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Abstract

Current design rules are analyzed and challenged by considering better damage-detection capabilities offered by struc-
ture health monitoring systems. The weight-saving potential associated to the integration of such sensing systems is dis-
cussed with regards to structural and structure health monitoring system design. Three prospective scenarios are
analyzed and considered in a specific use case. According to the most promising scenario (i.e. robust detectability of
damages larger than 300 mm?), structural weight reductions of approximately 9% can be achieved. Considering the
weight added by the structure health monitoring system, effective weight savings in the order of 5% are achievable.
Although this potential is rather modest, applying structure health monitoring systems on structures mainly driven by
the damage tolerance criterion is expected to provide reductions far beyond 5%.
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Introduction always be ideal for visual damage detection, thus
demanding for rather conservative thresholds.

It is based on the empirically substantiated relation
between damage size and residual strength that air-
frame structures are sized.* Figure 1 is a schematic of
that relation and can be understood as a conservative
curve (B-value) fit through experimental data points.

According to the damage tolerance philosophy,

Since the late 1970s, most primary aircraft structure is
designed according to the damage tolerance philoso-
phy. It is intended to ensure that structures, damaged
due to fatigue, corrosion, or accidental damage, are
capable of withstanding reasonable loads without fail-
ure or excessive structural deformation until the dam-

age is detected.! For composite structures, the relevant structures with damages up to ADL are required to
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Figure 1. Damage threshold and according allowable load
derivation from experimental results.

cause the residual strength to drop to design limit load
(DLL). The residual strength of a structure with a max-
imum discrete source damage (max. DSD) is referred
to as continued safe flight and landing load (CSFL).?

Postulated that the integration of structure health
monitoring (SHM) systems can enable the detection of
damage below ADL, two promising scenarios are
offered as follows:

1. Since current scheduled inspections are also deter-
mined by the limited damage detectability,® by
keeping current design allowables, a robust method
for detecting damage below ADL would result in
an extension of inspection intervals toward
demand-oriented maintenance.

2. In adjusting the design allowables to smaller ADLs,
a better material exploitation could be achieved,
resulting in thinner and thus lighter structures.

This article is focused on the second scenario and
presents an estimation of the structural weight reduc-
tion that can potentially be achieved by the integration
of SHM systems for on-line and on-board monitoring.
It is worth noting though, that to date, no off-the-shelf
systems capable of robustly detecting small accidental
damage on composite structures exist.

Different kinds of SHM systems have been proposed
for these purposes during the past decade.® Among
them, ultrasonic guided wave—-based SHM systems are
a very promising approach to detect impact damages
and to evaluate the resulting damage size.” Su and Ye®
give an overview about the several steps needed utilizing
a guided wave—based SHM system. Several systems are
in development and to some regard commercially avail-
able.”'"" The wavelength of ultrasonic waves depends
on the wave mode and the excitation frequency used for
the monitoring system.'> On the one side, a smaller
wavelength is capable of detecting smaller flaws. On the
other side, the size of the monitored region is reduced

and more sensors are required to cover the same region
as compared to larger wavelengths. For this purpose,
piezoelectric (PZT) sensors have shown to be ade-
quate'® and are considered to be the sensors in this
study.

While addressing a fictive SHM system regarding its
sensing capabilities, the contribution of such an integra-
tion to the air vehicle fuel consumption can be esti-
mated based on currently available data for the selected
use case.'*!?

Approach

The approach adopted to estimate the weight reduction
potential due to the integration of SHM systems con-
sists in adjusting the damage tolerance criterion to sat-
isfy new ADLs, smaller than the barely visible impact
damage (BVID), assumed to be detectable by prospec-
tive SHM systems.

Especially for damage tolerance—driven design, this
adjustment leads to structural thickness reductions.
However, since many sizing criteria generally apply to
the same structure, this may lead to another sizing cri-
terion becoming dimensioning instead. Therefore, the
weight reduction potential estimation is conducted
under the simultaneous consideration of the relevant
sizing criteria, presented in the following section.

From the sizing criteria considered, allowable strain
envelopes are derived for different scenarios, ranging
from the conventional to prospective ADLs. For each
scenario, a thickness histogram is created to visualize
the skin thickness re-assignment, and finally, the struc-
tural weight is calculated.

For the system weight added to the structural
weight, the quantity of sensors is estimated. Parameters
such as weight and power consumption are derived
from the corresponding sensor data sheets. Also the
wires’ weight for power supply and data transfer will
be calculated depending on the power demand and the
estimated data transmission rate. Finally, the change in
weight, resulting from the new design and SHM system
wiring, is combined with the electrical power demand
in the Breguet-formula'® in order to derive the fuel con-
sumption change.

Sizing criteria for the structural design

Depending on the loading type, joint configuration,
design features, and the susceptibility to accidental
damage, different sizing criteria may become dimen-
sioning for the structure. In the following, a selection
of a few important criteria is introduced. The design
allowables resulting from these sizing rules are
expressed in terms of nominal strain for the sake of



Dienel et al.

comparability. Furthermore, the critical strain is addi-
tionally reduced by a knock-down factor (KDF) that
accounts for the scatter in experimentally determined
material properties (B-value) and for environment-
based effects. The latter component, however, applies
only to matrix failure—dominated sizing criteria.

Stability

Thin flat structures loaded in compression are expected
to experience stability failure (buckling) at a critical
load. Depending on the boundary conditions applied
to the structure, the layup and material properties as
well as the geometric parameters, the critical buckling
strain &g,p can be re-written from the analytical expres-
sion given by Hwang and Lee'” as

k-a*-\/Dyy - Dy,

w2t E,

Estab = - KDF -10° (1)

The buckling coefficient k£ accounts for the buckling
field’s aspect ratio, adjusted by the laminate’s aniso-
tropy, being defined as

m? RZ
k: ﬁ + ﬁ +2- n (2)
considering
Dzz)i a D12 +2- D66
R=(—) -— and = 3
(Dll b n VD11 - Dy ®)

In view of the use case being introduced later, the
aspect ratio a/b of the buckling field is set to 1.
Following the conservative assumption of all buckling
field edges being simply supported, the parameter m
can be set to 1 too. The coefficients D;; are the plate’s
flexural rigidities. The remaining parameters in equa-
tion (1) represent the buckling field’s width (w), its
thickness (7) and the laminate Young’s modulus in
loading direction (E,). As being a fiber-dominated fail-
ure mode, the effective KDF accounts only for the
experimental scatter at the material characterization.

By considering the thickness dependency of the flex-
ural rigidity as given by equation (4), a quadratic rela-
tion between the critical buckling strain &g,, and the
skin thickness ¢ is found. Hereby, the index d = x, y
represents the main laminate directions

_ Ed~t3
12 (1 = vy - vy)

D,‘[ (4)
Damage tolerance

Most aircraft structures are prone to accidental dam-
age. However, predicting the residual strength

deterministically for a given impact energy or damage
size is not yet reliably solved. Therefore, aircraft manu-
facturers base their residual strength estimates on
results acquired in extensive experimental campaigns.
From the obtained measurement points, a mathemati-
cal relation between residual strength and the laminate
thickness is derived by determining the best-fitting
curve. This relation is established for specimens tested
under compression load, since this is the most critical
loading case.*'®

To the authors knowledge, neither deterministic nor
experimentally derived expressions relating residual
strain to influencing parameters such as laminate thick-
ness, layup, and damage area have been published so
far. Therefore, the authors recurred to results obtained
from an extensive testing campaign conducted at
Airbus. The empirical expression describing that rela-
tion reads (equation (5))

£omP = .A;q:f(f) - CLayup - KDF (5)

This equation reflects the best-fitting curve through
the experimental results. Residual strain ey’ is
described as a function of the projected delamination
area A, the laminate thickness ¢, and the layup’s ortho-
tropy Crayup. The parameters p and ¢ are material-
specific parameters. The function f{¢) describing the
effect of thickness on the residual strain and the layup
parameter Cp,yup accounting for orthotropy are
defined as

fO=a-t"+c (6)

and

1 E,
up= — - (19 — 7
CLdy p 16 ( 9 ny> ( )

The coefficients a, b, and ¢ are curve fitting para-
meters, while Gy, represents the laminate’s shear modu-
lus. Under compression load, the behavior of
impact-damaged structures is strongly affected by matrix
failure. Therefore, the environmental knock-down com-
ponent is considered along with the B-value in KDF.

For simplification, it is assumed that the projected
delamination area A, is constant for a given impact
threat, regardless of the laminate thickness. This is a
rather conservative approach, as thinner laminates are
more compliant in transversal direction, thus absorbing
more elastic (reversible) energy and suffering less
damage.'**°

Bearing strength

Bolted joints are widely used in joining composite air-
frame parts and for structural repairs. This joining
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method results in stress concentrations in the immediate
bolt (or rivet) vicinity. Bolt failure can easily be pre-
vented by choosing the right bolt material and geome-
try. However, mating parts can suffer different failure
modes, depending on a series of geometrical and layup
parameters. Large diameter-to-width ratio can lead to
net-tension failure; conversely, a small ratio favors
bearing failure; which also occurs at low laminate thick-
ness to bolt diameter ratios. Highly orthotropic lami-
nates and short end distance may cause shear-out
failure. Cleavage can be expected for short end dis-
tances and too few transversal plies.>' Yet, these failure
modes can also be prevented from occurring by prop-
erly choosing the geometric parameters.

Since the bearing strength, obtained by experimental
testing, determines the bolted joints parameters, an
allowable strain can be set as a requirement. In this
analysis, the bearing strain allowable ¢gg is therefore
fixed at 5000 we, which is a commonly applied
threshold.

Maximum strain

Composite airframe structures generally fail due to
other phenomena before reaching the maximum mate-
rial strain capability. Nevertheless, and for the sake of
completeness, the maximum strain criterion is consid-
ered here too. The strain at which first ply failure sets
in, depends on the layup and the loading condition.
The general expression given by equation (8) is the
Hook’s law, reduced by the KDF and converted to
micro-strain (we) units. The stiffness S;; and the
strength o; are the elasticity moduli and strength in dif-
ferent directions, respectively (11: in fiber direction, 22:
perpendicular to the fiber, 12: in-plane shear, +: ten-
sion, — compression)
gi= 2. KDF - 106 (8)
Sii
Since a typical airframe layup is generally composed
by plies in 0°, 90°, 45°, and —45°, the first ply failure is
predicted to occur, once the strain along one of the
main laminate axis has reached the minimum critical
strain &y

EMS Zml‘”{ﬁﬁa8f1a3§23352’512} ©)

Structural weight-saving potential

In the preliminary design phase, airframe structure
weight estimations are understood as rough calcula-
tions, based on a variety of simplifying assumptions.
These assumptions are applied on both designs: the
conventional and the new, resulting from the

integration of SHM systems. Thus, a comparison
between both designs is allowed and the potential can
be identified by comparing the respective structural
weights. It is assumed that

e All sizing criteria mentioned above apply to the
same structure simultaneously;

e Each airframe structure considered is sized by the
lowest strain allowable resulting from the sizing cri-
teria above;

e The structure is loaded in-plane under uniaxial
conditions;

e Sizing criteria are applied only to skins; it is postu-
lated that stringers and frames fail at higher strains;

e The stringer pitch is set to a constant value of
130 mm;

® Only skins are resized due to the integration of
SHM systems;

e Thickness adjustments are continuous and disre-
gard the single ply thickness;

e In-plane stiffness is kept constant regardless of the
assigned thickness;

e The reference damage size of 600 mm? corresponds
to a BVID that would be detectable by visual
inspection according to this method.

e As an SHM system, a guided wave—based system
utilizing piezoceramic sensors and actuators is
considered.

The structural weight obtained by considering SHM
as the alternative damage-detection method to the cur-
rent visual inspection method is computed for three dif-
ferent scenarios, where the SHM system is assumed to
reliably detect damage areas of 300, 400, and 500 mm?.

In Figure 2, the allowable strains are plotted as func-
tions of the skin thickness considering all sizing criteria
mentioned above. Dashed curves represent individual
sizing rules, whereas solid lines illustrate the minimum

7000

6000 -

5000 kasssssssssnssnnnn

Stabilit

DT (BVID 600mm?) === |

DT (SHM 500mm?) e wm=:

DT (SHM 400mm?)

DT (SHM 300mim?) e e

ly Bearing ssss«

2000 - III 1 Max. Strain .

" Envelope (BVID 600171171?)

1000 [ Envelope (SHM 500mm?) ——
Ir Envelope (SHM 400mm?)

I Envelope (SHM 300mm?) ——

1

s
4000 |- aa
7

3000 7

Allowable Strain [ue]

0

o

10 15 20

Thickness [mm]

Figure 2. Allowable strain versus skin thickness for different
sizing criteria.
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allowable strain envelopes for this design and the
assumed SHM scenarios. The envelopes differ only in
the damage tolerance—driven domain ¢ € [4.5, 13.0]. As
indicated by the arrow, the larger the detectable dam-
age A, the lower the allowable strain.

The difference between the BVID envelope and the
SHM envelopes are indicators of the weight-saving
potential presumably achievable by SHM system imple-
mentation. For instance, the allowable strain for a 10-
mm skin, according to the BVID criterion, amounts to
4710 pe. In keeping this allowable strain, thickness
could be reduced to 8.0, 6.2, and 5.1 mm for the SHM
scenarios 500, 400, and 300 mm?, respectively. In other
words, the weight-saving potential is 20%, 38%, and
49%, accordingly.

SHM system layout

In the following section, the SHM system architecture,
the associated added weight, the power demand, and
the data bus architecture are addressed.

Sensor

As reference for the weight and power consumption
estimation, a PZT sensor (Series 740) from PCB
Piezotronics Inc, MTS System Corporation®® has been
selected, for which a technical data sheet is available,
while for many other sensors, typically used for SHM
research, only the material is known.”® Besides that,
such sensors are neither industrialized nor adequate for
permanent implementation in aircrafts, since they are
only available without housing and connectors. It is
noted too, that although the reference sensor is
designed for sensing rather than for exciting ultrasonic
waves, it is assumed that the properties regarding
weight and power consumption of both sensor types
are comparable and suitable for a system assessment.

The PZT sensors with a frequency ranging from 0.5
to 100,000 Hz can be used for impact event monitoring
and damage size estimation. The sensors contain built-
in electronics and require a power/signal conditioner.
The temperature compensation is provided. The sensor
weight is 0.5 g, and the adhesive mass for sensor place-
ment is regarded as negligible. The signal/power condi-
tioner requires 2-20 mA, operating from a 18-30 V
(DC) power source, with a weight of 40 g. It is assumed
that 10 sensors are required to cover a 1 m? generic
panel. For this number of sensors, satisfactorily results
have already been achieved in the context of optimized
sensor placement on flat plates for defect sizes smaller
than the most ambitions scenario considered in this
study.”*

The data amount produced by sensors depends on
sampling frequency. In general, the data rate C can be
calculated using the following equation

C=ne - B-RES (10)
where B is the sampling frequency, RES is the resolu-
tion, and 7.y, is the number of channels. The typical res-
olution is 12 bit.>> The systems with high sensitivity can
require resolution of 24 or 32 bit.

Usable bandwidth

Bandwidth refers to the total amount of data that can
theoretically be transferred through the bus in a given
period of time. Due to necessity for physical synchroni-
zation and message heading, which is provided by
Diprotocol @A Doyerneads @ portion of the theoretical
bandwidth By, is needed for performing these tasks.
The amount of data that can be actually transmitted via
bus, that is, the usable bandwidth Bygpie, 1S expressed
as a percentage of payload data D,,,, in bites divided by
the total number of bites in a message.”® The usable
bandwidth By, 1S given by

D pay
Dpay + Dprotocol + Doverhead

Busavle = - Btheo (1 1)

Distributed integrated modular avionics architecture

For the approach presented in this article, a distributed
integrated modular avionics (DIMA) is selected, which
is a typical architecture to both composite aircrafts
Airbus A350 and Boeing 787 (Figure 3).

DIMA architecture provides computation hardware
in the proximity of sensors and actuators, thus resulting
in cable weight reduction and faster system response.
Systems dedicated to cockpit, cabin, flight control,
engines, fuel, and so on, are separated into integration
areas for data condensation. Data concentrators con-
dense and convert sensor and actuator data into a com-
mon digital format and then transfer these data to the
DIMA modules using data buses (Figure 3). In addi-
tion, they also perform simple logic operations and
issue alarms.?~°

The quantity of cables for power supply depends on
the number of sensors ngeneor and instruments, such as
sensing system interrogators. To reduce the cable quan-
tity needed for data transfer, the analog signals can be
locally converted into digital data, which are then trans-
ferred via serial data buses. Thus, the required data bus
number ny,¢ per aircraft structure or component can be
calculated by
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Distributed integrated modular
avionics architecture

Sensors

Wiring / Data Bus (Field
bus, e.g. CAN bus, A429)

n Data concentrators

— ADCN (e.g. A664) ———

> DIMA modules &7 :

Figure 3. Distributed integrated modular avionics architecture
based on Annighoefer et al.?® and Eckman.?’
Aircraft source: Airbus.”®

C * Nsensor

(12)

tous Busable

where c is the data rate of the selected sensor type.
The cable length required for electrical power supply

and data transfer for the SHM network depends on the

aircraft’s geometry. For the cable length calculation,

the following assumptions are made regarding cable

distribution (Figure 4).

The cable length for the vertical tail plane (VTP)
lcables VTP (blue lines) is estimated according to

lcable, VTP = <% . hVTP + lfus) ' kcable (13)
where kcapie = 1.2 1s a coefficient accounting for indi-
rect cable paths, iyp is the VTP height, and [y is the
fuselage length.

It is assumed that for metallic airframes, the power
supply cable requires one conductor, whereas for com-
posite airframes, the power supply cable requires two
conductors, thus double the calculated length in equa-
tion (13) is required.

For DIMA (Figure 5) architectures, it is assumed the
areas marked with green lines are equipped with field
buses, whereas the red lines marked areas with ARINC
664 or ARINC 629.

Wire size selection

A standard known as the American Wire Gauge
(AWG) is used for wire manufacturing. The Federal
Aviation Administration (FAA)®' describes factors to
be considered in selecting the wire size for electric
power distribution. A conductor chart for continuous
flow®! can be used to select the proper conductor size.
In general, the wire size must be sufficient to prevent
cable overheating and voltage drop while conducting
the required current. According to the FAA,’' the
smallest allowable single wire size is 22 AWG. The

0 Avionics /7—
m= Cable //Z/

nacelle/z +j746_/>/v

l

1/3 bvtp
\
/o Ay
/] 0
L b7,
bnamlle -

Figure 4. Cable distribution
Aircraft source: Airbus.?®
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Table |. Specific weight for different cable types (according to
Nexans®? and Elettrotekkabel S.p.A>3).

Cable type Wspez. cable Bus type
(kgkm )

ASNE 0272 AWG 22 12.70 ARINC 429

STUDY 124961 AWG 24 37 ARINC 629

ABS 1503 KD 24 AWG 24 40.28 ARINC 664

CAN bus AWG 22 21.80 CAN Bus

Table 2. Correlation between the electrical power drain and
variations in specific fuel consumption.35

Flight phase Thrust class (kN) ASFC for 100 kW (%)
Figure 5. Assumption of DIMA architecture data buses Climb 150 0.4-08
distribution. Cruise 150 0.7-1.5
Aircraft source: Airbus?® gﬁ rs:be nt ;(5)8 32:3(5)

Cruise 300 0.6—1.1

Descent 300 3.0-5.0

circuit voltage of 28 V (DC) as mentioned in the con-
ductor chart is suitable for all sensor types. It is
assumed that all sensors are parallel connected, thus the
resulting power is obtained by multiplication of the sin-
gle sensor power consumption by the number of sen-
sors. For the cable amount estimation, a wire size of 20
AWG (650 kg-km™" maximum weight) is required, as
the 22 AWG wire would not satisfy the cable length
requirements. For the given voltage of 28 V (DC), a
maximum of 50 PZT sensors for impact monitoring can
be powered by one wire. The cable weight for the paral-
lel connection implementation of sensors is negligible.

Cable weight
The cable weight weae for power supply and data
transfer can be calculated using the following formula

(14)

Weable = lcable * Wspez, cable

where lpie is the length and wgpe, cable 15 the specific
cable weight.

The specific cable weight for different cables is pro-
vided in Table 1.

Fuel consumption

Flight performance can be expressed by Breguet range
equation.'® Considering aircraft parameters such as
weight, wing area, and engine type, the maximum total
range for given environmental conditions can be calcu-
lated. Under the assumption of constant flight velocity,
lift coefficient, and specific fuel consumption (SFC),
the following expressions apply:

SFC: specific fuel consumption.

Lift

(15)

where L is the aerodynamic lift, m is the aircraft weight,
p is the air density, V' is the flight velocity, Cy. is the lift
coefficient, S,.r is the wing area, and g is the accelera-
tion due to gravity.

1
L:m'gzi'p'Vz'CL'Sref

Thrust

1
T:D:E'p'VZ'CD'Sref (16)

where T is the thrust, D is the drag, Cp is the drag
coefficient.

Breguet range

V-L
= -In
g-SFC-D

Minitial

Mfinal (17)
where R is the maximum range, Mjnisiar /Mpinar 18 the weight
ratio (initial over final), and SFC is the specific fuel con-
sumption.'® Typical L/D ratios for commercial aircrafts
range from 18 to 22 for the cruise flight phase.>*

Based on the correlations given by Dollmayer and
Carl,*® sensor power requirement and thus SHM elec-
trical energy consumption can be expressed in terms of
SFC. Table 2 depicts two engine classes and the respec-
tive SFC change for a 100 kW energy drain at different
flight phases.
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Use case: the VTP skin

Structural design

In order to provide a figure for the weight-saving poten-
tial, a reference structure and the respective thickness
map (i.e. a thickness histogram) is required. In this article,
one VTP skin is considered as an exemplary use case.
Although being a stiffened shell, only the skin is subjected
to thickness adjustments. Moreover, all the assumptions
listed in section “Structural weight-saving potential”
apply to the structure considered in this section.

The VTP skin design of a wide-body aircraft is
mainly driven by stability (in this example, 87% regard-
ing the skin surface). However, some regions’ design is
determined by the damage tolerance requirement. It
can be depicted from the BVID envelope in Figure 2
that for skin thickness below 13 mm, design is deter-
mined either by the stability or by the damage tolerance
criteria.

In Figure 6, the structural weight for one VTP skin is
broken down according to the skin thickness for the
conventional design, ranging from 1.84 to 10.12 mm. In
spite of covering the majority of the skin surface (87%),
the chart confirms that the structural mass sized by the
stability criterion is rather low (only 59%). The remain-
ing structural design is dominated by the damage toler-
ance requirement. Note that the calculated structure
thickness does not reflect a realistic layup, where the
laminate thickness is always scaled by integer multiples
of the single ply thickness. Instead, the abscissa values
are discretized in 0.02 mm increments in order to focus
on the design-based weight reduction potential, instead
of focusing on manufacturing issues. Abscissa bars with
0 kg are excluded from the bar charts below.

Considering an SHM system capable of detecting
damage areas slightly smaller than those detected by
the current visual inspection method, skin thickness is
slightly reduced in the damage tolerance domain. The
new VTP skin thickness range 1.84-8.12 mm results in
a weight reduction of approximately 5.1% (Figure 7).

In the second SHM scenario, damage above
400 mm? is assumed to be reliably detectable. Further
thickness reductions are achieved for the damage
tolerance—driven skin regions. The thickness now
extends over the range 1.84-6.26 mm, causing the skin
weight to drop by 8.4% from the reference design
(Figure 8).

Finally, damage size above 300 mm? is assumed to
be detectable with prospective SHM systems. In this
scenario, the skin thickness range is now narrowed
down to 1.84-5.06, leading to a weight reduction of
9.2% compared to the reference (Figure 9). According
to Figure 2, a higher damage resolution by the inspec-
tion system would be of no value, since the damage tol-
erance sizing criterion would not apply anymore.

12 L e e S A e
o Visual Inspection 600 mm?
10 8

tability Domain Damage Tolerance Domain

Structural Weight [kg]
{2}
T
I

Thickness [mm]

Figure 6. Weight distribution per skin thickness by considering
the conventional inspection method with 600 mm? detectable
damage size.
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Figure 7. Weight distribution per skin thickness for an SHM
system with 500 mm? detectable damage size.
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Figure 8. Weight distribution per skin thickness for an SHM
system with 400 mm? detectable damage size.

SHM system design

For the damage tolerance driven surface (13% of the
VTP skin surface), an SHM system is designed, which
introduces 10 PZT sensors per square meter. This adds
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Figure 9. Weight distribution per skin thickness for an SHM
system with 300 mm? detectable damage size.

an additional weight of 1.0% to the reference design.
The power supply lines to these sensors adds further
1.6% weight. The ARINC 429 data bus system is pre-
ferable as the lightest solution for a small monitored
area and the low number of sensors required in this use
case, yielding additional 1.6% weight. The resulting
mass increase for the SHM system amounts 4.2%.

Another factor to be considered is the power con-
sumption of such a system. For the number of sensors
required, the power consumption for the monitored
area would be 3.6 W, according to the manufacturer’s
data sheet.”> Due to the small number of sensing ele-
ments, the overall power consumption is that low, that
in the worst case listed in Table 2 (descent, 300 kN
thrust class, ASFC change 5% per 100 kW) the SFC
change would amount 1.8 X 107%%. Although being
negligible in this use case, the contribution of a full cov-
erage SHM system to the overall SFC is expected to
exert a relevant impact.

Finally, the implementation of an SHM system con-
tributes to reduced or changed maintenance schedule.
However, in this use case, this advantage is nullified by
the need for further visual inspection due to only par-
tial structure monitoring.

Weight-saving potential

Considering the three prospective SHM scenarios men-
tioned above, three weight-saving potential figures can
be derived by regarding new structural and SHM sys-
tem designs as summarized in Table 3.

Fuel-saving potential

Considering the SFC change (1.8 X 10%%) calculated
for the SHM system adopted in this use case, and the
maximum estimated structural weight reduction, as
mentioned above (5.0%), the potential fuel saving can

Table 3. Weight-saving potential for each scenario considered
in this use case.

Detectable Weight change

damage size -

(mmz) by re-design by SHM system Total
(*%) (*%) (*%)

300 -9.2 +4.2 —5.0

400 -84 +4.2 —4.2

500 =5.1 +4.2 -0.9

SHM: structural health monitoring.

be quantified. Applying equation (17) to a standard
mission (R = 10,000 km, g~ 975ms 2 and
¥ =900 km h™"), and a modern long-range aircraft
(L/D = 21 and maximum zero-fuel weight mg,, =
195,700 kg), a negligible fuel increase of approxi-
mately 0.017% is obtained.

By extrapolating the structural weight-saving poten-
tial calculated for the VTP skin to a long-range aircraft
(airframe weight: 80,000 kg), considering the improved
detection capability, the additional equipment weight,
and the associated power consumption of the most pro-
mising SHM scenario considered, fuel consumption
could be reduced by roughly 1.8%.

Conclusion

The probability of damage detection is an important
driver for both: structural design and maintenance sche-
duling. From recent advances in SHM systems, it can
be projected, that smaller damages than those detect-
able by visual inspection, as considered in current struc-
tural design, can be reliably detected in the near future.
The approach presented in this article allows a first esti-
mation of the weight reduction achievable by the imple-
mentation of such systems.

To demonstrate the weight-saving potential, the
VTP skin was selected as the use case. For that struc-
ture, weight reductions up to 5% are achievable by
the integration of an SHM system with a 300-mm?
damage size detection capability. This fraction may
seem disappointingly low. However, it must be con-
sidered that this particular structure is mainly sized
by the stability criterion (87% of the area). Since only
damage tolerance—driven structures benefit from the
SHM system integration, only a slight weight reduc-
tion is expected for the VTP skin. Other regions of
the airframe structure driven by the damage tolerance
criterion are expected to provide more significant
weight reductions. This result suggests that the inte-
gration of SHM capability should mainly focus on
damage tolerance—driven structures.
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Projecting the findings regarding the VTP skin to the
entire aircraft structure, significant fuel consumption
reductions beyond 1.8% could be attained.
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