a result, positive values are
assigned to voxels that reside in free space: The closer the
voxel is to the surface, the smaller its value. If the voxel lies
directly on the surface, its value is set to zero and behind
the surface, increasing negative values are assigned.

We adapt the strategy presented by Curless and Levoy [2]
and update the TSDF for every new observation i as:

Fi(~V) =
Wi−1(~V)Fi−1(~V)+wi(~V)T (~V)

Wi−1(~V)+wi(~V)
,

Wi(~V) =Wi−1(~V)+wi(~V) ,

(7)

where W0(~V) = 0 and the uncertainty weight wi(~V) is usually
set to 1, which results in an averaging of the measured TSDF
observations.

For a globally consistent reconstruction we need to be able
to alter our model with updated camera poses, e.g. when a
loop closure is detected. In order to do so, we need to delete
old information from the 3D model. We can de-integrate an
observation by reversing the operation of (7):

Fi(~V) =
Wi−1(~V)Fi−1(~V)−wi(~V)T (~V)

Wi−1(~V)−wi(~V)
,

Wi(~V) =Wi−1(~V)−wi(~V) .

(8)

122

D
ra

ft

The operations of integrating and de-integrating are sym-
metric, i.e. one inverts the other. Thus, an observation, if it
becomes invalid or updated, can be deleted by de-integrating
it from its original pose and re-integrating it with a new pose
if necessary.

E. Depth Map Fusion in Keyframes

The idea behind fusing the depth maps of frames into their
reference keyframe is to create a system that is able to adapt
to global changes within real-time. Without the depth map
fusion each frame would have to be re-integrated separately
when a model update is induced, while our technique re-
integrates only the fused depth maps of keyframes. Since on
average only every 10th frame is selected as keyframe, this
reduces the amount of operations by a factor of 10. ORB-
SLAM2 inserts a keyframe if all of the following conditions
are met: (i) more than 20 frames have passed sinice the last
global relocalization, (ii) more than 20 frames have passed
since the last keyframe insertion or local mapping is idle, (iii)
at least 50 keypoints are tracked in the current frame, (iv)
more than 10% of keypoints in the current frame are not seen
by its reference keyframe. Additionally (for RGBD data), a
keyframe is added whenever the number of close keypoints
drops below a certain threshold τt = 100 and the frame could
at least create τc = 70 new close keypoints. Fig. 2 depicts
our process flow: If a frame is not chosen as keyframe by
ORB SLAM2, we fuse its depth map Dc into the depth map
of its reference keyframe DKF (see Fig. 3). This update step
is closely related to the volumetric fusion integration step
presented in (7) :

DKF,i(~x′) =
Wi−1(~x′)DKF,i−1(~x′)+wi(~x)Z′

Wi−1(~x′)+wi
,

Wi(~x′) =Wi−1(~x′)+wi(~x) ,

(9)

where ~x′ = τ(ξi j,~x,D j(~x)) is the reprojected pixel position,
Z′ = [TKF,cπ−1(~x,Dc~x)]z is the z-coordinate of the trans-
formed point, Dc the depth map of the current frame, TKF,c
the transformation from current frame to keyframe and the
weight wi(~x) is set equal to 1, which leads to an averaging
of the depth values. Please note that we truncate ~x′ to
always work on integer pixel positions. The difference to
the volumetric fusion (7) step is that we update the depth
map of the keyframe DKF,i instead of the TSDF values in
the model.

In order to not lose any information, we store unfused
points in a pointcloud. The pointcloud is represented as
a vector, where each entry corresponds to a 3D point,
which is transformed into the keyframe coordinates but could
not be added to the depth map. Points are not fused into
the depth map and added to the pointcloud when either
of two conditions arise: (i) The point is transformed out
of boundaries variables, i.e. the x and/or y coordinate are
negative or larger than the image size or (ii) the depth
difference is too large, which can be described as:

∣∣∣∣∣
1

D(~x′)
− 1

Z′

∣∣∣∣∣< Θτ , (10)

where Θτ is a threshold. This is especially needed on edges
in the scene, where it might occur that a point far behind the
edge in the new frame would transform onto the edge in the
keyframe, e.g. due to rounding. We choose to not update
the RGB data which might yield better coloring results
but would also increase runtime. Furthermore, unlike depth
where invalid measurements can occur, color information is
available for every pixel and it is therefore sufficient to color
the whole 3D model by just using the RGB image of the
keyframe.

Since after every new frame the 3D world model is
updated, we need to de-integrated the depth map with the
reference keyframe first, then update it with the new depth
map of the frame and finally re-integrate it. On the other
side, if the current frame is a keyframe, we try to fuse the
pointclouds into the new keyframes depth map. In this case
every homogeneous 3D point ~̃X of the pointcloud is trans-
formed into the current keyframe by using the transformation
matrix Tcn (transforming a point of frame n into the current
frame c):

~̃X ′ = Tcn · ~̃X , Tcn = Tcw ·Twn , (11)

where Tcw is the transformation matrix from world coordi-
nates into the current keyframe, and Twn = T−1

nw the inverse
of the transformation matrix from world coordinates into the
keyframe n. We now apply the mapping π(X ′) (2) to get the
2D image coordinates of the current keyframe the 3D point
maps to. Finally we can again calculate the update step (9)
if the mapped point lies within the image boundaries and
satisfies (10). Every point we are able to map in this manner
is removed from its pointcloud and if the number of points
within a pointcloud falls below a certain threshold Θpc we
delete the whole pointcloud. After this process, we use the
depth map as a complemented and smoothed depth image
(see Fig. 3), which we integrate into the InfiniTAM model.

F. Global Model Update

The ORB SLAM2 system continuously refines the esti-
mated poses and whenever a new keyframe is selected, we
verify the integrated poses from the model with the updated
poses. If a significant change occurs, we update our 3D
model in real-time. We achieve this model update by de-
integrating the depth map with the old pose from the model
and re-integrating it with the new pose. In cases, where ORB
SLAM2 deletes a keyframe KFdelete, we search for the closest
keyframe KFclosest and de-integrate both from the 3D model.
Then we fuse KFdelete into KFclosest with (9) and re-integrate
KFclosest into the model.

G. Implementation

Since this process of constant de-integrating and re-
integrating can be computationally intensive, we parallelized
the update step via CUDA specific code. Note that in a few
cases we run into the problem of collision (two or more
points in the frame correspond to the same coordinates in the
keyframe). In this case, only 1 point will be integrated and
the other points are lost. However, this loss of information

123

D
ra

ft
Fig. 3: Our depth map update complements and smooths the depth map of the keyframe.

can be tolerated for the sake of speed (and not needing
any atomic operations). Furthermore, we introduce a ”fast
mode”, where frames will only be integrated into the model
if a new keyframe is processed, i.e. new frames will only
update the depth map of their keyframe but are not directly
integrated into the 3D model. A downside to this is that
visual feedback provided to the viewer is not immediate but
always one keyframe behind. In this manner our system is
able to process an average of 15-20 frames per second, where
the largest limiting factor is the tracking of ORB-SLAM2
running exclusively on the CPU.

IV. RESULTS AND DISCUSSION

To demonstrate our capabilities we test our system on
several real-world image sequences from the TUM RGBD
dataset [13] and on the synthetic ICL-NUIM dataset [6].
We evaluate standard InfiniTAM (ITM) [7], ICPCUDA [14],
DVO SLAM [8], RGBD SLAM [4] and our method based on
ORB SLAM 2 [9]. ICPCUDA is a very fast implementation
of ICP with online available code [1]. We run all systems in
their standard settings from using the code available online at
maximum resolution of 640×480. For RGBD SLAM, we set
the feature detector and descriptor type to ORB and extract a
maximum of 600 keypoints per frame. In ORB SLAM2, we
extract 1000 features per frame with a minimum of 7 per cell
and 8 scale pyramid levels. Finally, we run DVO SLAM with
its standard 3 scale pyramid levels. We test all the systems
on an Intel Core 2 Quad CPU Q9550 desktop computer
with 8GB RAM and an NVIDIA GeForce GTX 480. For all
models we chose a voxel size of 2cm and a truncation band
µ of 8cm and limited the depth measurements from 0.2m to
5.0m. We empirically found the parameters Θτ = 0.005 and
Θpc = 1000. A high value choice of Θτ can result in depth
inconsistencies at edges (as stated in III-E), while Θτ = 0
would reject any depth map update. The purpose of Θpc is
to save memory by deleting the whole point cloud if it falls
below this threshold. Therefore, a high threshold leads to a
deletion of more pointcloud entries and consequently trades
a loss of information for memory capacity.

A. Trajectory and Drift Estimation

TABLE I: ATE RMSE on the TUM RGB-D dataset and the
synthetic ICL-NUIM dataset [m]

ITM ICP DVO RGBD ORB
CUDA SLAM SLAM SLAM2

fr1/desk 0.291 0.144 0.169 0.027 0.022
fr1/desk2 0.483 0.273 0.148 0.041 0.023
fr1/room 0.523 0.484 0.219 0.104 0.069
fr1/xyz 0.032 0.042 0.031 0.017 0.010
fr2/desk 0.114 1.575 0.125 0.092 0.079
fr2/xyz 0.042 0.223 0.021 0.016 0.013
fr3/office 1.258 1.161 0.120 0.034 0.011
fr3/nstn 1.979 1.666 0.039 0.051 0.018
lr/kt0 0.045 0.697 0.006 0.011 0.008
lr/kt1 0.009 0.045 0.005 0.013 0.162
of/kt0 0.054 0.205 0.007 0.029 0.027
of/kt1 0.025 0.275 0.004 0.724 0.051

We use the evaluation tools provided by [13] to calculate
the absolute trajectory error (ATE) and the relative pose
error (RPE). As suggested in [13], we compare the root
mean squared error (RMSE) of the ATE and RPE. The ATE
directly compares the absolute distances of the trajectory in
the ground truth file and the output trajectory of the various
systems. This is a good measurement for global consistency
in SLAM systems. Let P1:n be the estimated trajectory and
Q1:n the ground truth trajectory. Then we can find a least-
squares solution for the rigid-body transformation S which
maps P1:n onto Q1:n and compute the absolute trajectory error
at time step i:

Fi := Q−1
i SPi . (12)

Table I shows the results for the ATE RMSE where ORB-
SLAM2 outperforms all other systems on the TUM RGBD
sequences. On the ICL-NUIM datasets, DVO-SLAM out-
shines ORB-SLAM2. This is due to the synthetic nature of
the datasets, where perfect depth values allow a very accurate
tracking for DVO-SLAM, whilst ORB-SLAM2 still needs
to rely on the extracted ORB features. The high error value

124

D
ra

ftFig. 4: Surface Reconstruction: Heat maps depicting the error from the ground truth model to the estimated model. Datasets
from top to bottom: fr1/room, lr/kt1, of/kt1.

(a) lr/kt0 (b) fr1/xyz

Fig. 5: Sample reconstruction models of our approach from the TUM RGBD and ICL-NUIM datasets.

for the lr/kt1 sequence with ORB-SLAM2 is a result of not
revisiting any structure and therefore being unable to perform
a loop closure. The RPE computes the relative difference of
the trajectory over a fixed time interval ∆. In visual odometry
systems it evaluates the drift between frames and in SLAM
systems it can measure the accuracy at loop closures. The
RPE at time step i is defined as:

Ei := (Q−1
i Qi+∆)

−1(P−1
i Pi+∆) . (13)

We choose to evaluate the RPE in Table II over the time
interval of 1 second (∆ = 1s). Here again, the synthetic
ICL-NUIM datasets show slightly better results for the other
systems compared to ORB-SLAM2. In order to be able to

use the TUM tools, we converted all datasets into the TUM
format, i.e. we changed the image and ground truth formats
and added the associate files which can also be generated
with the provided tools. In cases where the algorithm is non-
deterministic, i.e. the result trajectories differ for every run,
we execute the algorithm 10 times and take the mean value.
Algorithms which belong to this category are ORB SLAM2
and RGBD SLAM.

B. Surface Reconstruction Accuracy

To measure the surface reconstruction accuracy, we calcu-
late the one-sided Hausdorff distance from the groundtruth

125

D
ra

ft
Fig. 6: Sample reconstruction models of our approach from our own Orbbec Astra Pro recordings.

(a) Original InfiniTAM

(b) Our approach

Fig. 7: Sample reconstruction of a room recorded and recon-
structed in real-time with our Orbbec Astra Pro. (a) shows the
original InfiniTAM reconstruction, which is unable to adapt
the model to loop closure (see top left corner). (b) depicts
our approach with a globally consistent model.

TABLE II: Translational RPE RMSE on the TUM RGB-D
dataset and the synthetic ICL-NUIM dataset with ∆= 1s [m

s]

ITM ICP DVO RGBD ORB
CUDA SLAM SLAM SLAM2

fr1/desk 0.207 0.100 0.052 0.036 0.026
fr1/desk2 0.327 0.164 0.061 0.045 0.033
fr1/room 0.259 0.129 0.056 0.053 0.048
fr1/xyz 0.047 0.031 0.024 0.027 0.016
fr2/desk 0.024 0.109 0.016 0.018 0.012
fr2/xyz 0.007 0.027 0.005 0.006 0.004
fr3/office 0.052 0.131 0.017 0.016 0.009
fr3/nstn 0.242 0.263 0.017 0.019 0.015
lr/kt0 0.005 0.140 0.002 0.003 0.008
lr/kt1 0.001 0.017 0.002 0.002 0.074
of/kt0 0.003 0.061 0.003 0.005 0.016
of/kt1 0.002 0.152 0.002 0.007 0.034

TABLE III: Evaluation of the surface reconstruction accu-
racy: Hausdorff distances from the ground truth surface to
the reconstructed surfaces (m).

Ours
ITM DVO

SLAM
RGBD
SLAM

all frames keyframes depth maps

fr1/desk 0.067 0.071 0.037 0.033 0.037 0.034
fr1/desk2 0.091 0.088 0.078 0.043 0.051 0.048
fr1/room 0.228 0.152 0.164 0.084 0.091 0.087
fr1/xyz 0.033 0.046 0.019 0.012 0.017 0.015
lr/kt0 0.004 0.005 0.006 0.008 0.016 0.016
lr/kt1 0.015 0.007 0.008 0.097 0.114 0.113
of/kt1 0.014 0.006 0.095 0.017 0.027 0.025

3D model to the reconstructed 3D model:

dH(X ,Y) = sup
x∈X

inf
y∈Y

d(x,y) , (14)

where X is the set of groundtruth vertices, Y the set of the
reconstructed vertices and d(x,y) is the Euclidian distance
between the two vertices x and y. We sample each vertex in
X , find the distance to the closest point in Y and take the
average. Table III lists the result of this process for different

126

D
ra

ft

datasets and methods. ORB SLAM2 outperforms all other
systems on the freiburg1 datasets when integrating the model
frame by frame without using de-integration (all frames).
However, note that we used already optimized trajectories
for this test and thus no pose updates had to be incorporated.
When we only integrate keyframes into the model, i.e. all
non keyframes will not be processed by the system, the
reconstruction error increases slightly. We counter this effect
by using our fused depth maps. On the ICL-NUIM datasets,
InfiniTAM and DVO SLAM outshine ORB SLAM2. This
is due to the synthetic nature of the datasets, where perfect
depth values allow a very accurate tracking for the former
two, whilst ORB SLAM2 still needs to rely on the extracted
ORB features. Furthermore, we can see in Fig. 4 that no loop
closure could be performed in the lr/kt1 dataset (due to not
revisiting any structure), which leads to a larger error. Note
that in the of/kt1 dataset our method shows some areas with
an increased error. The reason for this is that no keyframe
was detected there and consequently no values exist.

For further qualitative evaluation we tested our system on
several well known datasets (see Fig. 5) and also on datasets
recorded with our own Orbbec Astra Pro (see Fig. 6). The
whole extend of our method is illustrated in Figure 7: The
original InfiniTAM is unable to adapt the model to global
updates and therefore structures can appear at the wrong
places, e.g. the reconstruction of 2 walls on the left and the
tables at the bottom. With our approach we obtain a globally
consistent model.

V. CONCLUSIONS
In this paper we presented a real-time capable method to

combine the tracking accuracy of a state-of-the-art SLAM
system [9] with the dense model generation of a volumetric
fusion system [7]. We utilize the depth maps of all frames
but fuse them into the depth map of their corresponding
keyframes. The fused depth map is then integrated into
the 3D model instead of every single frame, resulting in a
speedup of about a factor of 10. Using fewer keyframes can
increase the speedup even further, but will also impact the
quality of the model, especially if translation and rotation
between keyframes becomes very large. In this manner our
system is able to adapt the model online, when updated poses
are available, e.g. after loop closure or bundle adjustment.
For real world data we have shown that our method yields
excelling results, especially when compared to the original
InfiniTAM ICP approach. Note that our system is not limited
to ORB SLAM2, but can in theory work with any keyframe
based tracking method. Therefore, it could enable means for
a globally consistent dense real-time 3D reconstruction for
many different SLAM and VO systems often lacking this
feature.

REFERENCES

[1] “Icpcuda,” https://github.com/mp3guy/ICPCUDA, 2018, [Accessed
20-March-2018].

[2] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques. ACM,
1996, pp. 303–312.

[3] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt, “Bundle-
fusion: Real-time globally consistent 3d reconstruction using on-the-
fly surface reintegration,” ACM Transactions on Graphics (TOG),
vol. 36, no. 3, p. 24, 2017.

[4] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d
mapping with an rgb-d camera,” IEEE Transactions on Robotics,
vol. 30, no. 1, pp. 177–187, 2014.

[5] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale di-
rect monocular slam,” in European Conference on Computer Vision.
Springer, 2014, pp. 834–849.

[6] A. Handa, T. Whelan, J. McDonald, and A. Davison, “A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM,” in IEEE
International Conference on Robotics and Automation (ICRA), Hong
Kong, China, May 2014.

[7] O. Kähler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. Torr, and D. Murray,
“Very high frame rate volumetric integration of depth images on
mobile devices,” IEEE Transactions on Visualization and Computer
Graphics, vol. 21, no. 11, pp. 1241–1250, 2015.

[8] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-
d cameras,” in International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2013, pp. 2100–2106.

[9] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[10] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
10th IEEE International Symposium on Mixed and Augmented Reality
(ISMAR). IEEE, 2011, pp. 127–136.

[11] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3d reconstruction at scale using voxel hashing,” ACM Transactions on
Graphics (ToG), vol. 32, no. 6, p. 169, 2013.

[12] F. Steinbrücker, J. Sturm, and D. Cremers, “Volumetric 3d mapping
in real-time on a cpu,” in IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2014, pp. 2021–2028.

[13] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2012,
pp. 573–580.

[14] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “Elasticfusion: Real-time dense slam and light source
estimation,” The International Journal of Robotics Research (IJRR),
vol. 35, no. 14, pp. 1697–1716, 2016.

127

