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Abstract 

The pyrolysis process of thermally small biomass particles was modeled 

combining the Lumped Capacitance Method (LCM) to describe the transient 

heat transfer and the Distributed Activation Energy Model (DAEM) to account 

for the chemical kinetics. The inverse exponential temperature increase 

predicted by the LCM was considered in the mathematical derivation of the 

DAEM, resulting in an Arrhenius equation valid to describe the evolution of the 

pyrolysis process under inverse exponential temperature profiles. The Arrhenius 

equation on which the simple LCM-DAEM model proposed is based was 
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derived for a wide range of pyrolysis reactor temperatures, considering the 

chemical kinetics data of four lignocellulosic biomass species: pine wood, olive 

kernel, thistle flower, and corncob. The LCM-DAEM model proposed was 

validated by comparison to the experimental results of the pyrolysis conversion 

evolution of biomass samples subjected to various inverse exponential 

temperature increases in a TGA. To extend the validation, additional biomass 

samples of Chlorella Vulgaris and sewage sludge were selected due to the 

different composition of microalgae and sludge compared to lignocellulosic 

biomass. The deviations obtained between the experimental measurements in 

TGA and the LCM-DAEM predictions for the evolution of the pyrolysis 

conversion, regarding the root mean square error of temperature, are below 5 

ºC in all cases. Therefore, the simple LCM-DAEM model proposed can describe 

accurately the pyrolysis process of a thermally small biomass particle, 

accounting for both the transient heat transfer and the chemical kinetics by 

solving a simple Arrhenius equation.  

Keywords: Biomass pyrolysis; Chlorella Vulgaris; Distributed Activation Energy 

Model (DAEM); Inverse exponential temperature increase; Lumped 

Capacitance Method (LCM); Sewage sludge. 

Nomenclature 

A  Pre-exponential factor [s-1]. 

As   Surface of the solid particle [m2]. 

  Pyrolysis conversion [%]. 

Bi   Biot number [-]. 

  Heating rate [ºC min-1]. 
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c   Heating parameter [min-1]. 

cs   Specific heat of the solid particle [J kg-1 K-1]. 

d   Particle diameter [mm]. 

E   Activation energy [kJ mol-1]. 

E0  Mean value of gaussian distribution of activation energy [kJ mol-1]. 

Ea  Value of activation energy for which the step function changes [kJ mol-1]. 

ie  Value of the -function for which the step function changes [-]. 

h   Convection coefficient [W m-2 K-1]. 

k   Rate coefficient of a first-order reaction [s-1]. 

ks   Thermal conductivity of the solid particle [W m-1 K-1]. 

Lc   Characteristic length [m]. 

s   Density of the solid particle [kg m-3]. 

R   Universal gas constant [J mol-1 K-1]. 

  Standard deviation of Gaussian distribution of activation energy [kJ mol-1]. 

t   Time [min]. 

T   Temperature [ºC]. 

T0   Ambient temperature [ºC]. 

T   Reactor temperature [ºC]. 

Vs   Volume of the solid particle [m3]. 

Abbreviations: 

CV  Chlorella Vulgaris. 

CFD  Computational Fluid Dynamics. 

DAEM  Distributed Activation Energy Model. 

HHV  High Heating Value. 

LCM  Lumped Capacitance Method. 
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RMSE  Root Mean Square Error. 

SS  Sewage Sludge. 

TG  Thermogravimetric. 

TGA  Thermogravimetric Analysis. 

1. Introduction 

Biomass is considered a promising substitute for fossil fuels due to its 

renewable character, worldwide availability, and globally neutral net CO2 

emissions, based on the carbon cycle. Biomass can be converted principally via 

biological or thermochemical processes (McKendry 2002). The biological 

conversion uses bacteria or enzymes to break the complex molecules of 

biomass into smaller molecules. However, this process is much slower than 

thermochemical conversion (Anca-Couce 2016). Thermochemical processing of 

biomass includes pyrolysis, combustion, gasification, hydrothermal liquefaction, 

and hydrothermal carbonization (Basu 2010). Among them, biomass pyrolysis, 

consisting in the thermal degradation of the solid fuel at a temperature ranging 

from 300 to 600 ºC in the absence of oxygen, has some beneficial 

characteristics. Biomass pyrolysis is characterized by a low level of pollutant 

emissions derived from the conversion process, obtaining a liquid bio-oil as the 

primary product, which can be readily stored and transported, allowing its 

decentralized usage as a renewable fuel (Czernik and Bridgwater, 2004). 

The design and optimization of biomass pyrolysis reactors are currently based 

on either Computational Fluid Dynamics (CFD) simulations or 

phenomenological models (Sharma et al., 2015), which require in both cases a 

detailed knowledge of the chemical kinetics of the thermal degradation reaction. 
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In this sense, several mathematical kinetic models are available in the literature, 

which can be classified into kinetic-fitting and kinetic-free models (Bach and 

Chen, 2017). The former involve the assumption for a functional form of the 

kinetic parameters, i.e., the activation energy and the pre-exponential factor. 

These fitting models include the single step model (Coats and Redfern, 1964), 

the sectional approach model (Lin et al., 2013), and the three pseudo-

components model (Li et al., 2008). In contrast, kinetic-free models are based 

on experimental TGA measurements to calculate the activation energy and pre-

exponential factor of the solid fuel pyrolysis reaction. The kinetic-free models 

comprise isoconversional models (Vyazovkin and Lesnicovich, 1992) and the 

simplified Distributed Activation Energy Model (DAEM) (Miura and Maki, 1998). 

DAEM was developed initially by Vand (1943). The model was further simplified 

later by Miura (1995) and Miura and Maki (1998), resulting in a kinetic-free 

model known as simplified DAEM. Since then, this simplified DAEM has been 

widely used in the specific literature to describe the pyrolysis kinetics of a broad 

variety of solid fuels, including coal (Günes and Günes, 2008), charcoal 

(Várghegyi et al., 2002), polymers (Wanjun et al., 2005), lignocellulosic biomass 

(Sonobe and Worasuwannarak, 2008), microalgae (Ceylan and Kazan, 2015), 

sewage sludge (Soria-Verdugo et al., 2013), oil shale (Wang et al., 2009), and 

medical waste (Yan et al., 2009). The simplified DAEM has been proven to 

derive accurate results for the kinetic parameters of biomass pyrolysis from 

TGA measurements. However, its applicability estimating the evolution of the 

pyrolysis conversion with temperature is limited by the fact that simplified DAEM 

is valid exclusively for constant heating rates of the solid particles, i.e., linear 

increases of temperature with time. Nevertheless, the temperature increase of 
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solid particles in pyrolysis reactors is typically non-linear and, therefore, the 

direct application of the simplified DAEM in these reactors is not possible.  

This paper deals with the limitation of the simplified DAEM to constant heating 

rates and is devoted to overcoming this limit. A simple model is proposed to 

describe the pyrolysis of thermally small particles, combining the Lumped 

Capacitance Method (LCM), to estimate the transient heat transfer of the solid 

particles, and the simplified Distributed Activation Energy Model (DAEM), to 

account for the chemical kinetics of the thermal degradation. The proposed 

LCM-DAEM model is based on an Arrhenius equation obtained following the 

mathematical procedure proposed by Miura (1995) and Miura and Maki (1998) 

for the simplified DAEM, but considering the inverse exponential temperature 

increase to which thermally small particles are subjected according to the LCM. 

The new Arrhenius equation for the LCM-DAEM was derived as a function of 

the reactor temperature, considering the pyrolysis kinetic data of several 

lignocellulosic biomass species. Finally, the validity of the Arrhenius equations 

derived was validated comparing the estimation of the pyrolysis conversion 

evolution predicted by the proposed LCM-DAEM model to experimental 

pyrolysis measurements of microalgae and sewage sludge, conducted in a 

thermogravimetric analyzer (TGA) under various inverse exponential 

temperature increases. 

2. Theoretical Model 

Pyrolysis of solid fuels is a complex process which involves both heat transfer 

and chemical reactions. In this regard, a simplified model is proposed to 

describe the pyrolysis reactions of small biomass particles. The model proposed 
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is based on combining the Lumped Capacitance Method to consider heat 

transfer between the environment and the solid particle with the simplified 

Distributed Activation Energy Model to account for the chemical kinetics of the 

pyrolysis reactions. 

2.1. Lumped Capacitance Method (LCM) 

When a biomass particle is fed to a reactor at a high temperature T, transient 

conduction occurs inside the particle, whose temperature increases with time. If 

the temperature inside the particle can be considered spatially uniform, a single 

temperature T can be employed to describe the time evolution of heat transfer 

between the reactor and the particle. This assumption is the base of the widely 

known Lumped Capacitance Method, for which the temperature of the particle 

can be determined by formulating a global energy balance on the particle, 

relating the convection heat transfer rate at the particle surface with the rate of 

change of internal energy of the particle: 

 
d

,
d

s s s s

T
h A T T V c

t
       (1) 

where h is the convection coefficient, T is the reactor temperature, T is the 

temperature inside the particle, t is time, and As, Vs, s, and cs are the solid 

particle surface, volume, density, and specific heat, respectively.  

Integrating Eq. (1), considering the initial temperature of the solid particle T0 

when the particle is fed to the reactor, i.e., at the initial time t = 0, the time 

evolution of the particle temperature is obtained as an inverse exponential 

approximation to the reactor temperature T: 
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 0 exp .s

s s s

h A
T T T T t

V c 

 
     

  
 (2) 

The time-coefficient in the exponential function in Eq. (2) can be defined as the 

heating parameter: 

,s

s s s

h A
c

V c




 
 (3) 

which is constant for a specific biomass type, i.e., fixed values of As, Vs, s, and 

cs, and reactor operating conditions, i.e., uniform value for h. 

The essence of the LCM is the assumption of uniform spatial temperature 

distribution inside the solid particle during the transient heating process. 

Therefore, the validity of the LCM and, thus, of Eq. (2) to describe the 

temperature evolution of biomass particles, should be discussed in the light of 

that hypothesis. In that sense, the Biot number Bi is defined for transient 

conduction problems as the ratio of the thermal resistance by conduction inside 

the solid particle and the thermal resistance by convection at the particle 

surface, obtaining: 

,c

s

h L
Bi

k


  (4) 

where h is the convection coefficient, ks is the thermal conductivity of the solid 

particle, and Lc is the characteristic length, defined as the ratio between the 

solid particle volume Vs and its surface As. 

Therefore, if Bi << 1, the thermal resistance by conduction inside the solid 

particle is negligible compared to the thermal resistance by convection at its 
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surface. Thus, the assumption of spatially uniform temperature is reasonable for 

cases with Bi << 1. In practice, the validity criterion for the central assumption of 

the LCM is Bi  0.1, and a low error associated to the LCM can be expected 

when this validity criterion is satisfied (Incropera et al., 2007). The particles for 

which this criterion is met are called thermally small particles. 

Assuming a spherical shape for the solid particles, the characteristic length can 

be related to the particle diameter d as Lc = d/6. In the case of biomass particles 

heated up in a reactor, typical values for the convection coefficient are h  20 

W/m2K, and thermal conductivity is approximately ks  0.1 W/m·K, and therefore 

the validity criterion for the LCM is satisfied provided that the particle diameter is 

d  3 mm. In conclusion, the LCM can be used to estimate the particle 

temperature increase for small size biomass particles, such as short straws or 

olive stones, which are typically obtained fragmented as a residue of the olive 

oil industry (Pattara et al., 2010). In contrast, for those cases in which Bi > 0.1, 

appreciable temperature differences within these bigger solid particles exist. 

Then, spatial effects should be considered, and the heat equation must be 

solved to determine the temperature distribution inside these bigger particles. 

2.2. Distributed Activation Energy Model (DAEM) 

The simplified Distributed Activation Energy Model is widely used to describe 

the chemical kinetics of solid fuels pyrolysis. DAEM considers the solid fuel as a 

complex mixture of components, which decompose as a result of a large 

number of independent irreversible first-order reactions, with different 

associated activation energies, occurring either simultaneously or 
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consecutively. The conversion  during the pyrolysis reaction can be 

determined as follows: 

   /

0 0
1 exp e d d ,

t
E RTA t f E E



      (5) 

where  is the pyrolysis conversion at time t, A is the pre-exponential factor, E 

is the activation energy, R is the universal gas constant, T is the temperature, 

and f(E) is the probability density function of the activation energy. The 

exponential term in Eq. (5) is the so-called  function: 

 /

0
exp e d .

t
E RTA t     (6) 

Considering a constant heating rate , i.e., a linear temperature increase T = 

·t, the time integral in the  function is converted to a temperature integral, 

which can be simplified using the approximation of Coats and Redfern (1964) 

as follows: 

2
/ /

0
exp e d exp e .

T
E RT E RTA ART

T
E


 

   
     

   
  (7) 

This expression for the  function can be approximated as a step function at a 

value of the activation energy of E = Ea, obtaining the following expression for 

the pyrolysis conversion , taking into account the normalization criterion for the 

probability density function of activation energies f(E): 

   
0

1 d d .
a

a

E

E
f E E f E E



       (8) 
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The value of the  function for which the step function changes, i.e., the value of 

 for E = Ea, should be established. Miura (1995) proposed a value of (Ea) = 

0.58, which was found to be valid for a broad variety of biomass samples. 

Therefore, using this value for the  function, and taking the logarithm to Eq. (7), 

the Arrhenius equation for the simplified DAEM is obtained: 

2

1
ln ln 0.6075 .

AR E

T E R T

   
     

   
 (9) 

Considering this Arrhenius equation, Miura and Maki (1998) proposed a 

procedure to determine the activation energy E and the pre-exponential factor A 

of the pyrolysis reaction based on thermogravimetric pyrolysis measurements 

conducted for various heating rates .  

However, the main limitation of this widely used simplified DAEM is its 

restriction to constant heating rates, i.e., linear increases of temperature with 

time. To avoid this limitation, the mathematical procedure of simplified DAEM 

was modified by Soria-Verdugo et al. (2016) to derive Arrhenius equations for 

parabolic and positive exponential temperature increases. Nevertheless, no 

Arrhenius equation available in the literature can describe the pyrolysis kinetics 

under inverse exponential temperature increases, such as those predicted by 

the LCM, Eq. (2). In this regard, the following subsection presents the 

mathematical derivation of an Arrhenius equation, based on the simplified 

DAEM, valid for inverse exponential temperature increases of the solid 

particles, as modeled by the LCM. 
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2.3. Combined LCM and simplified DAEM (LCM-DAEM) 

The pyrolysis of thermally small particles, i.e., Bi < 0.1, can be modeled by 

combining the LCM to characterize the transient heat transfer and the simplified 

DAEM to describe the chemical kinetics. Deriving the inverse exponential 

temperature increase predicted by the LCM, Eq. (2), the time variation can be 

related to the temperature variation as follows: 

 
d

d .
T

t
c T T




 (10) 

Therefore, the time integral in the  function, Eq. (6), can be converted to a 

temperature integral, considering an inverse exponential temperature increase, 

using Eq. (10): 

/

0

e
exp d .

E RT
TA

T
c T T






 
  

 
  (11) 

The temperature integral in Eq. (11) can be rewritten, using a substitution 

method, in terms of a new pair of variables, z = E/(RT) and z = E/(RT): 

 

/

0

z ee
d d .

z

zE RT
T

z
T z

T T z z






 


    (12) 

The solution to this integral is: 

 
   zz e

d e Ei z Ei ,
z

z

z
z z z

z z










  
  (13) 

where Ei(z) is the exponential integral, which can be approximated to (Bleistein 

and Handelsman, 1987): 
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 
 0

e !
Ei ,

z

n
n

n
z

z z

 






  (14) 

and therefore: 

 
 

 0

e !
Ei ,

z z

n
n

n
z z

z z z z

  


 

 
  

  (15) 

Thus, considering these approximations for the exponential integrals, Eq. (13) 

can be expressed as follows: 

 
     

1z

1

z e
d e 1 1 ! z ,

z

z
n n n

z
n

z n z z
z z

    




     
 

  (16) 

which, in terms of the original variables, provides an approximation to the 

temperature integral in Eq. (11) that reads: 

   
/

1E/RT

0
1

e
d e 1 1 ! .

nnE RT
T n n

n

T TR
T n T

T T E T T

 
 

 

   
      

      
  (17) 

Considering typical values of the activation energy of biomass pyrolysis of E  

200 kJ/mol, biomass pyrolysis temperature of T  300 ºC, and the universal gas 

constant R = 8.314 J/mol, a low error would be committed by approximating the 

temperature integral to the first term (n = 1) in Eq. (17), provided that the reactor 

temperature is around 250 ºC above the characteristic temperature of biomass 

pyrolysis, i.e., T - T > 250 ºC. Considering this approximation for the 

temperature integral, the  function, Eq. (11), yields: 

 

2

exp .
ART

cE T T




 
    

 (18) 
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Following the same mathematical procedure as for the original simplified 

DAEM, valid only for linear temperature increases, the exponential expression 

of the  function obtained for inverse exponential temperature increases, Eq. 

(18), is approximated to a step function changing at an activation energy E = Ea. 

Then, according to Eq. (5), the pyrolysis conversion  can be written as follows: 

     
0 0

1 d 1 d d .
a

a

E

E
f E E f E E f E E 

 

            (19) 

Thus, the value of the activation energy for which the step function changes, E 

= Ea, can be determined satisfying the second equality in Eq. (19), that is: 

   
0

d d ,
aE

f E E f E E
 

      (20) 

and, once this activation energy Ea is obtained, the value of the  function (Ea) 

= ie is determined substituting in Eq. (11). To determine the activation energy 

Ea from Eq. (20), a statistical distribution needs to be assumed for f(E), with the 

Gaussian distribution being the most typical assumption (Cai and Liu, 2008; Cai 

et al., 2014): 

 
 

2

0

2

1
exp ,

22

E E
f E

 

 
  

 
 

 (21) 

where E0 is the mean and  the standard deviation of the activation energy 

probability distribution. 

The procedure to determine Ea from the fulfilment of Eq. (20) was followed by 

Miura (1995), using various biomass samples, to determine the proper value of 

the  function for linear temperature increases, obtaining a value of (Ea) = 
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0.58. This procedure was also followed in a previous work by Soria-Verdugo et 

al. (2016) to determine the values of (Ea) for both parabolic and positive 

exponential temperature increases. In this previous work, the pyrolysis chemical 

kinetic data of four lignocellulosic biomasses were employed to calculate the 

proper values of (Ea), obtaining reliable values. Therefore, the calculation of 

the  function value for inverse exponential temperature increases (Ea) = ie 

will also be based on the same kinetic data of pine wood, olive kernel, thistle 

flower, and corncob as in Soria-Verdugo et al. (2016). This kinetic data, 

included in Table 1, were obtained for the distributions of activation energy and 

pre-exponential factor as a function of the pyrolysis conversion reported in 

Soria-Verdugo et al. (2015). 

Table 1. Pyrolysis kinetic data of various lignocellulosic biomass species. 
 

Sample E0 [kJ/mol]  [kJ/mol] A [s-1] 

Pine wood 165.0 2.6 1.57·1012 

Olive kernel 162.2 3.2 4.11·1012 

Thistle flower 154.5 1.6 2.80·1011 

Corncob 183.5 5.0 2.31·1014 

 

Using the mean E0 and standard deviation  of the activation energy, the 

probability distribution f(E) can be built using Eq. (21), and the value of the 

activation energy Ea for which the  function changes can be obtained from 

satisfying Eq. (20). Once the value of Ea is obtained, the value of (Ea) = ie can 

be calculated from Eq. (18). However, for inverse exponential temperature 

increases as those predicted by the LCM, since the  function obtained, Eq. 

(18), depends on the reactor temperature T, the value of (Ea) = ie is also 
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expected to be a function of this reactor temperature. Therefore, the process 

proposed by Miura (1995) to determine (Ea) will be followed for various reactor 

temperatures, to determine the dependence of ie on T.  

As an example, the process to determine ie is shown graphically in Figure 1 for 

pine wood at T = 550 ºC and T = 650 ºC. First, using the kinetic data included 

in Table 1, the probability density function of the activation energy f(E) is built 

employing Eq. (21). Secondly, the approximation of the  function, Eq. (18), is 

used to determine the curve ·f(E). Then, the value of Ea is determined as the 

activation energy for which Eq. (20) is satisfied, i.e., the area under the curve of 

f(E) from this activation energy Ea to infinity equals the whole area under the 

curve ·f(E). Finally, using the simplification of the  function, Eq. (18), the value 

of the  function for this activation energy is obtained (Ea) = ie. Figure 1 shows 

that, as expected, the value of ie is a function of T, due to the dependence of 

the  function on the reactor temperature. For a reactor temperature of T = 550 

ºC, the value obtained for the  function is ie = 0.482, whereas for a 

temperature of T = 650 ºC this value is ie = 0.550. Similar results to those 

shown in Figure 1 for pine wood were obtained for the other three lignocellulosic 

biomass species considered (olive kernel, thistle flower, and corncob) resulting 

in similar values of ie, thus, these results are not shown graphically to avoid 

repetition. In the plots of the  function included in Figure 1, a sharp variation of 

 can be observed in the typical range of activation energies for biomass 

pyrolysis, from 100 to 250 kJ/mol, which justifies the simplification of 

considering the  function as a step function. 
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Figure 1. Process to determine ie. 

To determine the dependence of ie on T, the procedure described in Figure 1 

was repeated for each lignocellulosic sample included in Table 1, varying the 

reactor temperature T from 450 to 750 ºC in intervals of 10 ºC. Similar values 

of ie were obtained for the different samples for each reactor temperature. 

Therefore, the values of ie determined for each biomass specie were averaged 

to obtain the dependence of ie on T. The averaged values of ie are depicted 

in Figure 2 as a function of the reactor temperature T, together with a parabolic 

fitting of the values obtained. The parabolic fitting of ie with T, shown in Figure 

2, follows the equation: 

6 2 31.533 10 2.577 10 0.4745,ie T T  
         (22) 
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with T in ºC. This parabolic relation describes accurately the dependence of ie 

on T, obtaining a determination coefficient R2 for the fitting higher than 0.99. 

 

Figure 2. Values obtained for ie as a function of the reactor temperature T 

(black +) and parabolic fitting (red dashed line).  

The value of ie can be used in the simplification of the  function, Eq. (18), to 

derive the Arrhenius equation for inverse exponential temperature increases. By 

taking the logarithm twice and rearranging terms, the following expression is 

obtained: 

 
  2

1
ln ln ln ln ie

c T T AR E

T E R T
    

      
  

 (23) 

Therefore, using Eq. (22) to calculate the value of ie as a function of the reactor 

temperature T, an Arrhenius equation can be derived for a specific reactor 

temperature. For instance, for thermally small biomass particles in reactors at 

temperatures of 550 ºC and 650 ºC, the Arrhenius equations that describe the 

pyrolysis process read: 

 
2

1
ln ln 0.3070 ,     for  550 º C

c T T AR E
T

T E R T




   
      

  
 (24) 
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 
2

1
ln ln 0.5233 ,     for  650 º C

c T T AR E
T

T E R T




   
      

  
 (25) 

These simple Arrhenius equations describe the whole pyrolysis process of 

thermally small biomass particles when they are fed to a reactor at a higher 

temperature T. Thus, provided that the pyrolysis kinetic parameters, i.e., E and 

A, of the biomass employed are known as a function of the pyrolysis conversion 

, and that the heating parameter c, Eq. (3), is estimated, the calculation of the 

temperature for which each conversion occurs can be carried out by solving the 

transcendental Arrhenius equation for specific values of the pyrolysis 

conversion. Therefore, an estimation of the mass released during the pyrolysis 

of thermally small biomass particles as a function of temperature or time, 

considering Eq. (2), can be made by solving the Arrhenius equation 

corresponding to the reactor temperature employed (see Eq. (24) or Eq. (25)). 

The calculations were done with units of K and s for temperature and time, 

respectively, to be in agreement with the international system of units. However, 

to increase the readability of the paper, temperature values were reported in °C 

and time in min, and consequently, the heating rates and heating parameters 

were reported in K/min and min-1, respectively. 

Since the proposed LCM-DAEM model combines the LCM to describe the 

transient heat transfer problem and simplified DAEM to account for the chemical 

kinetics of the biomass pyrolysis process, it is subjected to the limitations of 

both methods. Therefore, the maximum size of the particles for which the 

proposed model is valid is limited, and must satisfy the condition of Bi  0.1, and 

the pyrolysis reactions are assumed to follow all first-order kinetics, which is a 

general hypothesis of DAEM. In addition, the heating parameter c was 
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considered to be constant during the derivation of the LCM-DAEM model. 

However, the variables affecting the heating parameter c, Eq. (3), might be subjected 

to changes during the biomass pyrolysis, although the range of variation of these 

variables would be restricted by the limited size of the particles imposed by the LCM. 

Thus, considering a constant value of c for the derivation of the model is a reasonable 

assumption. Nevertheless, if information about the variation of the heating parameter c, 

or its affecting parameters, is available, the LCM-DAEM model could be modified to 

account also for variations of c. 

3. Materials and Methods 

3.1. Thermogravimetric Analyzer 

The pyrolysis measurements were conducted in a thermogravimetric analyzer 

TGA Q500 from TA Instruments. The inert atmosphere required for pyrolysis 

conditions was guaranteed by supplying a flow rate of 60 ml/min of nitrogen 3.0 

to the furnace. A small mass of the sample of 10.00.5 mg, composed of 

particles under 100 m, was employed for the tests to limit heat and mass 

transfer effects inside the sample. Thus, using this small sample size, the 

temperature of the sample is assumed to be that imposed by the TGA furnace, 

which in this case will be inverse exponential temperature increases as those 

predicted by the LCM. Considering the sensitivity of the TGA mass 

measurement of 0.1 g and the weighing precision of 0.01%, the sample mass 

used provides a high signal-to-noise ratio. 

To check the validity of the proposed LCM-DAEM model using TGA pyrolysis 

measurements, inverse exponential temperature increases as those predicted 

by the LCM, Eq. (2), should be programmed to the TGA. However, the TGA 
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permits only constant heating rates, i.e., linear increases in temperature with 

time. Therefore, the inverse exponential temperature profiles required were built 

from a series of 25 constant heating rates, as described in Soria-Verdugo et al. 

(2016) for parabolic and positive exponential temperature increases. Two 

different inverse exponential temperature increases, corresponding to heating 

parameters of c = 0.06 min-1 and c = 0.18 min-1, were built to heat the samples 

in the TGA furnace up to two different temperatures of T = 550 ºC and T = 

650 ºC. The heating parameters tested were selected to limit the values of the 

25 constant heating rates composing the inverse exponential temperature 

profiles to operative values for the TGA employed. For the two heating 

parameters and reactor temperatures selected, the constant heating rates 

required to build the temperature profiles range between 0.03 ºC/min and 100 

ºC/min, values that can be handled in the TGA Q500 used. In fact, heating rates 

up to 200 ºC/min can be programmed in this equipment (Soria-Verdugo et al., 

2014). A blank experiment was also conducted for each heating parameter and 

reactor temperature to subtract buoyancy effects, and the repeatability of the 

pyrolysis tests was checked by repeating each run three times, obtaining 

relative discrepancies lower than 0.5%. 

3.2. Biomass Characterization 

The derivation of the Arrhenius equation for the LCM-DAEM model proposed 

was based on the ie values obtained from the pyrolysis kinetics data of four 

lignocellulosic biomass species, typically composed of hemicellulose, cellulose, 

lignin, and low amounts of inorganic matter. Therefore, the validation of the 

model was performed by comparing TGA pyrolysis measurements of non-

lignocellulosic biomass samples to the predictions of the model, to prove the 
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validity of the proposed equations for a broad range of biomass types. In this 

regard, biomass samples of microalgae, which are composed of carbohydrates, 

proteins, lipids, and other minor components, and sewage sludge (SS), which 

comprises organic and inorganic matter, were analyzed. Among the different 

microalgae species, Chlorella Vulgaris (CV) was selected since it is widely 

grown and used (Figueira et al., 2015). 

The basic characterization of the microalgae and sewage sludge tested are 

shown in Table 2. The characterization consists in a proximate analysis, 

performed in the TGA Q500 from TA Instruments, an ultimate analysis, carried 

out in a LECO TruSpec CHN Macro and TruSpec S analyzer, and a heating 

value test, conducted in a Parr 6300 isoperibolic calorimeter. The results for the 

Chlorella Vulgaris sample were reported in Soria-Verdugo et al. (2018), 

whereas the sewage sludge results were taken from Soria-Verdugo et al. 

(2017a). However, in the case of the sewage sludge, the sulfur content was 

measured in the LECO TruSpec S analyzer to include the complete data in 

Table 2.  

Table 2. Results of the basic characterization of Chlorella Vulgaris and sewage sludge 

(PA: Proximate Analysis, UA: Ultimate Analysis, VM: Volatile Matter, A: Ash, C: 

Carbon, H: Hydrogen, N: Nitrogen, S: Sulfur, O: Oxygen, HHV: High Heating Value, db: 

dry basis, daf: dried ash free basis, * calculated by difference). 

 PA [%db] UA [%daf] HHV [db] 

VM A C H N S O* [MJ/kg] 

Chlorella 
Vulgaris 

76.26 13.11 59.06 8.81 11.39 0.66 20.08 21.57 

Sewage 
Sludge 

57.11 34.66 56.46 7.91 8.42 2.83 24.38 15.73 
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A detailed comparison of the results obtained from the basic characterization of 

Chlorella Vulgaris and sewage sludge was carried out in a previous work (Soria-

Verdugo et al., 2017b), where these results were found to be similar to those 

reported in the literature by several authors.  

4. Results and Discussion 

4.1. TGA measurements 

The capability of the TGA to reproduce inverse exponential temperature 

increases as a combination of a series of 25 linear temperature increases was 

checked. Figure 3 shows the time evolution of temperature measured by the 

TGA for the two final reactor temperatures of T = 550 ºC and T = 650 ºC and 

the two inverse exponential temperature profiles, with heating parameters c = 

0.06 min-1 and c = 0.18 min-1, tested. Despite the fact that the curves are 

composed of 25 constant heating rates, the inverse exponential form of the 

temperature profiles measured by the TGA is smooth. The measured 

temperature increases are depicted in Figure 3, and the fitting of these data to 

inverse exponential increases in the form of Eq. (2) resulted in determination 

coefficients R2 > 0.999 in all cases. Therefore, the series of linear heating steps 

programmed to the TGA accurately describes the inverse exponential 

temperature increases required to validate the proposed LCM-DAEM model.  
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Figure 3. Temperature profiles measured in the TGA for different reactor 

temperatures and heating parameters. 

The TGA inverse exponential temperature profiles shown in Figure 3 were 

employed to conduct pyrolysis tests using Chlorella Vulgaris and sewage 

sludge samples. The TG curves obtained, depicting the time evolution of the 

pyrolysis conversion , are represented in Figure 4 for both samples. Clear 

differences are observed for the pyrolysis tests conducted for different inverse 

exponential heating parameters. A faster pyrolysis process occurs for the tests 

at c = 0.18 min-1 which last around 10 min, in contrast to the approximately 50 

min required by the pyrolysis experiments at c = 0.06 min-1. There are also 

differences between the TG curves corresponding to the same heating 

parameter and different reactor temperatures due to the faster heating process 

required to attain a higher temperature following the same inverse exponential 

temperature curve. Similar TG curves were obtained for Chlorella Vulgaris and 

sewage sludge, characterized in both cases by steep increases of the pyrolysis 

conversion with time, as a consequence of the vigorous release of volatile 

matter, especially for the faster heating, c = 0.18 min-1. However, Figure 4 

shows also differences for the TG curves of Chlorella Vulgaris and sewage 

sludge for the lower heating parameter of c = 0.06 min-1 tested. In these cases, 
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the solid residue generated after the release of highly volatile matter contained 

in sewage sludge, during around 20 min, seems to react as time progresses, 

resulting in a slight increase of the conversion with time during the final part of 

the pyrolysis test, t > 20 min. In contrast, this effect was less pronounced for the 

Chlorella Vulgaris sample. 

 

Figure 4. Pyrolysis conversion curves for Chlorella Vulgaris and sewage sludge. 

4.2. Validation of the LCM-DAEM model proposed 

The validation of the proposed LCM-DAEM model was based on the 

comparison of the pyrolysis conversion measured in TGA with the predictions of 

the model for both Chlorella Vulgaris and sewage sludge pyrolysis. This 

comparison was carried out for reactor temperatures of T = 550 ºC and T = 

650 ºC and for the two inverse exponential temperature profiles tested, 

corresponding to heating parameters of c = 0.06 min-1 and c = 0.18 min-1. The 

prediction of the LCM-DAEM model is obtained by solving the corresponding 

Arrhenius equation, i.e., Eq. (24) for T = 550 ºC and Eq. (25) for T = 650 ºC, 

to determine the temperature of the sample T for specific values of the pyrolysis 

conversion . To that end, the evolution of the pre-exponential factor A and the 

activation energy E of the biomass sample with the pyrolysis conversion  
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should be known. The evolution of A and E of Chlorella Vulgaris and sewage 

sludge with the pyrolysis conversion , for a range between 5% and 95% with 

intervals of 1%, was reported in Soria-Verdugo et al. (2017b), and they can also 

be observed in the supplementary material of this paper. These evolutions of 

the pre-exponential factor A and activation energy E with the pyrolysis 

conversion  were obtained by applying the simplified DAEM to TGA pyrolysis 

measurements conducted using nine different constant heating rates. 

The kinetic parameters of the pyrolysis reactions A and E reported in Soria-

Verdugo et al. (2017b) were introduced in the transcendental Arrhenius 

equations, Eq. (24) for T = 550 ºC and Eq. (25) for T = 650 ºC. These 

Arrhenius equations have no analytical solution; thus, they should be solved 

using some simple numerical method such as the Newton-Raphson technique. 

The Arrhenius equations were numerically solved for values of the pyrolysis 

conversion  between 5% and 95% varying with intervals of 1%. The estimation 

of the temperature T in the whole range of pyrolysis conversion  was 

determined, for both Chlorella Vulgaris and sewage sludge, for pyrolysis reactor 

temperatures of T = 550 ºC and T = 650 ºC, using the two inverse exponential 

temperature profiles measured experimentally in TGA (heating parameters of c 

= 0.06 min-1 and c = 0.18 min-1) in the Arrhenius equations. Therefore, the 

complex combined heat transfer and chemical kinetics problem of biomass 

pyrolysis is simplified with the proposed LCM-DAEM model to solve a simple 

Arrhenius equation. 

The predictions obtained from the proposed LCM-DAEM model for the evolution 

of pyrolysis conversion  with temperature T were compared with the 
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experimental measurements performed in TGA. As an example, Figure 5 

represents the  - T curves measured in TGA together with the LDM-DAEM 

model estimations for the pyrolysis of both Chlorella Vulgaris and sewage 

sludge for the case of the lower reactor temperature and heating parameter, T 

= 550 ºC and c = 0.06 min-1. The experimental curves of  versus T are 

obtained directly from the pyrolysis conversion curves shown in Figure 4, 

considering the temperature profile imposed by the TGA to convert time into 

temperature. The numerical results obtained from the LCM-DAEM model for the 

evolution of the pyrolysis conversion  with temperature T, obtained solving the 

corresponding Arrhenius equation and depicted in Figure 5 for a pyrolysis 

conversion range between 5% and 95% in intervals of 1%, are in good 

agreement with the experimental measurements carried out in TGA for both 

Chlorella Vulgaris and sewage sludge, even though these two biomass samples 

have a totally different composition compared to lignocellulosic biomass. 

 

Figure 5. Comparison of the pyrolysis conversion of Chlorella Vulgaris and 

sewage sludge as a function of temperature experimentally measured in TGA 

and estimated by LCM-DAEM model for T = 550 ºC and c = 0.06 min-1. 
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The results of the comparison between LCM-DAEM model predictions and TGA 

measurements for the rest of cases, i.e., different reactor temperatures and 

heating parameters, are similar to those shown in Figure 5. The Root Mean 

Square Error (RMSE) was calculated for each case to quantify the deviation 

between the LCM-DAEM estimations and the TGA experimental measurements 

of temperature for each value of the pyrolysis conversion. These deviations of 

the proposed LCM-DAEM model from the experimental measurements, 

regarding the RMSE of temperature, are reported in Table 3 for the pyrolysis of 

both Chlorella Vulgaris and sewage sludge under the different reactor 

temperatures and heating parameters analyzed. The values obtained for the 

RMSE of temperature are lower than 5 ºC in all cases, therefore, the proposed 

LCM-DAEM model was proven to accurately describe the pyrolysis of biomass 

under inverse exponential temperature increases, as those to which thermally 

small particles are subjected. 

Table 3. Root Mean Square Error (RMSE) [ºC] between temperature measured 

by TGA and estimated by the LCM-DAEM model for each value of the 

conversion between 5% and 95%. 

 c = 0.06 min-1 c = 0.18 min-1 

T = 550 ºC T = 650 ºC T = 550 ºC T = 650 ºC 

Chlorella 
Vulgaris 

1.6 2.6 2.9 4.2 

Sewage 
Sludge 

1.5 3.8 2.3 4.7 

 

The estimations of the proposed LCM-DAEM and the experimental pyrolysis 

measurements conducted in TGA were also compared in terms of the average 
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relative error of temperature for each value of the pyrolysis conversion between 

5% and 95%. This relative error was defined as the temperature deviation 

between the model prediction and the experimental measurement divided by 

the experimental temperature. The values of the average relative error obtained 

in each case for both Chlorella Vulgaris and sewage sludge can be found in 

Table 4. An average relative error of temperature below 1% is obtained in all 

cases, confirming the accuracy of the proposed LCM-DAEM model.  

Table 4. Average relative error [%] between temperatures measured by TGA 

and estimated by the LCM-DAEM model for each value of the conversion 

between 5% and 95%. 

 c = 0.06 min-1 c = 0.18 min-1 

T = 550 ºC T = 650 ºC T = 550 ºC T = 650 ºC 

Chlorella 
Vulgaris 

0.24 0.36 0.46 0.64 

Sewage 
Sludge 

0.23 0.42 0.30 0.71 

 

5. Conclusions 

A simple model combining the LCM and the simplified DAEM was proposed to 

describe the pyrolysis process of thermally small biomass particles. The model 

is based on an Arrhenius equation accounting for both the inverse exponential 

temperature increase predicted by the LCM and the chemical kinetics described 

by the simplified DAEM. The Arrhenius equation on which the model is based 

was derived, for a variable reactor temperature, considering the pyrolysis 

chemical kinetics data of several lignocellulosic biomass samples. Solving this 
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simple Arrhenius equation, the evolution of the pyrolysis conversion of thermally 

small biomass particles subjected to a higher reactor temperature can be 

directly estimated. 

The validation of the model was based on TGA measurements of the pyrolysis 

of Chlorella Vulgaris and sewage sludge under inverse exponential temperature 

profiles. The deviation between the LCM-DAEM model predictions and the TGA 

measurements for the relation between pyrolysis conversion and temperature, 

regarding the RMSE of temperature, is lower than 5 ºC for all the cases tested. 

Concerning the average relative error between the temperatures estimated by 

the model and measured by the TGA, deviations below 1 % were obtained in all 

cases. Therefore, the proposed LCM-DAEM model was proven to accurately 

describe the evolution of the pyrolysis conversion with temperature for thermally 

small biomass particles. Furthermore, the difference in composition between the 

lignocellulosic samples, used to derive the Arrhenius equations, and the 

microalgae and sewage sludge, employed for the experimental measurements, 

guarantees the validity of the simple LCM-DAEM model proposed for a broad 

range of solid fuels, provided that the particle size is sufficiently small. Once the 

model was validated with TGA experimental measurements, it could be 

extended to consider also the dynamics of industrial pyrolysis reactors.  
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