
The Block Jacobi-Davidson Eigensolver in PHIST
Jonas Thies1, Melven Röhrig-Zöllner1, Dominik Ernst2, Moritz Kreutzer2,

Achim Basermann1, Georg Hager2, and Gerhard Wellein2

1DLR, Simulation and Software Technology,
2Erlangen Regional Computing Center

Numerical method

Eigenvalue problem definition

Calculate a small number of extremal eigenpairs (λi, vi) for
a sparse, large matrix A ∈ Rn×n:

Avi = λivi, i = 1, . . . , l .

With an orthonormal basis Q =
(
q1, . . . ,ql

)
for the invariant

subspace V = span{v1, . . . , vl} one obtains the more stable
block formulation: {

AQ −QR = 0,
−1

2Q∗Q + 1
2I = 0.

→ Partial Schur decomposition with ri ,i = λi:

A Q = Q

R

Block correction equation

In each step of a block Jacobi-Davidson algorithm one
calculates correction vectors ∆q1, . . . ,∆ql:

(I − Q̃Q̃∗)︸ ︷︷ ︸
projection onto Q⊥

(A− λ̃iI)(I − Q̃Q̃∗)∆qi ≈ −(Aq̃i − Q̃r̃i).

• (Q̃, R̃) is the current approximation, λ̃i = ri ,i and r̃ithe i th
column of R̃.

• approximated by some iterations of MINRES or GMRES.

Generalizations

The method is in fact a subspace accelerated
Newton-Krylov method applied to multiple eigenpairs
(blocking).

Generalizations implemented in PHIST include
• Hermitian or non-Hermitian
• real or complex matrices
• generalized EVP Ax = λBx for h.p.d. B
• arbitrary preconditioning for the correction equation

Additional operations due to blocking

• Blocking increases the number of operations
(but blocked operations are faster).

→ Question: How large is the overhead?
• Approach to estimate possible performance gains:
− Count sparse matrix-vector multiplications (spMVM).
− Relate results to the performance of block spMVMs.

→ For more than 20 eigenpairs blocking may be beneficial.

1

1.5

2

2.5

3

3.5

4

5 10 20 30 40 50

re
la

tiv
e

nu
m

be
ro

fs
pM

V
M

op
er

at
io

ns

number of eigenvalues found

Andrews
cfd1

finan512
torsion1

ck656
cry10000

dw8192
rdb3200l

(a) Block size 2

1
1.5

2
2.5

3
3.5

4
4.5

5

5 10 20 30 40 50

re
la

tiv
e

nu
m

be
ro

fs
pM

V
M

op
er

at
io

ns

number of eigenvalues found
(b) Block size 4

Figure 1: Number of spMVMs of block JDQR compared to single-vector
JDQR.

Preconditioning

If K−1 is a suitable preconditioner for A − τB for some τ near
the sought eigenvalues, left preconditioning is implemented by a
‘skew-projected’ preconditioning operator:

precOpB = (I − (K−1Q̃)((BQ̃)HK−1Q̃)+(BQ̃)H)K−1.

The projection makes sure that the ‘inner’ Krylov space stays orthog-
onal to the current approximation and locked eigenvectors in Q̃.

Table 1: Effect of using an AMG preconditioner with the Jacobi-Davidson
method. Matrix: non-symmetric 3D PDE problem Preconditioner: Trilinos
ML ’NSSA’ (non-symmetric smoothed aggregation)

problem size preconditioner iterations spMVMs ttot tgmres

1283 GMRES 471 10 403 38.5 24.7
GMRES+ML 31 720 26.3 13.2

2563 GMRES 815 17 971 736 496
GMRES+ML 29 668 227 116

Note: preconditioner performance should benefit from block-speedup similar to spMVM, not investigated further here.

Node-level performance

• Node-level performnance of all kernels is bounded
by the memory bandwidth

• Can only get faster by doing more Flops/Byte
• ‘tall and skinny’ kernels: e.g.

M ← X TY ,X ← X ·M ; X ,Y ∈ RN×k ,M ∈ Rk×k

• PHIST allows printing kernel ‘roofline performance’
after run

Skylake (5123) KNL (2563) Volta (1283)
0

20

40

60

80

100

120

140

160

180

200

220

240

32.5
39.4

105

32
24

76

51

35

132

73

47

147

103

55

221

G
Fl

op
/s

BLAS1 GFlop/s]
CG GFlop/s

BJDQR-1 GFlop/s
BJDQR-2 GFlop/s
BJDQR-4 GFlop/s

Figure 2: Performance achieved on different hardware using PHIST builtin
kernels (CPU/KNL) and GHOST (GPU). ‘BLAS1’ is a theoretical value
(ddot according to memory bandwidth).

Why is the GPU not as fast as expected?

Test Hardware

• “Skylake”: Intel Xeon Scalable, 4× 14 cores @2.6GHz,
384 GB DDR4 RAM

• “KNL”: Intel Xeon Phi, 64 cores @1.4GHz,
16 GB HBM (cache mode)

• “Volta”: NVidia Tesla V100-SXM2 GPU,
16 GB HBM2 (+UVM)

benchmark Skylake KNL Volta
load 360 338 812
store 200 167 883
triad 260 315 843

Table 2: Measured streaming memory bandwidth [GB/s]

GPUs are increasingly hungry

K20 K40 P100 V100

24

42

26
18

Figure 3: Ratio of GPU memory and memory bandwidth [ms] over time.

bs 1M 2M 4M 8M 16M 32M
1 12 23 37 58 78 83
2 31 35 53 68 81 88
4 34 53 66 83 88 95
8 51 70 85 87 99 100

Table 3: “% roofline” of X TY ,X ,Y ∈ RN×nb using GHOST on Volta.
Optimal performance is requires block vectors of at least 1GB each!

now has experimental support for CUDA UVM, but the performance assessment is tricky.

Scalability on Oakforest-PACS

Machine

Figure 4: Impression of the Oakforest-PACS supercommputer at the
Japanese joint center for advanced HPC (JCAHPC).
http://jcahpc.jp/ofp/ofp_intro.html

Cores: 556,104
Memory: 919,296 GB
Processor: Intel Xeon Phi 7250 68C 1.4GHz
Interconnect: Intel Omni-Path
Linpack Performance (Rmax) 13,554.6 TFlop/s
Theoretical Peak (Rpeak) 24,913.5 TFlop/s
Nmax 9,938,880
HPCG [TFlop/s] 385.479
Table 4: System specification of Oakforest-PACS.
https://top500.org/

Benchmarks

matrices
symmetric 7-point Laplace, 8.4M rows/node
general 7-point, some PDE, 2.0M rows/node
solver parameters
Krylov solver 10 iterations of MINRES (sym.)

or GMRES+IMGS ortho (general)
JD basis 16-40 vectors
target eigenpairs near 0 (‘SR’)

Note:
• We ran the solver for a fixed number of 250

Jacobi-Davidson iterations because convergence
depends strongly on problem size without additional
preconditioning.

• We do not get near the HPCG performance in our
experiments because we do not exploit the matrix
structure. Furthermore, the problem sizes are rather
small to fit all the required vector spaces into the
high-bandwidth memory (HBM).

• Due to limited CPU time we could only run a few
benchmarks and some data points are missing in the
series.

Weak scaling

16 128 1024 8192
1e+2

1e+3

1e+4

1e+5

1e+6

nodes

ov
er

al
lp

er
fo

rm
an

ce
[G

Fl
op

/s
]

0.543 TFlop/s

4.53 TFlop/s

23.4 TFlop/s

148 TFlop/s

(100%)

(104%)

(67.3%)

(53.2%)

symmetric problem, weak scaling of subspacejada (bs 4)

8 512 4096
1e+2

1e+3

1e+4

1e+5

nodes

ov
er

al
lp

er
fo

rm
an

ce
[G

Fl
op

/s
]

0.289 TFlop/s

11.8 TFlop/s

88.7 TFlop/s

(100%)

(63.8%)

(59.9%)

bs 1
bs 2
bs 4

non-symmetric problem, weak scaling of subspacejada

Figure 5: Weak scaling on up to 0.5M cores. The percentage indicates the parallel efficiency compared to the first measurement (smallest node count).
Left: symmetric PDE problem with the largest matrix size N = 4 0963, right non-symmetric PDE problem with the largest problem size N = 2 0483. The best
performance was obtained with a block size of 4. The numbers in the plot refer to this case.

Strong scaling

8 16 32 64 128 256 512 1024
1e+2

1e+3

1e+4
bs 1
bs 1 (linear)
bs 2
bs 2 (linear)
bs 4
bs 4 (linear)

5123 Laplace: strong scaling performance

8 16 32 64 128 256 512 1024
1e+2

1e+3

1e+4
bs 1
bs 1 (linear)
bs 2
bs 2 (linear)
bs 4
bs 4 (linear)

5123 Nonsymmetric: strong scaling performance

64 128 256 512 1024
1e+3

1e+4

bs 1
bs 1 (linear)
bs 2
bs 2 (linear)
bs 4
bs 4 (linear)

10243 Laplace: strong scaling performance

Figure 6: Strong scaling: larger block size reduces number of Allreduce operations. The performance drop at 512 nodes and N = 5123 may need further
investigation.

0 8 16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

5123 Laplace: perf increase through block method

0 8 16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

3.5

5123 Nonsymmetric: perf increase through block method

0 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

10243 Laplace: perf increase through block method

Figure 7: strong scaling: corresponding ‘block speedup’ over the bs=1 case. The KNL doesn’t seem to ‘like’ block size 2 very much (in contrast to Xeon
CPUs). Maybe the bandwidth can’t be saturated with SSE?

Software

Our Hybrid-parallel kernel library

General, Hybrid-parallel and
Optimized Sparse Toolkit

• provides memory-bounded kernels for sparse solvers
• data structures:
− row- or col-major block vectors
− SELL-C − σ for sparse matrices
• written (mostly) in C
• ‘MPI+X’ with X OpenMP, CUDA and SIMD intrinsics
• runs on Peta-scale systems (Piz Daint, Oakforest-PACS)
• can use heterogenous systems (e.g. including CPUs,

MIC and GPUs)

Algorithms and integration framework

PHIST Pipelined, Hybrid-parallel
Iterative Solver Toolkit

vertical integration
preconditionerspreconditioners

kernel librarykernel library

«abstraction»

algorithms

core layer

«interface»
kernel interfaceho

lis
tic

pe
rfo

rm
an

ce
en

gi
ne

er
in

g

setup/apply

sparseMat

mvec sdMat

• Interfaces: C, C++,
Fortran, Python

• testing and benchmarking
tools

• includes performance
models

• various linear and
eigensolvers

Select kernel library at compile time:
, builtin (Fortran), , PETSc

Will be in the fall release of the xSDK
(https://xsdk.info), a collection of
extreme-scale simulation software

https://bitbucket.org/essex/ghost https://bitbucket.org/essex/phist

Both libraries also available via Spack
(https://spack.io).

ESSEX – Equipping Sparse Solvers for Exascale – funded by DFG priority program 1648 (SPPEXA) http://blogs.fau.de/essex

http://jcahpc.jp/ofp/ofp_intro.html
https://top500.org/
https://xsdk.info
https://bitbucket.org/essex/ghost
https://bitbucket.org/essex/phist
https://spack.io

