OUTLOOK ON THE POTENTIAL OF HYBRID NONWOVEN FROM FLAX FIBRES AND RECYCLED CARBON FIBRES

Quanzhou, November 2018
10th International Conference on Green Composites ICGC
Jens Bachmann (DLR)

This project has received funding from:
- The European Union’s Horizon 2020 research and innovation programme under grant agreement No 690638
- The Ministry for Industry and Information of the People’s Republic of China under grant agreement No [2016]92
Motivation
ECO-COMPASS

Recycling?

Composite 53%

Al/Al-Li 19%

Titanium 14%

Steel 6%

miscellaneous 8%

November 2018
Hybrid nonwoven from rCF and NF

Interlayer

Intralayer
Nonwoven processes

- Airlay Process: 5–120 mm
- Paper Process: <6–18 mm
- Wetlaid Process: <30 mm
- Mechanical Processes (Carding): 5–100 mm

Fibre length [mm] vs. Increasing isotropic material properties
Mixing and nonwoven production

November 2018
Nonwoven configuration

<table>
<thead>
<tr>
<th>Laminate</th>
<th>Stacking Sequence and Volumetric Distribution of Fibres</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>30Flax</td>
<td></td>
<td>30 vol.-% Flax</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 vol.-% Epoxy</td>
</tr>
<tr>
<td>30rCF</td>
<td></td>
<td>30 vol.-% rCF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 vol.-% Epoxy</td>
</tr>
<tr>
<td>22.5Flax-7.5rCF</td>
<td></td>
<td>22.5 vol.-% Flax</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 vol.-% rCF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 vol.-% Epoxy</td>
</tr>
<tr>
<td>Gr-22.5Flax-7.5rCF</td>
<td></td>
<td>22.5 vol.-% Flax</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.5 vol.-% rCF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 vol.-% Epoxy</td>
</tr>
</tbody>
</table>

Legend: Flax, rCF

November 2018
Fibre distribution
Flexural Characterisation

3PB Flexural Stress-Strain (ISO14125)
(typical results in 0° composite direction).

- 30rCF
- "Gr"-22.5Flax-7.5rCF
- E-Glass Mat
- 22.5Flax-25rCF
- Flax UD Fabric
- 30Flax
- Flax Balanced Fabric

Stress [MPa] vs. Strain [%]

November 2018
Flexural Characterisation

3PB Specific Flexural Stiffness [ISO14125]

<table>
<thead>
<tr>
<th>Material</th>
<th>Specific Flexural Stiffness [MPa/g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30Flax</td>
<td>6000 ± 100</td>
</tr>
<tr>
<td>30rCF</td>
<td>7500 ± 200</td>
</tr>
<tr>
<td>22.5Flax-7.5rCF</td>
<td>10000 ± 300</td>
</tr>
<tr>
<td>Gr-22.5Flax-7.5rCF</td>
<td>12500 ± 400</td>
</tr>
<tr>
<td>E-Glass Mat (30%)</td>
<td>5000 ± 150</td>
</tr>
<tr>
<td>Flax balanced fabric (EP, Prepreg, 42%)</td>
<td>5000 ± 150</td>
</tr>
<tr>
<td>Flax UD fabric (EP, Prepreg, 51%)</td>
<td>5000 ± 150</td>
</tr>
</tbody>
</table>

November 2018
Summary & Outlook

• Recycled carbon fibres (rCF) retain their good mechanical properties
• Restricted length comparable to natural fibres (NF)
• rCF an flax fibres were combined in a hybrid nonwoven as a way to improve mechanical properties compared to pure NFRP.
• Flexural characterisation (3PB) shows potential improvement of hybrid nonwoven configurations compared to pure flax reinforced composite. However, pure rCF reinforcement was not reached.

Outlook

• A full characterisation with TEN, COM, etc.
• Improvement of fibre-matrix adhesion for pyrolysed rCF without sizing
• Upscaling of fibre mixing and distribution process
• Adaptation of mixing ratio, fibre distribution and fibre alignment (e.g. by cross-laying)
This project has received funding from:
- The European Union’s Horizon 2020 research and innovation programme under grant agreement No 690638
- The Ministry for Industry and Information of the People’s Republic of China under grant agreement No [2016]92

谢谢大家的关注。
THANK YOU FOR YOUR ATTENTION.