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Abstract The research field of affective computing aims to improve human-machine interaction.
One of the main goals is to enable autonomous systems to recognize and adapt to human emotions.
Machine learning is able to find an attribution between physiological reactions and underlying emotions.
In order to provide labelled training data, human subjects annotate emotional stimuli in experimental
studies. Three major challenges of the resulting continuous annotation data are: 1. Finding a suitable
representation of this complex data, 2. Comparing the annotations of different subjects, 3. Combining
the annotations to provide reliable ground truth for machine learning. Since previous research did not
take into account the continuous nature of the annotation data, a functional data approach is intro-
duced: Annotations are represented as smooth functions in a low-dimensional functional eigenspace.
Comparison and ground truth estimation is then performed using simple statistical methods.
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Chapter 1

Introduction

1.1 The Role of Emotions in Human-Machine Interaction

The emergence of an increasing number of autonomous gadgets and electrical devices such
as self-driving cars or robots that collaborate closely with humans, brings up numerous new
challenges pertaining to effective user interaction and engagement. One of the most important
ones is that machines should be able to adapt their behaviour to the users instant by instant
and thus to provide a continuously engaging interaction experience. In this context, the possi-
bility to determine and act according to the emotional state of the users is of great importance
whenever human-machine interaction is required. For instance, in a multi-robot factory these
emotion sensing machines would not only interact with workers, but also prompt them to
take some rest when they feel tired, increase the complexity of tasks when they are bored, or

initiate an emergency stop procedure as soon as they show signs of evident fear [1].

There has been a growing interest in developing systems and technologies that are able to
recognise and interpret the emotional state of the user. This development was enhanced by the
book "Affective Computing" [2] of MIT Media Lab Professor Rosalind Picard, who established
this research domain two decades ago. The availability of cheap, light-weight and portable
sensors further accelerates the progress of the field of research. Physiological reactions such as

galvanic skin repsonse, heart rate, respiration rate, muscular activity are used to improve the
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human-machine interaction so that an adaption to the users emotions may soon be a common

feature of autonmous devices.

But these sensor data need to be attributed to internal human emotions, and this is still a
largely unsolved problem: Emotions are latent and unaccessible manifestations of the human
nature. Whenever we want to attribute physiological reactions to them, we need to understand
which stimuli triggers certain emotions and how they manifest themselves on the physiological
level. In order to study this relation scientifically, a reliable annotation of emotional stimuli is
required that are presented to human subjects. The attribution between emotion and physio-

logical response can then be established using supervised learning strategies.

1.2 Annotation Strategies for Emotions

The aforementioned association problem led to its own experimental study design. In these
studies, human subjects are exposed to emotional stimuli and not only their physiological re-
sponses are measured but also their emotional interpretation of the stimuli. These annotations
then can be used as labels for the underlying emotions that were evoked due to the stimuli.
The labels serve as the ground truth pertaining to the affective experiences. This facilitates the
use of statistical learning methods that attribute the data from the physiological response to

an emotion [3].

The modalities of the emotional stimuli correspond to the human senses. Researchers of-
ten provide stimuli in form of videos [4], music [5] or photos [6] to the participants. The
physiological responses of the subjects are recorded using modalities such as biosignals (e.g.
heart rate, respiration rate, muscle activity) [7, 1], speech signals [8] and/or computer vision

based approaches [9].

In most of the studies, the acquired annotations are in a discrete and time-independent form.

That is, the subjects report their affective experience on questionnaires using psychometric
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rating scales after they have been exposed to the video stimuli [10, 11]. In this case a partic-
ipant provides one single rating for the complete duration of the stimuli. In studies, where
continuous stimuli (e.g. video/audio clips) are used, a more continuous form of ratings is
desirable [12]. This is especially true for video stimuli due to their dynamic nature. They are
known to evoke specific emotional responses in a relatively short period of time [13, 12] and
the affect-evoking content of the videos can differ for different segments of the clip. To provide
annotation tools for continuous stimuli, several rating interfaces that allow for time-continuous
self-reporting have been developed in the past decade. The most prominent are FEELTRACE
[14], Gtrace [15], Emotion Slider [16], Affect Rating Dial [17] and the EMuJoy [18] frame-

works.

When using annotation tools for both discrete and continuous stimuli, an operationalisaton
of emotion is essential. Despite the lack of consensus on a holistic model of emotion [6], re-
searchers in psychology make use either of the two following models: Discrete emotion classes
or dimensional models of emotion [19, 20]. One commonly used continuous model is the two-
dimensional circumplex model of affect, also called the valence-arousal model [21]. Whereby,
as per to this model, the conscious experience of the raw emotion at any given moment is
defined as composed by two main dimensions: A horizontal dimension called valence that
ranges from displeasure to pleasure, and a vertical dimension called arousal that ranges from
sleepiness to high tension. Hence, by using this model, commonly occuring emotional states,
such as scared, pleased, relaxed, bored etc., can be expressed in terms of coordinates of va-
lence and arousal in a two-dimensional space [22]. Therefore, the valence-arousal model is
widely adopted by the affective computing community, where researchers use tools based on
this model to acquire annotations/ratings from participants about their affective experiences

during a study [3].

Irrespective of the plethora of tools that exist for annotations, several problems still exist.
Using annotation tools that use a one-dimensional operationalisation (Affect Rating Dial), the

subject is not able to report valence and arousal simultaneously [17]. This problem is easily
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reduced by two-dimensional annotation tools but they also have deficiencies. For instance,
both FEELTRACE and Gtrace are based on a computer-mouse interface and require the subject
to continuously press the mouse button to perform annotations. The same applies for EMuJoy,
which requires the users to press a mouse button to report their climax experiences [18]. This
requirement of continuously pressing a button can be adverse to the usability of these systems,
since it increases the physical and cognitive load for the users [23, 3]. Based on these and other
usability issues associated with the use of computer-mouse interfaces, several works propose

the use of joystick based systems [18, 3].

1.3 Joystick-based Continuous Annotation of Emotion

To overcome the shortcomings mentioned, a joystick-based annotation system was developed
at the Institute of Robotics and Mechatronics of the German Aerospace Center [24]. The users
continuously annotate their affect state by moving or holding the joystick in the different
regions of a user-interface (UI). The different regions of the UI imply different affect states
that are characterised by distinct valence and arousal levels. The Ul design is based on the
aforementioned valence-arousal affect model [25] (see Figure 1.1, left). One difference be-
tween the original valence-arousal model and the UI used in [18], is an UI extension through
the use of self-assessment-manikins (SAM) [10] to the coordinate axes of the interface. The
manikin figures depict different valence (on x-axis) and arousal (on y-axis) levels and serve as
useful guides for the participants while they report their affect state [10]. Also, the SAMs are
non-language dependent indicators of valence and arousal levels, since their addition to the
interface is an improvement over tools where users are guided using english based description
of valence and arousal states e.g. the label "scary" might be interpreted differently by people
with different language and cultural backgrounds [6]. The left panel of Figure 1.1 shows the

resulting annotation Ul.

The usage of a joystick over other input peripherals (e.g a computer-mouse or a keyboard) is

motivated by the following factors:
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* In comparison to previously mentioned mouse-based systems, the users do not have to
continuously press any button to report their affect state.

* The joystick features a return spring that automatically realigns the joystick when the
user has stopped reporting [18]. The return spring also provides a form of simple force-
feedback to the user.

* A joystick is by design more ergonomic than a standard computer mouse, as both the
hand and wrist positions are at a neutral angle when holding a joystick.

* The location and movement of the pointer in a UI for a joystick is relative to the centre
(i.e. neutral) position, whereas in a computer-mouse they are always relative to last
location of the pointer. Thus, for a joystick the user can roughly estimate the position
of the pointer without having to visually locate it on the Ul This is not the case for
a computer mouse. Therefore, the cognitive load while using the joystick should be
presumably lower than using a computer-mouse for annotations.

* The use of joystick brings an element of gamification into the annotation process, thus

probably improving user enjoyment [3].

During the experiment, the Ul is displayed in the upper right corner of the video (see Figure
1.1, right panel). This allows the participant to simultaneously view the videos and annotate
his affect state. During the experiment the subject is instructed to annotate her/his perceived
affective experience by positioning the red cursor in the appropriate region of the Ul. When
the elicited affect changes, the participant is supposed to change the position of the cursor
to the region that best characterizes her/his perceived affect state (as characterised by the
valence-arousal levels), thereby continuously annotating her/his affective response to the
video.

Figure 1.2 shows a sample result from the recorded data of the joystick-based annotation tool.
The x and y coordinate values of the joystick cursor annotate the valence and arousal levels
during the course of the continuous stimuli. The resulting trajectory of the previous positions
is made visible using a black path. The two-dimensional approach allows the user to annotate
the video stimulus freely and without restrictions. For the purpose of comparison, the resulting

data can be structured according to subjects (Figure 1.3) or according to the video stimuli
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Figure 1.1: The annotation UI (left) and how it was embedded in the video stimuli (right).
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Figure 1.2: The annotations made by a single subject for scary-2 video stimuli. The red dot
marks the actual position of the joystick cursor at the timepoint t. The line shows the annotation
trajectory that the subject already made.
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(Figure 1.4).

Figure 1.3 shows the affect state annotation values of a typical subject for the entire duration
of the test. The data consists of the annotations for the video stimuli. The annotations are
colour coded according to the emotion that the video stimuli were expected to elicit. For the
experiment, the emotion label associated with each video was determined through an initial
evaluation, undertaken by a different set of participants [26]. Furthermore, the order of all
the video stimuli was randomly shuffled and each subject was exposed to a different sequence.
Also, videos eliciting the same type of emotional response would never be shown one after
another, and each video was followed by a blue screen to isolate the impact of each video on
the affect state of the participant and to avoid carry-over effects. The total number of videos
in a sequence was 18, i.e. 8 videos for emotion elicitation (2 for each emotion label), 9 blue

screens and 1 video at the start of the sequence.

Figure 1.4 shows a comparison of 15 annotations for the same video stimuli. The left plot
shows annotations for an amusing video stimuli, the right plot for a scary video stimuli. The
different colors indicate different subjects. By structuring the data in this manner we see that
there are signs for a congruent annotation behaviour across individuals. For the amusing video
one would assume that this video evokes higher valence and arousal levels which is reflected
by the annotation data. The same applies for the scary video which is expected to elicit high

arousal but low valence levels.
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1.4 Methodological Challenges of Continuous Annota-

tions

In order to use continuous annotation data as a means to associate emotions with physiological
reponses, several challenges have to be addressed. While some of these tasks pertain to the
statistical learning of subjective annotations in general [27], major challenges are a result of
the continuous nature and complexity of the data [3]. Figures 1.3 and 1.4 illustrate the need
for a suitable statistical methodology that allows to organise, analyse and interpret continuous

annotations. More precisely, the following challenges have to be addressed:

* Representing Multiple Subjective Ratings: There are close connections to longitudinal
methods since the data can be regarded as massive repeated measures on each subject
[28]. This methodology often models the expected values as explicit low-dimensional
functions of time [29]. But it is not guaranteed that it allows enough flexibility to repre-
sent the experimental annotation data. Also there are close connections to the analysis
of high-dimensional data. A naive approach would be to use the data points as input to a
multivariate analysis [30]. However, this would not take the serial structure (of time or
space) into account and thus may lose power by neglecting inherent structure or result
in non-smooth estimates [29].

* Comparing Multiple Subjective Ratings: In order to compare which of the video stimuli
yielded the highest levels of valence and arousal another traditional methodology would
calculate an average for each of the stimuli over the time course of the experiment
and compare those means. Using ANOVA one then could analyse the data and with
either planned orthogonal contrasts or post-hoc tests, could ascertain which arithmetic
means, if any, differed from the others [30]. Yet, it is obvious from Figure 1.3 that such
an average would obscure interesting time-based variations in the annotations [31]. A
second traditional approach for the comparison would be to treat each observation as a
repeated measure (RM) and conduct an RM ANOVA or RM MANOVA. None of them is
satisfactory because of the obvious autocorrelation between successive points: With the

subjects using a joystick, observations are not independent because the cursor must pass



10 CHAPTER 1. INTRODUCTION

through intermediate points on its way from one desired position to another. The data
also might violate stationarity. Although one could conduct correlational analyses among
subjects, factors such as different reaction times and individual use of the valence-arousal
plane could obscure relations in the data. Thus, traditional statistical methodology would
allow us to answer only simple questions, and then, only with certain independence
assumptions violated [31].

* Combining Multiple Subjective Ratings: Any given stimulus is continuously annotated by
several participants, resulting in multiple subjective annotations for that stimulus. For
further machine learning it is often desired to have one single ground truth annotation

which is representative for a set of subjective annotations [32, 33, 3, 27].

To overcome these challenges, another approach is more suitable to the continuous nature of
this data. It extends the classical statistical techniques by changing the perspective on the data
considering each observation a continuous function [34]. Figure 1.5 illustrates this change of
perspective. The upper left corner shows the domain of a data matrix in a standard situation:
Normally one would organise the data matrix X € R™*? in a manner that each of the n subjects
are paired with each of the p covariates and to each pair a response x;; is assigned as the
consequence of the experiment or data collection. Moving down to the lower left corner would
correspond to the situation where n is effectively infinite and population characteristics (all
possible human subjects) are analysed. This is not of interest here. The lower right corner
shows that one may even could have an infinity of subjects or cases to consider. Also this is be-
yond the scope of this thesis. Moving to the upper right corner is now the interesting case: The
number of subjects are fixed and the number of variables p are allowed to increase without limit
and even beyond countability so that they define a continuum. This makes it natural that the
experiment or data collection of each subject i yields its own function x;(t). This change of per-

spective resulted in an own branch of statistics named functional data analysis [35, 36, 37, 38].
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entities (n) can be finite or infinite. The number of covariates (p) that are associated with each
observation can be finite or lie on a continuum.
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1.5 Aim of the Thesis

The aim of the thesis is twofold: 1. to analyse the data of the joystick-based annotation tool with
respect to the aforementioned challenges and 2. to introduce state-of-the-art methodology from
functional data analysis for a problem class where each observation is a function of arbitrary

dimension. Thus, the work presented in this thesis aims to:

* remove noise from the data and represent several subjective discrete ratings by annota-
tion functions using P-Splines,

* compare complex multivariate annotation functions from multiple subjects using multi-
variate functional principal component analysis,

* combine these multiple subject ratings in a characteristic annotation for each video
stimuli in order to estimate ground truth by exploiting the eigenfunction space of the

annotation functions of each video

E‘ function space E
Qiscrete Annotation DatD

< Annotation Functions >

—

Eigenfunction Representation

\

——

. 4
; ]

Figure 1.6: Structure of the thesis according to the perspective on the annotation data.

The second goal for the methodology takes up what we already saw from Figure 1.5, the
change of perspective on the data. This will be a recurring topic throughout the thesis and the

main idea behind the thesis structure as depicted in Figure 1.6. The experimental annotation
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data consisting of thousands of discrete valence and arousal pairs is the starting point for the
analysis. As common in statistics, it can be represented using a suitable vector space.

In Chapter 2, we introduce how the transition in perspective that was shown in Figure 1.5
can be made. By introducing basis function representation using P-Splines, a non-parametric
method that allows not only a functional representation for discrete data is used. It also
ensures that the resulting functions have beneficial properties such as reduced noise and
high smoothness and also allows estimation of smooth derivatives. By transforming discrete
annotations into annotation functions the data is represented using a function space. Chapter
3 explains a framework for simultaneously comparing these annotation functions. Due to their
multivariate nature (valence and arousal dimensions) we introduce a very general method
that allows the analysis of even much more complex functional obervations. The resulting
eigenfunction representation of the annotation functions is a hybrid in a sense that it combines
discrete and functional representation and exists both in vector and function space. In Chapter
4, we show how to benefit from the theoretical properties of this eigenfunction representation
in order to combine the annotation functions of all subjects for estimating a characteristic
annotation for each video stimuli. Finally, we will critically discuss the results and the generality

of the methodology presented here.
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Chapter 2

From Discrete Measurements to

Functions

In this chapter we introduce the main ideas of functional representation. It is shown how
discrete measurements can be turned into smooth functions. The methodology is illustrated
based on the annotation data but its generality allow many other applications.

The foundation for this approach is the use of linear combinations of simple basis functions.
This computational technique is well suited for representing information about functions. It
also provides the flexibility that is needed for complex data as the annotation trajectories and
links it with the computational power to fit even hundred of thousands of data points. Due to
its linear structure this approach allows to express the required calculations within the familiar

context of simple matrix algebra [35].

The chapter consists of two parts:

* The first part aims to elaborate the P-Spline method that will be used for the annotation
data. After some preliminaries the general concept of basis representation is introduced.
The focus here lies on a functional representation using basis splines by having a closer
look of its components in order to understand how these very simple objects can be used
to form a functional representation of rather complex functions. Finally the basis spline

approach is extended by a roughness penalty to assure smooth functions.

15
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* In the second part the P-Spline approach is applied to the annotation data to form
annotation functions. The parameters for the representation will be discussed by showing

the behaviour of different quality criterions.

Throughout this chapter the main computations were implemented using the fda package for

R [39, 40].

2.1 Estimation of Functions

The basic idea of functional data analysis is that the observed data are generated from underly-
ing continuous functions [38]. The recorded data for each observed entity consists of discrete
data points x,,...,x, taken at time or location points t,,..., t,. This temporal ordering is
indicated by simply writing x(t;).

In contrast to classical parametric statistics where the data is assumed to be independent
samples from a certain distribution, FDA assumes that the data points arise from a smooth
function X. This means that x(t;) is considered to be an observation of %(t;).

Replications of this underlying function may be available. By replications we mean multiple

samples of a single function. The ith replication of the underlying function can be written as

X, (t).

For the annotations data and for observational data in general it can be assumed that the

sequence of observed values are commonly affected by noise [38, 31],

x(t) =x(t)+e(t) 2.1)

X=X+e¢, (2.2)

which means that the underlying smooth function ¥ might be obscured by some error ¢.
Note that (2.1) refers to one single arbitrary data point and (2.2) uses vector notation to

denote all n observations on the function x, organised in a row vectors, for instance x =
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(x(ty),...,x(t,)T e R,

The main goal is now to estimate X(t) from the data x(t) and two popular approaches exist:
Through basis approximation and by convolution with kernel functions [37]. The latter ap-
proach was taken in previous work [30] by using a Savitzky-Golay filter [41] but only in order
to reduce the observational noise. The approach taken here aims not only to reduce the noise
but to estimate the complete function X(t) so that it can be evaluated for any arbitrary argu-
ment t in the observed domain. This is why the basis approximation methods are preferred

here.

2.1.1 Preliminaries for a functional representation

In order to prepare the raw annotation data to be represented by functions, two steps will be
necessary: A proper notation similar to equations (2.1) and (2.2) will be introduced to avoid
confusion and to keep the link between methodological theory and annotation data as close as

possible. As a first consequence the data is harmonised to simplify the subsequent calculations.

Formalisation of the Data

As seen in the descriptive analysis the annotation data can be structured according to the

subjects-video combinations. The raw annotation data for each video i = 1,..., 8 consists of
j =1,...,30 continuous annotations X; ;,...,X; 3o. Each annotation for video i and subject j
was sampled at discrete time points t,, to,..., L, - The data for one single data point in an

annotation can be written similar to (2.1),

(60 = [11(6) xae0)| R 23)

(i=1,...,8, j=1,...,30, tkE{tl,...,tnU})

More compact a subject’s annotation of one video can be written in matrix notation similarly

to (2.2),
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Xij == I:Xl X2:| S Rnisz, (tlJ ;é tij’) (24)

Thus each x;;(t) is entirely determined:

* i and j are given by video and subject.

* t, represents the single time stamp that was recorded with the annotation data. t;
contains all time stamps.

* x,(t;) and x,(t,) correspond to valence and arousal at time t,. X, denotes the whole

annotation on valence axis as shown in Figure 1.3.

The relation of the annotation function that we seek to estimate and the raw annotation data

can thus be expressed as,

x;(t) = X;;(¢) + (t). (2.5)

Resampling

As a first step the timings of the annotations have to be made equal for each video. In the
formalization above we referred to this as t;; # t;; because the timings can differ between
subjects due to technical reasons. We will go into this more deeply since it will exacerbate the

consequent analysis heavily.

The problem becomes clear with an appropriate illustration. Figure 2.1 shows the differences
in the sampling times between subjects for the same video. Note that the data is taken from
the last 20 elements of the timing vector for each video. These 20 data points span a temporal
interval of one second. Each dot indicates at which time a data point was recorded. Although
the sensor is supposed to have a constant sampling rate of 20hz (meaning 20 data points per
second or every 50 ms) [26] the sampling points between the subjects vary strongly. A second
issue lies in the unequal lengths of the different timing vectors. This also becomes visible here

by means of the different temporal positions of the end points. A possible reason for this lies
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in the method that was used to label the random annotation sequences [30]. The non-equal

samplings detoriate this issue by adding small temporal distortions.
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Figure 2.1: Raw sampling times (left) and the effect of resampling (right)

However, when identified, this problem can be overcome easily by interpolation and resam-
pling the data using a shared time grid for each video. Again an illustration makes the matter

clear instantly.

The final result gives us the individual annotations on a joint time grid for each video. Formally
we now ensured that t; = t;;. Details on the interpolation and the resampling strategy are

given in the appendix.

2.1.2 Basis Representation

The smooth function that we aim to find is now estimated through basis representation. The
intuition of a basis function system is very similar to the basis system known from linear
algebra. Accordingly it can be described as a set of known functions {¢,(t),..., ¢,(t)} that

are mathematically independent of each other and have the property that any function can be
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approximated arbitrarily well by taking a weighted sum or equivalently a linear combination
of a sufficiently large number of these functions. The elegancy of this approach is that once
the basis functions have been determined, the basis approximation is linear in these variables
and the fitting becomes simple [42]. This means that basis function procedures represent a

function x(t) by linear expansion

K

x(t) ~ %(1) = > e di(t). (2.6)

k=1

By defining ¢ € R¥*! as the vector of the coefficients ¢, and ¢ as the functional vector whose

elements are the basis functions ¢, ..., ¢k, (2.6) can be expressed in matrix notation as,

i~clgp=¢'c (2.7)

An exact representation or interpolation is achieved when the number of basis functions ex-
ceeds the number of observations of the function, n < K. Therefore the degree to which the
data are smoothed as opposed to interpolated depends highly on the number K of basis func-
tions. This means that a basis representation is not only defined by the underlying basis system

but also by K.

Another advantage of basis representation is that derivatives of arbitraty order can be ex-
pressed in simple expressions. If D,, denotes the operation of taking the m-th derivative, then

the derivatives are only based on the derivatives of the basis elements but not on the weights,

M)~

D, %(t)= > ¢D,¢,(t)=c'D,¢. (2.8)

k=1
This equation also underlines the importance of the choice of basis, because bases that work
well for function representation may give poor derivative estimates. This is becasue an accurate
representation of the observations may force X to have small but high-frequency oscillations

that have bad consequences for its derivatives [37, 42, 35].
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2.1.3 B-Splines

In theory, any basis function system that satisfies equations (2.6) and (2.7) in terms of linearity
and independence would be suitable. But ideally, the bases should have features that match
those known to belong to the functions being estimated. This makes it easier to achieve a
satisfactory approximation.

This is why in practice most basis representations involve either a Fourier basis for periodic data
or a B-Spline basis for non-periodic data. As seen in Figure 1.3 the annotation data appears to
be highly complex and non-periodic which is why a B-Spline basis representation is preferred
here.

Since the goal is to derive a functional representation using P-Splines the following section is
structured similar to [43, 42, 35]: First spline functions are introduced and is shown how they
can form a spline basis. After describing important characteristics of B-Splines the estimation
of a B-Spline representation is derived using simple least-squares. Finally the problem of

overfitting that comes with increasing basis size is discussed.

Spline Functions

Before deriving a rigorous mathematical definition of spline functions, their construction be-
comes intuitively clearer by giving an informal motivation. The aim is to approximate the
annotation data in (2.3) and (2.4) as flexible as possible to be able to approximate any kind
of annotation behaviour. In order to account for local changes in the function (e.g. jumps,
wiggles or changes in shape) the approximation is defined locally or piecewise. The resulting
approximation then consists of several basis functions, each of them representing a partition
in the domain of the data.

The main challenge is to fuse the piecewise functions in a way that the resulting function is

continuous at the points where two functions border each other.

More technically, a B-Spline basis function consists of (I + 1) polynomial pieces of degree
[, which are joined in an (I — 1)-times continuously differentiable way. The positions where

two functions border each other are called knots. All B-Spline basis functions are set up based
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on a given and arbitrary knot configuration, but in practice it is very common to place knots
equidistantly, which simplifies the computations [44, 45].
Figure 2.2 is referring to [43] and illustrates this matter. For example the top right panel shows

a linear basis function (degree [ = 1) consisting of 1 + 1 = 2 linear elements.
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Figure 2.2: Single B-Spline basis functions for degrees [ =0, 1, 2,3 with equidistant knots

The top left panel of Figure 2.2 also makes the following definition of B-Splines clear: For
polynomial degree of [ = 0 the B-Spline basis is defined by constant functions between two

knots «; and x;,,

Lk <t <kKjn
BY(t)=1I(k; <t <Kjq)= J=1,...,d—1 (2.9)

0, otherwise

where I(-) denotes the indicator function. Higher order B-Splines are based on combinations

of piecewise polynomials of degree [ as shown in the other panels,

BJ(0)= ——TI(x;y < £ < K)ol S £ <Ky, (2.10)

j j—1 j+1 J



2.1. ESTIMATION OF FUNCTIONS 23

In the top right panel, each basis function is defined by two linear segments on [«x;_;; k;) and
[k;; k1) which are continuously combined at knot ;.
For an arbitrary order [ a recursive definition of B-Splines is recursively defined by

—Kj +

t K.,q—t
Bl(t) = —— LBl (1) + —Z—— B (o). (2.11)
j Ki— K j

j+1 T Ky
To use this recursive definition of B-Splines for the calculation of basis functions we need 21
outer knots outside of the domain [a; b] in addition to the m interior knots x1,...,K,,. This

leads to an expanded knots sequence K;_;, K1_j415- -« s Kmai—1> Kmai-

It can be shown that the functions defined through (2.11) form a basis for function approxi-
mation [46]. That is, every continuous function in the function space can be represented as a
linear combination of basis functions, just as every vector in a vector space can be represented
as a linear combination of basis vectors. This can be denoted in terms of the general basis

representation we introduced at the beginning of this chapter in equation (2.6),

K

d
#(6)= > cepp(t) =D 7,B;(t). (2.12)
j=1

k=1
Thus, X(t) can be represented through a linear combination of d = m + [ — 1 basis functions.
Such a basis is shown in Figure 2.3 where function values on the domain [k, k4] would be
approximated by 10 basis functions. The single basis functions are separated using different

line types.

Characteristics of B-Spline basis functions

Now the B-Spline basis functions have mathematical properties that will be useful for the

estimation of P-Splines later [43],

1. B-splines form a local basis: Each basis function is positive only in an interval formed
by [ + 2 adjacent knots. When using equidistant knots, all basis functions have the same
form and are only shifted along the t-axis. At any point, [ + 1 basis functions are positive.

This can be seen in Figure 2.2
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Figure 2.3: Complete B-Spline Basis for degree [ = 2 formed by d = 10 basis functions.

2. Unity decomposition: For every point in the domain, t € 7, we have

d
> B(t)=1. (2.13)
=1

3. Overlapping with 21 adjacent basis functions: Every basis function (within &) overlaps
with exactly 21 adjacent basis functions. Visualised in Figure 2.3.

4. Bounded basis functions: The domain of the individual basis functions is bounded up-

wards.

5. Derivatives: As we have seen in equation (2.8) for the relation of basis representation

and taking derivatives it is easy to verify that this relation holds. Because for derivatives

of single B-Spline basis functions, since

d 1
—Bi(t)=1-| ———B7(t
dt O (K‘~—K‘ : EOM

J j—

Bj.—l(t)) . (2.14)

j+1 — Kjp1-1
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Now taking the derivative for the entire spline simplifies to,

d l _ Vi—Vi-1 1
EZyjlsj(t)_ l -ZWB]. (t). (2.15)
J J

which is exactly (2.8). As a consequence, we are able to express the derivative of the
entire spline in terms of differences of adjacent basis coefficients and basis functions
of one lower degree. Thus, by estimating the coefficients y;, we do not only obtain an
estimate for the function itself but also for its derivative. This property will be used in

the context of P-Splines in the next section.

Least Squares Estimation

To approximate the annotation data using B-Spline functions their linear structure can be
exploited: One can set-up the complete basis by putting the d different single basis function in
the column of a matrix and evaluate the basis functions for each of the given timings rowwise.

This yields the n x d design matrix Z,

Bi(t;) ... Bi(ty)
7= : : . (2.16)

l l
B (t,) ... By(t,)
The need for a set of expanded knots becomes more clear from this matrix: Applying the

recursive formula for the basis functions in Z demands [ additional evaluations of the lower

order basis functions. This is why an initial set of m knots is not sufficient for [ > 0.

The elegancy of this approach is that Z can be regarded as a design matrix Z of linear model.
This means that the estimation of a B-Spline representation can be traced back to a least-squares

estimation of a linear model with where the covariates are given by the basis functions,

X=X+¢

(2.17)
=1Zy +e.
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To fit given data using the B-Spline basis system, least squares estimation is straightforward

since estimation of linear models is well-known [43, 35],

n d 2
¥ = argmin Z(x(tj)—Zkak(tj))
Y j=1 k=1

=argmin (x—2Zy)" (x—2Zy) (2.18)
T
=argmin |x—Zr|*.
T
Taking the derivative of the least squares criterion above yields the equation
22"7y —27"x=0. (2.19)
Solving for y provides the estimate 7 that minimizes the least squares solution
$=(z"z)" z"x. (2.20)

Following [43, 45] Figure 2.4. provides an intuition for the connection of the B-Spline rep-
resentation as a linear model (2.17) with the results of the least-squares fit (2.20). The top
left panel shows the observed discrete data points x (red) and the complete B-Spline basis
Z (black). Each B-Spline function is a column of the design matrix Z ;. The top right panel
shows how 7Z; looks like, that is how each of the B-Spline functions is scaled according to
the least-squares criterion. The bottom panel shows the resulting fit Z7.

Although the fit captures the most important features of the annotation data the quality of
the approximation here is rather poor. The annotation seems to have a much more complex
structure than we can capture with 20 basis functions. This leads to the question of how to

optimally choose the number of basis functions.

Number of Basis functions and the problem of overfitting

The main problem with the basis size is: The larger, the better the fit to the data, but of course

we then run into overfitting the data and risk also fitting noise or variation that we wish to
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Figure 2.4: Visualisation of the components of a B-Spline representation.

ignore. On the other hand if we make d too small, we may miss some important aspects of the
smooth function that we are trying to estimate [35].

Figure 2.5 shows this relation by illustrating how the basis size d affects the resulting functional
representation. From the top left to the bottom right panel the number of basis functions
increases by factors 3, 4 and 5. It can be seen that the functional representation using the
largest basis almost perfectly represents the discrete data. The smallest basis on the other hand
fails to capture the peak in the middle of the observed discrete data sequence.

We already discussed how the quality of the nonparametric function estimate X depends on the
number of knots in Section 2.1.2. But instead of applying heuristics for the basis size it would
be prefered if the dependency between goodness of fit and the number of basis functions could

be lowered or optimally be determined directly from the data.
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Figure 2.5: B-Spline fits for varying basis sizes.

2.1.4 Penalized Splines

To overcome this issue, a regularisation of the least-square minimisation problem (2.18) is
performed by introducing roughness penalties. This is another consequence of regarding the
spline representation as a linear model (2.17): Regularisation is a well-known strategy in
the context of linear models, where approaches such as ridge regression aim to restrict the
regression coefficients [42]. This is the approach that has been proposed two decades ago [47]
and that penalized splines (P-Splines) are taking. The main idea is still quite popular today

[44] and can be summarized as follows:

* Estimate the functional representation X(t) with a polynomial spline that uses a generous
number of knots d. This ensures that the underlying function can be approximated with
enough flexibility to represent even highly complex functions.

* Introduce an additional penalty term that prevents overfitting and minimize a penalised

least squares (PLS) criterion instead of the usual least squares criterion.
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Smoothness Penalty

In order to create a penalty for B-Splines we want to characterise the smoothness of our func-
tional representation X(t). One measure is given by the squared derivatives since it represents
the variability of the function. For instance a measure that is based on the second derivative
of a function characterises the curvature of this function. The idea is now to incorporate this

smoothness measure in the least square estimation by adding,

Af(fc”(t))zdt (2.21)
to the least square estimation,

n

> (x(e) —x(e) + A J (&"(t))2dt, (2.22)

j=1

The closed form of the derivatives for B-Splines (2.15) now allows to express the derivatives

of X”(t) as a difference of the coefficient vector

n

d 2 d
PLS(A) = (x(tj) ->. an(tj)) +24 > (AT, (2.23)
k=1

j=1 k=r+1

where A" denotes rth-order differences, recursively defined as

AlYk:Yk_Yk—l
A%y, = AlAly, = Aly, — Al =y, —2 +
Yk Yk Yk Yi-1= Tk Yi—1 T Yi—2
(2.24)

ATy =A"y = ATy

The idea behind this term is that the parameter A weights how much the smoothness of X(t)
should influence the estimation. For A — 0 the smoothness of X(t) is not taken into account

and for A — oo the functional representation is maximally smooth.
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Penalised Least Squares Estimation

The derivation of the PLS estimate is straightforward. Bu the notation will be more convenient

if the vector of the first differences is represented by the difference matrix D

__1 ) -
-1 1
D, = ' ' (2.25)
e _1 1_
Y2— "1
Dy = : (2.26)
Ya—Yd

Higher differences can be expressed recursively,

D, =D,D,_;. (2.27)

For instance with r = 2, we obtain a (d —2) x d difference matrix,

-1 2 1
-1 2 1
D, =D;D; = S (2.28)
i -1 2 1)
This yields the penalty
d
A Z (A7) =2r"D'D,y" = Ay"K,y". (2.29)

k=r+1
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For the functional representation with B-Splines we obtain,

d 2
J(fc”(t))zczr: f (ZYkBZ(t)) dt

d d
J > v BB/ (t)dt

=1 j=1 (2.30)

d
er JB;’(t)B}’(t)dt

with K, ; = f B (t)B]’.’ (t)dt. The entries of the penalty matrix K result from the integrated
products of second derivatives of the B-Spline basis functions [46]. In fact, it allows to appoxi-

mate an derivative of arbitrary order r.

This allows to reformulate the penalised least squares criterion (2.23) with the penalised
differences from (2.26). This will be the minimisation problem to solve in order to get a

smooth functional representation with respect to the rth-order derivative,

PLS(A) = (x—Zy)" (x—Zy) + Ar 'Ky
=x"x—x"Zx—y"Z'x+y"Z"Zy + A.y"Ky (2.31)
=x"x—2¢r"Z"x+y"(Z"Z + AK)y

Minimization of the following

—2Z"x+2(Z"Z+ AK)y =0 (2.32)

gives the PLS estimate

$=(Z"Z+ AK)'Z"x. (2.33)

In order to illustrate the influence of the smoothness penalty on the resulting functional

representation we visually compare X(t) for different values A in Figure 2.6: The top left panel
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seems to just reproduce the functional representation of Figure 2.5 for d = 240 since the
penalisation is not influencing the functional representation at all. The other panels show the
effect of further increasing lambda: The fit approaches a polynomial of degree r — 1 with r-th
order differences which is a straight line in the case shown here.

Note also that there is a strong resemblance between the third panel with the B-Spline solution
for d = 20 in Figure 2.5. This indicates the major advantage of using P-Splines: A B-Spline
representation with a rich basis will tend to overfit the data and a slender B-Spline basis results
in an undercomplex functional representation (as seen in Figure 2.5). But with P-Splines even
for a much bigger basis the overfitting or underfitting of the data can now be controlled in terms
of the single parameter lambda. Thus the influence of the basis size on the resulting functional
representation does not cause concern anymore since d needs to be selected just large enough
to represent the most important features of the data. If there are no computational constraints
d can even exceed the number of data points [44, 45]. But instead we will now have to find an
optimal smoothing parameter A. We will see that there is no need to manually select it since

it can be directly estimated from the data.
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Figure 2.6: P-Spline fits for varying smoothing parameters.
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Generalized Cross-Validation

To select an optimal smoothing parameter it is vital to have an estimate for the goodness of fit
of the functional representation which is done by cross-validation.

The basic idea behind cross-validation is to set part of the data to one side, calling it a valida-
tion sample and fit the model to the remaining data, called training data. In that way it can be
evaluated how well the model fits data that were not used to estimate model, thus avoiding
to use the same data for both training the model and assess its fit [35].

For P-Splines this mechanism is taken to the extreme by leave-one-out-cross-validation. This
means that the validation sample only consists of one observation and the model is fitted. This
procedure is repeated for each observation in turn and the resulting error sum of squares is

summed for all values.

Let X_,(t) denote the functional representation that was estimated without observation x(t;).

Then the cross validation (CV) criterion can be estimated by,

CVO) = = D (x(t) — % (6)° (2.34

i=1
The optimal A can be found by comparing a number of possible A values in terms of their CV

values and choose the one that yields the minimal CV criterion.

It is obvious that the approach in (2.34) is computational highly intensive because for the
calculation one needs to cycle through all n observations x(t;) and estimate n functional
representations on the training data in order to compute the CV criterion. Luckily the linear
model notion of the basis function approach allows a very elegant mathematical shortcut for
the calculation of the CV criterion without too much computational overhead. In fact only one

single fit is needed [44].

In a similar manner as with the hat matrix of a simple linear model we can easily define

the smoother matrix S from (2.33). Equivalent to the hat matrix, S is defined as the linear
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mapping from the discrete data to the functional representation,

% =7Z(Z"WZ + AK) 'Z"Wx = Sx. (2.35)

One can prove that x(t;)—x_;(t;) = (x(¢t;)—x(t;))(1—S;;) [48]. This simplifies the calculation
of the CV heavily, since it allows to obtain the CV score by only performing one fit using all

the data. Using the diagonal elements S;; of the smoother matrix CV can be calculated by,

CV(L) = % ; (%;(t))z . (2.36)

Nevertheless, the calculation of the smoothing matrix and its diagonal elements can still be
numerically complex (especially for large data sets). For this reason one often replaces the

diagonal elements with their average, yielding the generalized cross validation criterion (GCV)

[43],

1 S x(t) — 2(t))
GCV(A)—;;(T(S)/H) : (2.37)

Figure 2.7 visualises the GCV criterion for an varying amount of smoothing for the annotation
data as used in Figure 2.6. Until a smoothing level of A = 40 the GCV seems to be almost
constant. Afterwards the smoothing leads to a biased functional representation. For A values
between 10 and 20 the GCV seems to be minimal which is also the range of the optimal degree
of smoothing A*. But also note that the overall improvement in terms of GCV(A*) is rather

small compared to the GCV level in a range from A € [0;40].

2.2 Estimating Multivariate Multi-Subject Annotation Func-

tions using P-Splines

In this section we will discuss how to choose the parameters for the functional representation
of the annotation data with P-Splines. Since the data iteself has a rather complex multivariate

functional structure, some emphasis will also lie on the right adaption to the data.
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Figure 2.7: Relation between the GCV criterion and the smoothing level.

The functional representation that we aim for is bivariate since the annotations consist of
valence and arousal dimensions as seen in equation (2.3). Accordingly, we can use the smoother
matrix from (2.35) to express this representation in terms of the discrete input vectors of
valence and arousal. Then the function representation of valence and arousal x,, x, for video
i and subject j can be regarded as a simple linear mapping,

X1, 857 %,). (2.38)

= (3 3 _ rc(i))
Xij = (X1:X2)ij = (S;\’Z

The notation becomes somewhat cumbersome since it is possible to fit a functional represen-
tation for each of the annotations seperately. The indices denote that the linear mapping may
depend on subject j and video i. Our aim will be to find parameters that are suitable for all
i, j. That is, we have to set the degree of the spline functions, the number of functions and we
have to estimate the smoothing parameter A for all subjects and videos. We will discuss these

choices here.



36 CHAPTER 2. FROM DISCRETE MEASUREMENTS TO FUNCTIONS

Degree of the basis function

For later research purposes the joint velocity v(t) of the two axes,

v(t)= \/(D1x1(t))2 + (D x,(t))? (2.39)

might contain additional information about the movement of the cursor. It also might be help-
ful in identifying salient periods in the annotation or in other words periods where the cursor
was moved.

A common approach to calculate v(t) is to use numerical derivatives (e.g. first central differ-
ences). But in practise the numerical derivation D, is prone to gross error [49]. This is why
one requirement of the functional representation for the annotations should not only yield
smooth annotation functions ¥(t) but also smooth derivatives.

This has an influence on the choice of the basis functions. For smooth first derivatives as needed
in (2.39) cubic polynomial splines are considered to be a good choice. This becomes obvious
with respect to the functional measure of roughness that was defined in (2.21) as the integral
of the squared second derivative. The smoothness of the first derivative in the functional rep-
resentation therefore is measured in terms of the third derivative [35]. This implies that the
underlying basis functions need to have continuous derivatives up to the third order and is the

reason for choosing cubic splies. Note that this smooth first derivative also implies smooth X(t).

Figure 2.8 illustrates this relationship: The top plot shows the raw data of both valence and
arousal x; and x, in two different lines. On both lines there are segments of no movement of
the joystick cursor, where the signal is parallel to the x axis and segments where the joystick is
moved. The second plot shows the joint first central differences. Here the constant segments
relate to segments in the first plot where there was no movement. These segments are inter-
rupted by activity segments where the joystick was moved. Comparing the two plots shows

that the second plot can be used to identify the segments of activity of the first plot.

Applied on the annotation data we see the effect of the roughness penalty of the first derivative

quite well: The last two plots show how the penalty smooths this first derivative and how the
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Figure 2.8: Relationship between discrete data, first central differences (two top plots) and
the functional representation based on a penalization of the roughness of the first derivative
(two bottom plots). Solid line for valence axis, dashed line for arousal axis.

resulting annotation function looks like. Compared to the first plot the last plot shows much
less variation and is also much smoother. This shows that the choice of the cubic basis functions
works as discussed in the aforementioned manner. Note that the smoothing parameter used

here is not our final choice.

Number of Basis Functions

One of the obstacles is the amount of discrete data points that were recorded during the
annotation process. We could use a basis function for each data points but this would result in
a massive computational effort for calculating a functional representation for all annotations.
This is why we reduce the number of knots but aim to keep the basis rich enough too be
able to capture almost the whole variation. This trade-off is based on the annotation with the
largest number of data points. This allows us to define a lower boundary for the trade-off since
the shorter annotations will be represented better due to a higher ratio of basis functions per

observation. As we saw in section 2.1.4 this is no problem for a P-Spline representation since
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overfitting is taken care of by regularisation.
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Figure 2.9: SSE and computation time for different basis sizes. The dotted vertical line marks
the selected basis size for the annotation data.

Figure 2.9 shows how the goodness of fit and the computational effort depends on the number
of basis functions. The quality of the fit is assessed using the mean squared error (MSE), the
computational effort by using the computation time. The SSE falls off rapidly and after 1500
basis functions the improvement in error becomes small. The increase in computation time
seems to be small for the small basis sizes shown in the plot. At around 1000 basis functions
the computational effort seems to accelerate. Following this plot and Figure 2.5 the basis size
is set to 820 basis functions. The two bottom plots of Figure 2.5 shows that the representations
using 240 and 1200 basis functions are big enough to capture most of the important variation
of the annotation data. From Figure 2.9 we see that with 820 basis functions the decay in SSE
is captured before it stagnates. Also the computation time is reasonably high. Note that the
annotation data used in this plot defines a lower boundary for the annotation data of the all

the other annotation data since it contained the annotations with the most data points.
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Lambda

Finally the smoothing parameter is determined from the data. This is done by means of gen-
eralized cross validation (2.37) as described before. Note that we want to find one optimal
single smoothing parameter for all videos, that is A* that minimizes the GCV of all the different
videos simultaneously. Since it is easy to calculate the GCV separately, this A* can be found

easily by plotting the GCV values on a grid of A values as shown in Figure 2.10.

30 1

-4 -2 0 2
logyo(A)

—— amusing—-1 —— boring—-1 —— relaxed-1 scary-1

—— amusing—2 —— boring—-2 —— relaxed-2 scary—2

Figure 2.10: GCV criterion for different values of the smoothing parameter. Each line represents
one video type. The vertical dotted line marks the optimal smoothing parameter for all videos.

Figure 2.10 shows the behaviour of the GCV criterion from (2.37) for the P-Spline represen-
tation for each video stimuli separately for all 30 subjects. With increasing A also the GCV
increases. This is in line with what was seen from Figure 2.6. The figure also indicates that
the amount of smoothness present in the raw data is highest for the annotation made for the
boring and relaxed video stimuli. This can be seen from the behaviour of the GCV criterion
for high A values. Compared to the functional representation of the other video stimuli the
error grows slowest which indicates that smoothing does not add too much bias to the data

and thus the smoothness level must be higher. In contrast, the annotation functions for the
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scary video stimuli are more sensitive to smoothing since it introduces a stronger bias.

But it is striking how the GCV criterion decreases and then stagnates for decreasing A. This
behaviour applies for all the different video stimuli.

An explanation lies in the nature of the data: One would expect that the GCV criterion would
increase also for small values of A since the P-Spline representation would start to overfit the
data. As the plot shows, overfitting is not a problem for the annotation data. The explanation
lies in the nature of the data. The sensor data have a high signal-to-noise ration which means
that the amount of smoothing needed is very low and the risk of fitting noise is also low because
there is almost no noise present in the data. This indicates that the range of optimal smoothing
is quite broad as long as oversmoothing is avoided. Therefore the optimal smoothing was

chosen to be A* = 10~* which indicates a small amount of smoothing.

In cases where the different curves are more different so that the optimal smoothing varies
strongly for different curves another possible approach is to use multi-objective optimisation

methods to find the pareto optimal A* using genetic algorithms such as NSGA-II [50, 51].



Chapter 3

Statistical Analysis of Annotation

Functions

Although a functional representation of the annotation data is beneficial, the problem of the
high complexity of these functions remains. Therefore, the challenges formulated in section

1.3 of comparing and combining different annotation functions are still present.

In this chapter we will introduce a methodology to handle the multivariate annotation func-
tions that were estimated in Chapter 2 in a much easier way. By using the same gist as principal
component analysis (PCA), a widely used method for reducing dimensionality of multivariate
observation, we are able to represent each of the multivariate annotation functions as a mul-
tivariate data point in an eigenfunction space. This makes it then possible to use the whole

toolbox of multivariate statistics for comparing and combining the annotation functions.

3.1 Principal Component Analysis for Functional Data

We will first explain how the idea behind PCA can be extended to functions. Then we show how
functional principal component analyis (FPCA) can be generalised to multivariate functions as
in our case. Finally multivariate functional principcal component analysis (MFPCA) is applied

to the annotation data. At the end of this section PCA, FPCA and MFPCA are contrasted to

41
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emphasize their main similarities and differences.

3.1.1 PCA

In order to give a brief outline of the main ideas of PCA, we follow [52, 53]:

The standard context for PCA corresponds to the upper left corner of Figure 1.5 and involves
p numerical covariates observed on n entities or individuals. These data values define p n-
dimensional vectors X;, ..., X, € R? or equivalently a data matrix X € R"*?, whose j-th column

is the vector x; of observations on the j-th variable.

PCA seeks for a linear combination of the columns of matrix X with maximum variance. Such
linear combinations are given by Z?zl a;x; = Xa, where a is a vector of constants a;, a,, ..., a,.
The variance of any such linear combination is given by Var(Xa) = a’ Sa, where S is the sam-
ple covariance matrix associated with the dataset. Identifying the linear combination with
maximum variance is equivalent to obtaining a p-dimensional vector a which maximises the

quadratic form a’ Sa.

For this problem to have a well-defined solution, an additional condition must be imposed and
the most common restriction involves working with unit-norm vectors, i.e. requiring a’a = 1.
By using a Lagrange multiplier A this is equivalent to maximisation of a’Sa — A(a’a — 1).

Differentiating with respect to a” and equating to the null vector leads to

Sa—Aa=0< Sa= Aa. (3.1

Thus a must be an eigenvector and A the corresponding eigenvalue of the covariance ma-
trix S. In particular we are interested in the largest eigenvalue A, since the eigenvalues
are the variances of the linear combinations defined by the corresponding eigenvector a:

Var(Xa) =a’Sa=2Aa’a=A.

The linear combinations Xa, are called the principal components of the dataset. In standard



3.1. PRINCIPAL COMPONENT ANALYSIS FOR FUNCTIONAL DATA 43

PCA terminology, the elements of the eigenvectors a, are called principal component scores

as they are the values that each individual would score on a given principal component.

3.1.2 FPCA

In the context of standard PCA above we consider linear combinations of p vectors which
produce new vectors. Each element of the new vectors is the result of an inner product of
row i of the data matrix (x;;, ..., X;,) with a p-dimensional vector of weights a = (a;,...,a,) :

5’:1 a;x;;. If rows of the data matrix become functions as depicted in the upper right corner
of Figure 1.5, a functional inner product must be used instead, between a score function a(t)
and the i-th observation x;(t). The standard functional inner product is an integral of the form
fa(t)xi(t)dt on some appropriate compact interval. Likewise, the analogue of the (p x p)

covariance matrix S is a bivariate function S(s, t) which, for any given two time instants s and

t, returns the respective covariance defined as,

56,0 = ——= > ()~ HED L) =21 ) = —= > G (E) B2
i=1 i=1

where x(t) =N~! Ziv:l x;(t) denotes the mean function and x}(t) = x;(s) — x;(s) is the i-th
centred function. The functional analogue of the eigenequation (3.1) involves an integral

transform which reflects the functional nature of S(s, t) and of inner products,

f S(s, t)a(t)dt = Aa(s). (3.3)

The eigenfunctions a(t) which are the analytic solution of this equation cannot in general
be determined. But using the basis representation (2.6) and (2.12) a simplification of this
equation is possible. The eigenfunction can be written in terms of the basis representation
of the data, a(t) = ¢(t)"b for some K-dimensional vector of coefficients b = (b,,..., by).

Assuming centred x(t) and ¢(t) the covariance function at time (s, t) simplifies to

565, 0) = %GR = $()'CCH(1) (3.4)
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and the eigen-equation becomes, after some simplifications

id)(s)TCTCWb =2A¢(s)'b (3.5)

where W € R¥*K is the matrix of inner products f ¢;(s)¢;(t)dt between the basis functions.

Since this equation must hold for all values of s it reduces to

1

C'CWDb = Ab. (3.6)
n—1

There is another interpretation of PCA in continuous domain which emphasises the approx-
imation of the function x;(t) by an infinite sum of of functional principal components. It is

also referred to as the as the Karhunen-Loeve (KL) expansion. [54, 55],

x,(£) = p(t) + D Agi(0), 3.7)
k=1

where A;, = f ((x;(t) —p(t))pi(t)dt) are the FPCs of x; and are referred to as scores. From
(3.7) it also becomes clear that the score can be used to characterise the functional observation
x; compared to other observations since it depends on i.

For the annotation data the use of FPCA is impractical since it has to be applied on each valence
and arousal separately. It is not clear, how the scores those two dimensions are related then
and how they can be used to jointly characterise the annotation functions. Another challenge
for the annotation data is that the annotation for the different videos do not have the same
time domain. The annotations for scary might be much longer than for boring. This also has

to be taken into account when comparing annotation functions for different videos.

3.1.3 FPCA for Multivariate Functions

We aim for an even more general PCA approach that allows to take into account multivariate
functional observations on arbitrary domains. A very recent approach is multivariate functional
principcal component analysis (MFPCA) [56].

We summarize MFPCA by introducing the method step by step: First the data structure and
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notation is introduced. This is mainly because MFPCA is quite general and allows to be used
with even more complex functional structures than we face for the annotation functions,
which is why it has to be formalised more rigorously. Then the necessary assumptions and
theoretical foundations are introduced. Afterwards the Karhunen-Loéve theorem is stated in
a multivariate functional setting and a link between a univariate and multivariate Karhunen-

Loeve decompositions is established.

Data structure and notation

In extension to Figure 1.5 now each observation consists of p > 2 functions X W .., xP, Also
each function can be defined on different domains 7, .. . 7, with possibly different dimensions.
For example the first dimension &; could be time, the second dimension &, three-dimensional
space and the third Z; frequency.

Technically, ; must be compact sets in RY, d; € N with finite (Lebesgue-) measure and each
element X¥) : 7 — R is assumed to be square-integrable X € £*(7;). This assures that
the functional observations are well-defined and well-behaved e.g. so that scalar products can

be defined.

The different functions are combined in the function vector X,

X(0) =xXD(ty),...,.xP(¢,)) R (3.8)

Note that t = (ty,...,t,) € 7 = J; x--- x F, is a p-tuple of d, ...,d, dimensional vectors.
In the case of time, space and frequency one would obtain a 3-tuple of (1, 3, 1)-dimensional

vectors.



46 CHAPTER 3. STATISTICAL ANALYSIS OF ANNOTATION FUNCTIONS

Assumptions and theoretical foundations

It will be further assumed that the functional observations are centered,

u(t) = EXW(e),....X"(¢,) =0, VieT (3.9)

For different positions in the domain s,t €  the matrix of covariances C has a more complex
structure due to the more complex data but the same notion as before. This added complexity
can be taken into account by using the tensor product ® to generalise the outer product,
C(s,t) = E(X(s) ® X(t)). The entries of C are defined by the covariances of elements of the

function vector,

Cij(si, t)) = EXD(s)XV(t))) = Cov(XV(s), X)), s, € T, t; € T, (3.10)

This refers to the calculation of the covariance of the i-th and j-th element of the function

vector, e.g. the covariance between time and frequency.

As noted in the previous sections, a suitable inner product is the basis of all approaches of
PCA. This is because these inner products allow intuitive geometrical notions such as lengths
and angles. For multivariate functions such as f = (f(,..., f") with elements f¥) € £*(7;)
define the space . = £%(F;) x - -+ X gz(gp) and the multivariate, multi-domain functional

scalar product can be defined through,

P P
=1J7

j=1

[56] showed that 2 is a Hilbert space with respect to this scalar product ((-,-)) .

This allows to introduce a multivariate, multi-domain covariance operator I' : J# — #

with the j-th element of T'f, f € 5 defined as,

p
i=

(Ff)(j)(tj) = ZJ Cii (s tj)f(i)(si)dsi = <<C~j(': tj):f)): t;€T; (3.12)
(%

i=1
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In the initial example the covariance structure of functional observations on time, space and
frequency could now be expressed more conveniently using I' instead of using the univariate
covariances of C from (3.10). Showing the equivalency of those two covariances is then crucial

for MFPCA.

The Karhunen-Loéve Theorem for multivariate functional data

[56] showed that under mild conditions, I has the same properties as the covariance operator in
the univariate case and therefore a Karhunen-Loéve representation for multivariate functional
data exists. This is done by showing that I' is a linear, self-adjoint and positive operator and then
by concluding that there exists a complete orthonormal basis of eigenfunctions ¢, € #,m € N
of T such that T'y,, = v,,4,, and v,, = 0 for m — o0. Using the spectral theorem, [56] state

that it holds that

Tf = > vl (s )W (3.13)

m=1
This allows to establish the link between the two covariances C and I by Mercer’s Theorem

which gives absolute and uniform convergence of the sum,

Cov(XD(s;), XD (t))) = Cji(s;,t)) = D vupPs (), (3.14)
m=1

forj=1,...,pands;, t; € 7,.
[56] show that this relationship can be used for a formulation of a multivariate Karhunen-Loeve

representation:

Theorem 1. Under the assumptions of [56 ], Proposition 2,

XO) =Y puthult), teT (3.15)
m=1

with zero mean random variables p,, = ({(X,,,)) and Cov(p,,, p,) = V,,6

mn-*
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Also,

M
E(]|X(t) — Z PP (O)|I?) — 0 for M — oo uniformly for t€ . (3.16)

m=1

The theorem yields an infinite approximation of the functional observation vector similar to
(3.7). The eigenvalues v,, represent the amount of variability in X explained by the single
multivariate functional principal components 1),,,, while the multivariate functional principal
components scores p,, serve as weights of 1, in the Karhunen-Loéve representation of X.
As the eigenvalues v,, decrease towards 0, leading eigenfunctions reflect the most important

features of X. In practice optimal M-dimensional approximations to X are used

M
Xn®) =D puthn(t), teT. (3.17)
m=1

This yields also the approximation that is used for the annotation functions later in section

3.2.

Relationship Between Univariate and Multivariate FPCA for Finite Karhunen-Loéve

Decompositions

Since the covariances are equivalent, the Karhunen-Loéve representation of multivariate func-
tional data can also be directly connected to the univariate Karhunen-Loéve representations
(3.7) of the single elements X\, The aim is to represent the multivariate representation in
terms of the univariate representation and vice versa. Such a relation allows the computation

of MFPCA by using existing FPCA approaches.

Theorem 2. The multivariate functional vector X = (X1,..., X)) has a finite Karhunen-Loéve
representation if and only if all univariate elements XV, ..., X® have a finite Karhunen-Loéve

representation. In this case it holds:

1. Given the multivariate Karhunen-Loéve representation of Theorem 1, the positive eigenvalues
A(lj Y>> Agd,) > 0,M; < M of the univariate covariance operator T associated with
J

XU correspond to the positive eigenvalues of the matrix AUV € RM*M with entries

AD = () PP, D)y, mon=1,..,M (3.18)
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The eigenfunctions of TY) are given by

¢ = (ADY2 Y MDY 0e), teFm=1,...,M, (3.19)
n=1

where ug) denotes an (orthonormal) eigenvector of AY) associated with eigenvalue Ag) and

[ug)]n denotes the n-th entry of this vector. For the univariate scores

S

M
£D = (x0, D), = A0y V2 D W12uD], > o (PP, (3.20)

n=1 k=1

2. Assuming the univariate Karhunen-Loéve representation XU) = > LE qu)qbg) with F(])¢g) =
Ag)qbg) for each element of XU) of X, the positive eigenvalues v, > ---> v, > 0 of T with
M < Zle M; = M, correspond to the positive eigenvalues of the matrix Z € RM+ My

consisting of blocks ZUX) € RM>*M« with entries

ZU9 = Cov(EVEW), m=1,...,M,n=1,...,M,j,k=1,...,p. (3.21)

The eigenfunctions of T' are given by their elements

M;
PPN =D [ JVoP(t), teFm=1,..,M, (3.22)
n=1

where [c,, ]9 € R™ denotes the j-th block of an (orthonormal) eigenvector c,, of Z associ-

ated with eigenvalue v,,. The scores are given by

p M
Pm= . > [e,]VEW. (3.23)

j=1 n=1

Estimation of Multivariate FPCA

Since the previous theorem establishes a link between univariate and multivariate Karhunen-
Loeve decompositions, the estimation of the MFPCA becomes straightforward:
The first step calculates univariate FPCAs on each of the elements of the functional vector. The

resulting principal component scores are then used to form a matrix that contains the scores
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of all the different univariate FPCAs. An eigenanalyis of this matrix yields eigenvalues and
eigenvectors that can be used to calculate multivariate eigenfunctions and multivariate scores.
The detailed steps are as follows [56],

1. For each element X estimate a univariate FPCA based on the observations xgj )., x,(\{).

This results in estimated eigenfunctions qgr(;) and scores é fjrzl, i=1,....,Nm=1,..., M,
for suitably chosen truncation lags M;.

2. Define the matrix & € RV*™+ where each row (él(.’ll), . éflﬂ)/[l, . égﬂ), . ég%p) contains
all estimated scores for a single observation. An estimate Z € R™+*M+ of the block matrix
Z in Theorem 2 is given by Z = (N —1)"'B"E.

3. Perform a matrix eigenanalysis for Z resulting in eigenvalues ¥, and orthonormal eigen-
vectors C,,,.

4. Estimates for the multivariate eigenfunctions are given by their elements

M;
YDn(t) =D [6,1960(), t;€Fm=1,...,M, (3.24)
n=1

and multivariate scores can be calculated via

M;

pin=, > 610" =7 ¢,. (3.25)

j=1 n=1
MFPCA for Functional Representations by Basis Expansion and Implementation

In practice or as it is the case with the annotation data, the univariate elements XU are
expanded in finitely many, not necessarily orthonormal basis functions bg) with coefficients

Grg) which denotes exactly the functional representation using P-Splines,

d K
x0(t)) = Z YuBu(t;) = Z 69b0(t), t; €T (3.26)
m=1 m=1

the right term is more general since it denotes an arbitrary basis expansion.
In this general case [56], the resulting eigenanalysis problem for MFPCA is BQc = vc. B denotes

a block diagonal matrix of scalar products (bg), bg )}, of univariate basis functions associated
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with each element X. The symmetric block matrix Q with entries QU¥) = Cov(6%, 6®) cor-

responds to Z.

The estimation of MFPCA in the case of functional representation by basis expansion then
can be generalised. Given weights w,,...,w, > 0 and demeaned observations X, ..., xy of X
with estimated basis function coefficients éi(g for each element, the eigenanalysis problem to

solve is,

(N—1)"'BDO’@DCc = ve. (3.27)

The matrix B is defined as above as the block diagonal matrix of basis scalar product. D =
diag(wi/z, ) ..,w}l,/z) accounts for the weights. ® with rows (éi(j), e, éi(}gl,..., él.(ﬁ), e, OAI.(Z)

corresponds to E and (N — 1)7'@7@ is an estimate for Q. For the detailed calculations see

[56].

The authors also provide an implementation of the method described here. Their R package

MFPCA [57] will be used here for the following analysis.

Comparison of the three methods

Since the motivation for using this new approach came from Figure 1.5, is beneficial to sum-
marise PCA, FPCA and MFPCA using the the same structure.

The methodological differences for the three methods arise from the nature of one observation.
The first two columns of the table are identical to the upper two corners of Figure 1.5.

The differences arise from the nature of one observation in each case. This results in different
covariance objects for each case. Since all three methods perform an eigenanalysis of these

covariance objects, the resulting eigenequations have the same ingredients.
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3.2 Applying multivariate FPCA on the annotation data

Using [56, 57] MFPCA is applied on the annotation data. To this end, two main issues will
have to be adressed: 1. As a consequence of Theorem 1 the truncated Karhunen-Loéve rep-
resentation (3.17) requires the parameter M to determined the number of eigenfunctions to
approximate the annotation data. Due to the similarity to existing PCA methodology this can
be adressed using existing strategies to determine the number of principal components. 2. Due
to the complexity of the data an intuition about the functional principal components for the

annotation functions is needed. This will be adressed with in the second part of this section.

3.2.1 Number of functional principal components

The scree plot [61] is one approach to determine the number of principal components for
given set of data. In the situation of MFPCA its main idea can be used to determine an optimal
number of principal components. For this purpose the ratio of explained variance per principal
component is compared to each other. A cutoff point is identified after which the increase in
explained variance is only marginal.

The calculation of the criterium is straightforward: As described in Theorem 2 the MFPCA
yields M eigenvalues v,,...v,, that correspond to the covariance operator I'. In a similar
fashion as [62, 63] we are interested in a measure of how much of the total variance in the

annotation data is explained by each multivariate functional principal component:

k
Zj:l Vi
Z;:l Vi

The approach taken here is now to estimate the number IAca of principal components that

T = (3.28)

account for at least (a - 100)% of total variation in the data. This can be done by estimation

of m; using an M-dimensional approximation,

k
Zj:l Vj

i .
ijl Vi

f, = (3.29)
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Figure 3.1: Scree plot of the MFPCA results

As a result we obtain the scree plot in Figure 3.1. The plot shows how 7, behaves for increas-
ing k values. It is striking how much variance lies within the first two principal components,
almost 90%. From a contentual point of view this shows how well the MFPCA was able to
reproduce the two-dimensional valence-arousal space that underlies the annotation data. The
plot also shows that the first component accounts for twice as much variation in the data than
the second.

From the plot also follows to choose IA<0_95 = 4, at least 95% of the total variance in the an-
notation data can be explained using only four multivariate functional principal components.
This choice allows to account for a reasonable amount of variation but still to keep the dimen-

sionality of the eigenfunction representation small enough to avoid problems regarding to the

curse of dimensionality.

3.2.2 The resulting eigenfunction space

Since the MPFCA method projects each annotation function in a M dimensional eigenfunction

space, each annotation can be represented by its M-dimensional score vector p (3.23 and
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3.25) that corresponds to the M eigenfunctions. This allows a substantial simplification of this
complex multivariate functional data since they can now be represented using both a vector
and a function space as indicated in Figure 1.6. One major advantage that this representation
allows analysing the functional data using well-known statistical methods for simple multi-

variate data.

In order to link this representation of rather complex functions to an intuition, Figure 3.2
gives a visual approach to the MFPCA solution similar to [42]. It shows how the first two
dimensions of the eigenfunction space can be mapped to annotation functions. By showing
this mapping it can be seen how the first two multivariate functional principal components
work.

The left plot shows the position of all 240 annotations in the eigenfunction space. The (x,y)-
coordinates are given by the respective score values. The rectangular grid superimposed on
the plot is defined by the 5%, 25%, 50%, 75% and 95% quantiles of the two axis. The orange
points indicate the closest annotations to the vertices of the grid, where the distance measure
focuses on these projected coordinates. By choosing these annotations the whole eigenfunction
space is exploited with respect to regions where the annotations are more dense.

The right plot shows how the original annotations corresponding to these orange points look
like. The bottom leftmost orange point marks the annotation that is closest to the leftmost
bottom vertice of the grid and thus is plotted at the bottom leftmost position of the plot matrix
of the right. By doing so we obtain a visualisation of the nature of the first two principal

components.

It is striking that the principal component reproduces the second quadrant in the valence-
arousal plane. This means that the annotations for the scary video stimuli seem to have low
first principal component scores. Higher values of first principal component scores (right side
of the plot matrix) are not as easy to interpret. This is where the effect of the second principal
component becomes visible: Higher scores on the second principal component lead to amusing

annotations, low scores to boring.
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Since the plot only was able to take the first two dimensions of the eigenfunction space into
account we want to investigate if the higher dimensions can help to better distinguish the an-
notations for different stimuli. That is, how consistent the annotations for the different videos

and different subjects have been.
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Figure 3.2: Scatterplot of the first two fPC scores (left) and illustration of the behaviour of the
multivariate fPCs based on the scores of each annotation (right)

An advantage of the eigenfunction space representation of the annotation functions is that we
can easily calculate the similarities of two annotations. By this we can assess how the stimuli
changed the annotation behaviour of the subjects and if this behaviour was consistent over all
subjects.

In the eigenfunction space, the similarity of annotations can now be easily analysed by calcu-
lating a distance matrix from the score values of each annotation function. If two annotation
functions have a low distance in the eigenfunction space this means that they will look simi-
lar. This can be easily checked by the plot above where the actual annotation functions were
plotted. A high distance value then means that the two functions are not alike at all.

Figure 1.3 visualises the distance matrix of the score values of each annotation function. The
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pairwise distances were calculated for each possible pair of the 240 annotation functions result-
ing in 2402 /2 distance values. Low distance values refer to high similarity of the annotations
and are colored black. High distance values indicate a low similarity and are colored white.
The grid separates each of the 8 different videos.

From the plot we learn two things: How similar were the annotations for the same stimuli?
And how similar were the annotations for different stimulis? The first question refers to the
diagonal of the heatmap shown in the figure. A high similarity of annotations for the same
video type means that the blocks around the main diagonal should be ideally all black so that.
We see that this applies for all of the videos. For the scary video stimuli it is striking that the
overall similarity within these annotations is lower and shows more variation than the other
video stimuli.

The second question is related to all the off-diagonal blocks. Ideally the annotation functions
for the different video stimuli are all different from each other and show a low similarity
which would be indicated by brighter colors. In the plot this only applies for the two scary
videos. The other videos form a block with rather low distances. Amusing seems to be slightly
more distinguishable than the other videos. The annotations for the relaxing videos, especially
relaxing-2 are the worst. Here the distances to the other videos seem to be rather low although

the stimuli were different.

Since the distances for the heatmap were calculated with an euclidean distance that takes into
account all dimensions of the eigenfunction space we want to have a look at the distances
separately. From the scree plot we can see that the first four dimensions of the eigenfunctions
space explain approximately 95 percent of the variance in the annotation functions. The hope
is that instead of using a euclidean distance in a 10-dimensional space, a 4-dimensional space

is more suitable. Also because the curse of dimensionality could inflate the distances badly.

Figure 3.4 visualises how the score values can be used to distinguish the different annotations
for their different stimuli. The plot has two parts: The off-diagonal plots show the scatterplots

of the functional principal component scores combining the different fPCs on x- and y-axis. For
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Figure 3.3: Heatmap of the similarity of the annotation functions. Black indicates high similarity,
brighter colors indicate lower similarity.

instance the off-diagonal plots in the first column show scatterplots of the fPCs combining first
(x) and second (y), first (x) and third (y) and first (x) and fourth (y) principal components.
This is why the first plot in the first column is the same as shown in Figure 3.2. Note that
the off-diagonal plots in the first row are identical to the first column but with flipped axis.
The points in the scatterplots are the 240 annotations colored by their video type (amusing -
black, boring - red, relaxing - blue, scary - gray). This allows to directly the similarity of the
annotation functions for each dimension at one glance.

The main diagonal plots summarize how much variance is explained by the fPCs and quantify
the strength of the cluster separability in terms of Fisher’s Discriminant Ratio (FDR) [64] us-
ing the given fPC for a pairwise comparison. Note that the FDR serves as a one-dimensional
similarity measure for the annotation functions here. Low values indicate a high similarity, a

low similarity is reflected in high FDR values.

The scatterplots for the first principal component show how well it can be used to separate
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the gray (scary) annotations from the rest. This is reflected by the high separability measure
of this group yielding FDR values around 5. This also is in line with the observation from the
distances in 10-dimensions as shown in Figure 3.3.

The second fPC has the highest separability between amusing (black) and boring (red) anno-
tations. The relaxing annotations (blue) interfere strongly since they lie just between those
two groups which results in small FDR values for amusing-relaxing and boring-relaxing. Also
the scatterplots illustrate this issue (see second column/row). This is what also was seen in
10-dimensions.

The third and fourth fPC have the highest FDR for amusing-relaxing but unfortunately this
yields only a poor separability power compared to the first two functional principal compo-

nents.
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Figure 3.4: Discriminative power of the first four dimensions of the eigenfunction space. Off-
diagonals: Scatterplots of the (column, row)-th principal component scores. Main diagonal:
Explained variance and Fisher’s Discriminant Ratio for each principal component. Coloring
according to the video stimulus.
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Chapter 4

Ground Truth through Characteristic

Annotations

In this chapter a method to calculate a ground truth from the annotation functions is developed.
Estimating the ground truth can easily be based on the MFPCA approach. In contrast to the
previous chapter where the an eigenfunction space for all the annotations was found simulta-
neously, the focus now lies on an eigenfunction space for each video stimuli. This results in 8
different eigenfunction representations. It then will be seen how these different eigenfunction
spaces provides a useful multivariate structure to tackle the task of finding ground truth that

is robust against outliers.

4.1 Number of components

Calculation of MFPCA on each video separately yields the questions how many multivariate
functional principal components are needed for each.

Figure 4.1 below indicates a two-component solution: The first two components explain at
least almost 70% of the total variance for amusing-2 and almost 90% of total variance for
boring-1. Since the videowise MFPCA aims to find the characteristic annotations for valence

and arousal, a two-component solution is chosen for the characteristic annotation.
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Figure 4.1: Scree plot for annotation functions seperately

4.2 Outlier removal

One of the requirements for the characteristic annotations is that it needs to represent a set
of annotation functions from different subjects. The emphasis lies on the precision of the
characterisation as opposed to characterising as many annotation functions as possible. A char-
acteristic annotation in the situation of the right panel of Figure 1.4 is required to represent the
annotations in the middle of the upper left quadrant. There three outlying annotations should
not be taken into account. This describes the approach taken here: To remove all annotations
that differ from the rest and then calculating the characteristic annotation.

As seen in Figure 3.2 and 3.4, the principal component scores are able to quantify the dis-
similarity of the annotation functions: If the euclidean distance of the score vectors for two
different annotation functions is large then the annotation functions themselves are different.

This relation is exploited to remove outlying observations that bias the characteristic annota-

tion.
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To take into account the shape of the data cloud, the Mahalanobis distance (MD) is used
to calculate the distances of the principal component score values. The MD for the annotation

data is a covariance-weighted measure of each annotation functions’ distance to the origin,

MD =(p"cp) (4.1)

since the mean function has score 0 by definition. The covariance matrix of the score values
is denoted by C. In fact, a robust version of MD [65] is used in order to detect outlying score
values. The main idea is to use robust estimators for mean and covariance in (4.1) since they

are sensitive to outliers. Details are given in the publication.

Figure 4.2 illustrates the approach: From left to right, the two top plots show the outlier
detection in the vector space of the principal component scores and the function space of
the annotation functions. The left plot shows all 30 annotations of one of the amusing video
stimuli. The red points are outliers based on the robust Mahalanobis distance [66]. Gray points
indicate non-outlying functional annotations. The top right plot shows how the annotations
that have been marked as outliers look like (also highlighted in red). It can verified that the
outlier selection seems to correctly mark the annotation that runs through the lower-valence
higher-arousal quadrant. This annotation behaviour is not expected for the amusing video
stimuli and deviates strongly from the other subjects. The selection of the right annotations
is somewhat vague: Their behaviour seems to be in line with this video type altough the

amplitude of valence seems to be higher.

4.3 Characteristic Annotations

The approach for calculating the characteristic annotation is straighforward: It is simply the
mean function of the reduced set of annotation functions after the outliers have been removed.
In the top left plot Figure 4.2 the mean function is indicated by a black dot. By definition it
has score values 0. The mean function of the adjusted data is denoted by the blue asterisk.

The outlier removal results only in a slightly different position compared to the original mean
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Figure 4.2: Multivariate outlier detection using the eigenfunction space (top left) and the
corresponding outlying annotation functions (top right). Characteristic annotation calculation
is based on a reduced set of annotation functions (bottom).

function. The bottom plot shows the reduced annotations and the two mean functions their
corresponding colors. Also here the differences between characteristic annotation and mean
function seem to be not visible.

A clearer assessment of the resulting characteristic annotation can be performed by means of
Figure 4.3. The figure shows the resulting characteristic annotation for valence and arousal
separately. The colored lines mark the different approaches for calculation of characteristic
annotations: The solid black line and the dashed black line are the pointwise and functional
mean which are expected to be quite similar since the smoothing shows effect in segments
of single annotations where there are abrupt changes. Since these single annotations are all
averaged here which is why these differences between pointwise and functional mean will
be quite small. The green line marks the pointwise median which seems to be slightly more
unstable than the characteristic annotation. The blue line marks the characteristic annotation.
The black lines are completely covered by the characteristic annotation which becomes obvious

from the eigenfunctionspace representation in the previous plot: Black and blue dots are close
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to each other which indicates that the resulting functions will show the same behaviour.
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Figure 4.3: Characteristic Annotations for Valence and Arousal
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Chapter 5

Discussion and Outlook

The aim of this work was to address the challenges of continuous annotations [3] using a new
perspective on the data by applying methodology from functional data analysis [38, 35]. Pre-
vious work [30, 26] did not take into account the continuous nature and serial structure of the
data and used methods based on restrictive assumptions [29, 31]. Consequently, the inherent
structure of the data could did not reflect in the methodology. By adding a new perspective
to the data, that is, regarding each of the continuous annotations as a multivariate functional
observation [34], the methodological shortcomings were adressed properly. The strength of
the FDA based approach presented here lies in its capability to provide a functional represen-
tation that provides noise reduction. Furthermore, it was used to reduce the complexity of
annotation functions in the context of multivariate functional principal component analysis

[56].

With respect to the novel joystick annotation tool, this approach was applied to annotation
data of 30 subjects on 8 different video stimuli pertaining to 4 affect states. It was shown that
the eigenfunction representation estimated through P-Splines and MFPCA not only allows to
properly explain the variance in the data, but also provides an expedient link between function
space and vector space. In this way, complex annotation functions can be analysed using simple

methods from multivariate statistics.

67
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Results of Functional Representation using P-Splines

The P-Spline fit performs quite well in terms of reducing the amount of data points to only
820 spline coefficients. Since the signal-to-noise ratio is very high in the annotation data, the
GCV yields a low penalisation as shown in Figure 2.10. This is expected to be a common
behaviour of sensor data. Furthermore, the estimation of smooth derivatives was integrated
easily into the P-Spline representation and allows to further investigate the joystick activity of
the participants during the annotation process. Another important benefit of the functional
representation is somewhat less obvious and pertains to the simplification of the eigenequation

(3.3) for continuous data, which is a major step in the calculation of the MFPCA.

Opposed to the promoted ease of using P-Splines to avoid the challenge of choosing suit-
able parameters [44, 45], this choice does not become trivial. Especially the amount of data
points per annotation results in a computational restriction that constrains an arbitrary choice
of the basis size. Furthermore, the fda package [39] does not seem to be designed for such
dense data since the computation time for estimating the P-Spline fits is rather high. Switching
to the Matlab implementation might improve the speed of the calculations. Also the package
documentation [40] is sometimes too lean to be helpful and an update to functional data

analysis of sensor data would preserve the popularity of the package.

Results of MFPCA

The application of the MFPCA approach [56] yields very convincing results. It allows to quickly
estimate a joint eigenfunction space for all 240 annotations of the 8 videos that are defined
on different temporal domains. Accordingly, each annotation function can be represented by
only a small number of principal component scores. This allows the analysis of this complex
functions in a simple low-dimensional vector space as shown in Figures 3.2 to 3.4. Also the R

implementation of this method, MFPCA [57], performs very well for the annotation data.

However, the conversion from the data format required for the fda package to the funData

format [67] for the MFPCA calculation is somewhat cumbersome. This is because the func-
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tional representation data was created using the fda package that has limited compatibility

with the funData format.

Results of Characteristic Annotation

The MFPCA approach can also yield stimuli-based eigenfunction spaces for each of the 8 videos
in order to calculate charateristic functions. This approach provides interesting results since it
only focusses on comparing each of the annotations pertaining to one stimuli and thus to iden-
tify outliers using simple multivariate methods as shown in Figure 4.2. Using the Mahalanobis
distance seems to be a reasonable choice for outlier removal. Equation (4.1) indicates that
there might be room for improvement since the theoretical properties of the eigenfunction

space allow easier calculation of the variances as they are known from Theorem 2.

Unfortunately, the difference between characteristic annotation and the mean function seems

to be rather small. This could be due to an unidentified source of variation.

Overall Results

It was shown that the proposed FDA-based methodology is able to fully adress the three main

challenges pertaining to continuous annotations:

* Representing Multiple Subjective Ratings: Using P-Splines, the data is represented through
a basis of substantially lower dimension than the original data. Yet, the functional rep-
resentation is powerful enough to keep the most important functional features of the
original annotations. The resulting annotation functions as well as their derivatives are
smooth and can be evaluated at arbitrary time points within their domains.

* Comparing Multiple Subjective Ratings: Due to the advantageous properties of the eigen-
function representation through MFPCA, all 240 annotations can be expressed in a simple
vector space. The similarity of the different annotation functions is assessable in terms
of euclidean distances. Annotation functions of similar stimuli form clusters that can be

identified.
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* Combining Multiple Subjective Ratings: Based on the MFPCA method, outlying annotation
functions that display a different structure can be detected and removed in order to

estimate a ground truth annotation.

Despite these positive outcomes, the results for the characteristic annotation are behind ex-
pectations. Possible reasons could be a high annotational heterogenity between subjects and
the presence of phase variation in the data. The latter would obscure sharp timing features
and veil them when combining multiple annotations. The phase variation in the data could be
due to the individual reaction times of the subjects, which is a known matter for continuous
annotations [3]. Additionally, the sample size of 30 subjects and 2 videos per video stimuli
yields only a limited generalisability of the results. This might affect the outlier removal for
the characteristic annotations since the analysis of only 30 principal component score vectors

has only limited power.

Outlook

The work presented here yields further pointers for improving the methodology for the analysis
of joystick annotation data and continuous annotations in general. Future research needs to

address:

* The identification of phase variation: New approaches for continuous registration and
time-warping [68] may identify new sources of variation in the data and yield sharper
functional features, thus enhance the power of characteristic annotations.

* Derivation of functional features: Closely related to the first point is the derivation of in-
formative functional features [69] to improve the separability of different stimuli groups
or to be able to cluster groups of subjects showing similar annotation behaviour.

* Extending repeated measurement methodology to functional obervations: To further
isolate the effects of the stimuli on the functional observations, the experimental design
could be incorporated in the FDA methodology. Hypotheses can then be tested using
functional extensions of RM MANOVA.

* Estimation of a closed form model: Similar to [70, 71] the annotation data can be

modeled to be able to identify salient segments.
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The present thesis shall be concluded by adding another perspective to [34] as shown in Figure
5.1. The additional column describes the data situation for the annotation data. This is a very
common situation in many sensor-driven applications. One example are Bionic applications,
where muscular activity is measured at different positions of the human arm in order to control
a prosthetic device. In these scenarios, the resulting data consist of several functions that have
different domains. The functional perspective taken in this thesis allows to simplify the analysis

and yields a promising new approach to the data.

Number of covariates
p <o p =090 p=00 X::+X0OQ

n<oo

Number of observ. entities

x(),0<t<T x;(t),t=_(tq,...,t4)

Data Xitseees Xip

Figure 5.1: More possible domains for statistical modelling of observation data referring to
[34] and Figure 1.5. Using [56], the covariates per observation unit can be continuous and
multivariate on different domains.
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