Quantum Annealing for Flight Gate Assignment

Tobias Stollenwerk, Elisabeth Lobe, Martin Jung German Aerospace Center (DLR)

Abstract

We report on our efforts to solve a real world problem from airport planning with a D-Wave quantum annealer. The problem is related to the quadratic assignment problem which is known to be a hard combinatorial optimization problem. As problem instances, we use real data from a mid-size German airport. We present an analysis of the problem and compare quantum annealing solutions to classical approaches.

Problem Formulation

We investigate the problem of optimal assignment of flights to gates at airports [1]. The goal is to assign the flights in such a way, that the transit time for the passengers is minimal.

Problem variable:

$$x_{i\alpha} = \begin{cases} 1 & \text{if flight } i \text{ is assigned to gate } \alpha \\ 0 & \text{otherwise} \end{cases}$$

Cost Function Contribution

The cost function is the total transit time of all passengers.

1. Transit time of arriving passengers

$$T_{\mathsf{Arrival}} = \sum_{i \alpha} n_i^a t_{lpha}^a x_{i lpha}$$

where

- t^a_{α} is the time it takes to get from gate α to the baggage claim
- n_i^a is the number of arriving passengers from flight i
- 2. Transit time of departing passengers

$$T_{\mathsf{Departure}} = \sum_{i lpha} n_i^d t_lpha^d x_{i lpha}$$

where

- t_{α}^d is the time it takes to get from check-in to gate α
- n_i^d is the number of departing passengers with flight i
- 3. Transit time of transferring passengers

$$T_{\mathsf{Transfer}} = \sum_{ij\alpha\beta} n_{ij} t_{\alpha\beta} \, x_{i\alpha} \, x_{j\beta}$$

where

- $t_{\alpha\beta}$ is the time it takes to get from gate α to gate β
- n_{ij} is the number passengers transferring from flight i to flight jand vice versa

The total cost function reads

$$T_{\mathsf{Total}} = T_{\mathsf{Arrival}} + T_{\mathsf{Departure}} + T_{\mathsf{Transfer}}$$
 (1)

Constraints

1. A single flight i can only be assigned to exactly one gate:

$$\forall i: \qquad \sum x_{i\alpha} = 1 \tag{2}$$

2. Flights with overlapping times (plus a buffer) must not be assigned to the same gate

$$\forall \alpha, \ \forall (i,j) \in F: \qquad x_{i\alpha} \cdot x_{j\alpha} = 0$$
 (3)

with

$$F = \left\{ (i,j) \mid (t_i^{in} - t_j^{out} < t^{\mathsf{buf}}) \land (t_j^{in} - t_i^{out} < t^{\mathsf{buf}}) \right\}$$

Problem Instances

In order to investigate real world problems, we used the flight schedules and passenger flow of one single day at a mid-sized German airport. From this data, we extracted the problem parameters n_i^a , n_i^d and n_{ij} which are related to the passenger flow. The times from and to the gates t^a_{α} , t^d_{α} as well as in between the gates $t_{\alpha\beta}$ were extracted as mean values from agent based simulations [2]. Figure 1 shows the total problem instance which consists of 293 flights and 97 gates.

Figure 1: Total problem instance represented as a graph. The flights are represented as blue nodes and the blue edges represent passengers from one flight to another (n_{ij}) . The gray nodes represent check-in and baggage claim. The gray edges represent passengers from check-in to the gates (n_i^a) and from the gates to baggage claim (n_i^d) . The edge thickness represents the number of passengers.

Instance Subdivision

- Create smaller instances by restricting the time frame to durations of 20 minutes
- Use these smaller instances for testing on the quantum annealer

Figure 2: Example of an instance extracted from flights arriving within a 20 minute time frame.

Mapping to QUBO

 The cost function (1) is already a quadratic unconstrained binary optimization problem (QUBO)

$$Q_c = \frac{1}{f_{\rm A}} T_{\rm Arrival} + \frac{1}{f_{\rm D}} T_{\rm Departure} + \frac{1}{f_{\rm T}} T_{\rm Transfer}$$

where f_A , f_D and f_T are normalization factors.

• The constraint (2) can be formulated as a penalty term

$$Q_u = \sum_{i} \left(\sum_{\alpha} x_{i\alpha} - 1 \right)^2$$

The penalty term for the constraint (3) reads

$$Q_t = \sum_{\alpha} \sum_{(i,j) \in F} x_{i\alpha} x_{j\alpha}$$

The total QUBO reads

$$Q_{\mathsf{total}} = Q_c + \lambda_u Q_u + \lambda_t Q_t$$

where we introduced the penalty weights λ_u and λ_t

Choice of the Penalty Weights

The penalty weights λ_u and λ_t have to be sufficiently large to ensure $Q_u = Q_t = 0$ in the solution.

- Solve QUBO exactly with classical solver
- Box shaped validity boundary
- Need to choose penalty weights "above" validity boundary

Figure 3: Example for a validity boundary of an instance extracted from flights arriving within a 20 minute time frame.

Quantum Annealing

Embedding

Use D-Wave embedding algorithm on a D-Wave 2000Q

Figure 4: Number of logical and physical qubits for instances extracted from flights arriving within a 20 minute time frame and embedded on a D-Wave 2000Q

 Instances with up to approximately 100 logical variables are embeddable

Time to Solution

- 10000 annealing runs
- No gauges
- 3 different embeddings
- Expected time to solution with 99% success probability

$$T_{99} = \frac{\ln(1 - 0.99)}{\ln(1 - p)} T_{\text{Anneal}}$$

where p is the success probability

 Time to solution increases for larger problems. We conjecture, that this is related to the increased precision requirements for larger instances (cf. [3]).

Figure 5: Time to solution with 99 % with probability T_{99} for QUBO instances extracted from flights arriving within a 20 minute time frame in dependence of the number of logical qubits.

Acknowledgment

The authors would like to thank NASA Ames for their support during performing the experiments on the D-Wave 2000Q system, for many valuable discussions and the opportunity to use the D-Wave 2000Q machine at NASA Ames.

References

- [1] Sang Kim, Eric Feron, John-Paul Clarke, Aude Marzuoli, and Daniel Delahaye.
 - Airport gate scheduling for passengers, aircraft, and operation. Proceedings of the 10th USA/Europe Air Traffic Management Research and Development Seminar, ATM 2013, 01 2013.
- [2] Martin Jung, Florian Rudolph, Axel B. Claßen, Andreas Pick, and Ulf Noyer.

Simulating a multi-airport region to foster individual door-to-door travel In W. K. V. Chan, A. D'Ambrogio, G. Zacharewicz, N. Mustafee,

G. Wainer, and E. Page, editors, Winter Simulation Conference, pages 2518-2529. Omnipress, December 2017. [3] Tobias Stollenwerk, Bryan O'Gorman, Davide Venturelli, Salvatore

Mandrà, Olga Rodionova, Hok K. Ng, Banavar Sridhar, Eleanor G. Rieffel, and Rupak Biswas. Quantum annealing applied to de-conflicting optimal trajectories for

air traffic management. arXiv:1711.04889, submitted to IEEE Transactions on Intelligent Transportation Systems, 2018.