DLR

Deutsches Zentrum
fur Luft- und Raumfahrt
German Aerospace Center

=
]
= FRIEDRICH-ALEXANDER
= UNIVERSITAT _

<= ERLANGEN-NURNBERG

=

Numerical method

Eigenvalue problem definition

The Block Jacobi-Davidson Eigensolver in PHIST

Achim Basermann', Georg Hager?, and Gerhard Wellein?

'DLR, Simulation and Software Technology,
°Erlangen Regional Computing Center

Additional operations due to blocking

Scalability on Oakforest-PACS

Jonas Thies', Melven Roéhrig-Z6liner', Dominik Ernst?, Moritz Kreutzer?, = F4

Calculate a small number of extremal eigenpairs ()}, v;) for e Blocking increases the number of operations matrice§ |
a sparse, large matrix A € R"™": (but blocked operations are faster). symmetric 7-po!nt Laplace, 8.4M rows/node
general 7-point, some PDE, 2.0M rows/node

AV,':)\,'V,', i:1,...,/.

With an orthonormal basis Q = (q1, o q,) for the invariant
subspace V = span{vy, ..., v;} one obtains the more stable
block formulation:

— Question: How large is the overhead?
e Approach to estimate possible performance gains:
— Count sparse matrix-vector multiplications (spMVM).
— Relate results to the performance of block spMVMs.

Oakforest
PACS

solver parameters
Krylov solver 10 iterations of MINRES (sym.)

or GMRES+IMGS ortho (general)

. : : oy JD basis 16-40 vectors
For more than 20 eigenpairs blocking may be beneficial. . .
{AQ - QR =0, ” 9enp 9 may target eigenpairs near 0 (‘SR’)
1 1
-QrQ+3l =0.) Note:

— Partial Schur decomposition with r;; = A;: S * We ran the solver for a fixed number of 250

o 4 Andrews Jacobi-Davidson iterations because convergence
R 8 35 o ocfdl e depends strongly on problem size without additional
s finan512 —~— e
= 3 torsion1 —&— - preconditioning.
- 2 i ck656 —=— e We do not get near the HPCG performance in our
5 °° cry10000 * experiments b do not exploit the matri
5 dws192 _ . | periments because we do not exploit the matrix
g 2 x rdb3200] —a— | Flgure 4: ImpreSSIOH of the Oakforest-PACS Supercommputer at the structure. Furthermore, the problem S|Zes are rather
E 15 iat"i”.e/s? ;gg}:gimjegg fapd/ngge?:ti% (‘ﬁﬂlpc)' small to fit all the required vector spaces into the
c . . _ . . .
Block correction equation 2 Ra——— S —— high-banawidth memory (HBM).

I 5 10 20 30 40 50 e Due to limited CPU time we could only run a few
o

In each step of a block Jacobi-Davidson algorithm one } number of eigenvalues found Cores: _ 556,104 beqchmarks and some data points are missing in the

calculates correction vectors Aqy, ..., Aq;: (@) Block size 2 Memory: 919,296 GB Series.

. - U R Processor: Intel Xeon Phi 7250 68C 1.4GHz
(=QQ) (A= h(l—QQ)Ag = —(Aq; — QF). Interconnect: Intel Omni-Path

projection onto Q-+

Linpack Performance (Rmax) 13,554.6 TFlop/s

e (Q, R) is the current approximation, \; = r;; and Fthe ith 'II\'IheoreticaI Peak (Rpeak) 549=2;38-20TF|OP/S
| fR. max 938,
S HPCG [TFlop/s] 385.479

e approximated by some iterations of MINRES or GMRES.

Table 4: System specification of Oakforest-PACS.
https://top500.0rg/

Weak scaling

non-symmetric problem, weak scaling of subspacejada

Generalizations

relative number of spMVM operations

The method is in fact a subspace accelerated

Newton-Krylov method applied to multiple eigenpairs number of eigenvalues found

(b) Block size 4

symmetric problem, weak scaling of subspacejada (bs 4)

blocking). | s N
(9) Figure 1: Number of spMVMs of block JDQR compared to single-vector ey
JDQR. ——bs 4 88.7 TFlop/s

Generalizations implemented in PHIST include (59.9%)

® Hermitian or non-Hermitian rous |
® real or complex matrices

e generalized EVP Ax = ABx for h.p.d. B

e arbitrary preconditioning for the correction equation

148 TFlop/s
(53.2%)
le+d

11.8 TFlop/s
(63.8%)

23.4 TFlop/s

tesd L (67.3%)

" 4.53 TFlop/s
(104%)

overall performance [GFlop/s]
overall performance [GFlop/s]

-
[}
+
w

1e+3 -

0.543 TFlop/s
(100%)

.289 TFlop/s
(100%)
1e+2

| | | | J
16 128 1024 8192 8 512 4096
nodes nodes

Preconditioning

1e+2

1 . -
If K=" is a §U|table preconditioner for A o .TB_ for some 7 near Table 1: Effect of using an AMG preconditioner with the Jacobi-Davidson
the sought eigenvalues, left preconditioning is implemented by a method. Matrix: non-symmetric 3D PDE problem Preconditioner: Trilinos
‘skew-projected’ preconditioning operator: ML 'NSSA’ (non-symmetric smoothed aggregation)

problem size preconditioner iterations spMVMs

Figure 5: Weak scaling on up to 0.5M cores. The percentage indicates the parallel efficiency compared to the first measurement (smallest node count).
Left: symmetric PDE problem with the largest matrix size N = 4 0963, right non-symmetric PDE problem with the largest problem size N = 2 0483. The best
performance was obtained with a block size of 4. The numbers in the plot refer to this case.

ttot ZLgmres

A SVH g1~ = _ 3
precOps = (I — (K 'Q)(BQ)'K'Q)*(BQ)") K. 128 GMRES 471 10403 38.5 24.7 .
GMRES+ML 31 720263 13.2 Strong scaling
- . 256° GMRES 815 17971 736 496
The projection makes sure that the ‘inner’ Krylov space stays orthog- GMRES+ML 29 668 227 116 s ‘

onal to the current approximation and locked eigenvectors in Q.

Note: preconditioner performance should benefit from block-speedup similar to spMVM, not investigated further here.

Node-level performance

Figure 6: Strong scaling: larger block size reduces number of Allreduce operations. The performance drop at 512 nodes and N = 5123 may need further
investigation.

SC-Cluster: roofline model, 4 sockets (14 cores each) 240
o Il BLAS1 GFlop/s] 221
4659 GFlOp/S peak 220 [HH CG GFIOp/S pl p gh bl hod y p gh bl d us 1024 La‘place: perf increase through block method
4096 |- IBJDQR-1 GFlop/s
200 - iIBJDQR-2 GFlop/s
IBJDQR-4 GFlop/s
180 |
1024 | .| |
160 15
256 - 140 + 13 M []
no SIMD @ i 1
n o
g U_Cj 120 |
5 64 | O) 103 105 Bl]
BLAS1 (ddot) 100 ¢
80 | 76 0 8 16 32 64 128 256 512 1024
16 | i
_> 60| 1 55 Figure 7: strong scaling: corresponding ‘block speedup’ over the bs=1 case. The KNL doesn’t seem to ‘like’ block size 2 very much (in contrast to Xeon
' ° 394 47 CPUs). Maybe the bandwidth can’t be saturated with SSE?
. - 40 32532 . 35
serial 24
| 20 P
1 " 1 1 1 1 1 1 1 1 1 1
0.00390625 164132116 U8 U4 L2 1 2 4 8 16 0 ‘ ‘ ‘
Skylake (5123) KNL (256°) Volta (1283)

Flops / Byte
Figure 2: Performance achieved on different hardware using PHIST builtin
kernels (CPU/KNL) and GHOST (GPU). ‘BLAS1’ is a theoretical value
(ddot according to memory bandwidth).

* Node-level performnance of all kernels is bounded
by the memory bandwidth

e Can only get faster by doing more Flops/Byte

e ‘tall and skinny’ kernels: e.g.
M~ XTY X~ X-MX,Y € RNk M c Rk<K

e PHIST allows printing kernel ‘roofline performance’

Our Hybrid-parallel kernel library Algorithms and integration framework

after run
General, Hybrid-parallel and Pipelined, Hybrid-parallel
m Optimized Sparse Toolkit PH IST Iterative Solver Toolkit
vertical integration econdiioners 5 PY |nterfaces C, C++,
i * provides memory-bounded kernels for sparse solvers B[[oorme Fecumeey] Fortran, Python
Why IS the G PU nOt as faSt as expeCted ? e data structures: o, bm o | ¢ testing and benchmarking
— row- or col-major block vectors 3 E / emebay 9 100lS
} : — SELL-C — o for sparse matrices : ® includes performance
Test Hardware GPUs are increasingly hungry o written (mostly) in C ; / T models
* ‘MPI+X’ with X OpenMP, CUDA and SIMD intrinsics S| gymertacer - * various linear and

e “Skylake”: Intel Xeon Scalable, 4 x 14 cores @2.6GHz, 42 eigensolvers

® runs on Peta-scale systems (Piz Daint, Oakforest-PACS)

384 GB DDR4 RAM e can use heterogenous systems (e.g. including CPUs
e “KNL’: Intel Xeon Phi, 64 cores @1.4GHz, o4 26 MIC and GPUSS)J y 9 J ’ Select kernel library at compile time:
16 GB HBM (cache mode) 18 EHELET vuiltin (Fortran), B8, PETSc
e “Volta”: NVidia Tesla V100-SXM2 GPU,]
16 GB HBM2 (+UVM) K20 K40 P100 V100
benchmark Skylake KNL Volta Figure 3: Ratio of GPU memory and memory bandwidth [ms] over time.
L‘igf'e ggg ?2‘73 g;g bs IM 2M 2aM 8M_ 16M 32M 4 Wil be in the fall release of the xSDK
riad 560 315 843 1 12 023 137 B8 |78 &3 " (https://xsdk.info), a collection of
extreme-scale simulation software

Table 2: Measured streaming memory bandwidth [GB/s]

2 3 3 53 68 81 88
4 34 53 66 83 88

8 51 70 85 87 --

Table 3: “% roofline” of X"Y, X, Y € RVN*™ using GHOST on Volta.
Optimal performance is requires block vectors of at least 1GB each!

https://bitbucket.org/essex/ghost https://bitbucket.org/essex/phist

Both libraries also available via Spack
(https://spack.io).

EHELET now has experimental support for CUDA UVM, but the performance assessment is tricky.

ESSEX — Equipping Sparse Solvers for Exascale — funded by DFG priority program 1648 (SPPEXA)

http://blogs.fau.de/essex

http://jcahpc.jp/ofp/ofp_intro.html
https://top500.org/
https://xsdk.info
https://bitbucket.org/essex/ghost
https://bitbucket.org/essex/phist
https://spack.io

