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Abstract The ESSEX project is an ongoing effort to provide exascale-enabled
sparse eigensolvers, especially for quantum physics and related application areas. In
this paper we first briefly summarize some key achievements that have been made
within this project.

Then we focus on a projection-based eigensolver with polynomial approxima-
tion of the projector. This eigensolver can be used for computing hundreds of in-
terior eigenvalues of large sparse matrices. We describe techniques that allow us-
ing lower-degree polynomials than possible with standard Chebyshev expansion of
the window function and kernel smoothing. With these polynomials, the degree,
and thus the number of matrix–vector multiplications, typically can be reduced by
roughly one half, resulting in comparable savings in runtime.

1 The ESSEX Project

ESSEX—Equipping Sparse Solvers for Exascale—is one of the projects within the
German Research Foundation (DFG) Priority Programme “Software for Exascale
Computing” (SPPEXA). It is a joint effort of physicists, computer scientists and
mathematicians to develop numerical methods and programming concepts for the
solution of large sparse eigenvalue problems on extreme-scale parallel machines.
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ESSEX’ goal is not to provide a general-purpose eigenvalue library directly usable
in the full range of eigenvalue computations. Rather, in the first funding period the
focus was on appropriate methods for selected physical applications featuring rather
different characteristics, such as the need for a few extremal eigenpairs, a bunch of
interior eigenpairs, information about the whole eigenvalue distribution, and dynam-
ics, of symmetric or Hermitian matrices. These methods include Jacobi–Davidson
iteration, projection-based algorithms, the kernel polynomial method, and Cheby-
shev time propagation, respectively.

To obtain scalable high performance, ESSEX takes a holistic performance engi-
neering approach encompassing the applications, algorithmic development, and un-
derlying building blocks. One of the outcomes is an “Exascale Sparse Solver Repos-
itory” (ESSR) that provides high-performance implementations of several methods.
In addition, experiences gained through ESSEX work can give guidelines for ad-
dressing structurally similar problems in numerical linear algebra. In the following
we briefly summarize some of ESSEX’ results so far.

Up to now, block variants of the Jacobi–Davidson algorithm have been consid-
ered worthwhile mainly for robustness reasons. Our investigations [20] have re-
vealed that they also can be faster than non-blocked variants, provided that all basic
operations (in particular sparse matrix times multiple vector multiplication and op-
erations on tall and skinny matrices) achieve optimal performance. This is typically
not the case if block vectors are stored in column-major ordering, and we showed
that some care has to be taken when implementing algorithms using row-major
block vectors instead. A blocked GMRES solver has been developed for solving the
multiple Jacobi–Davidson correction equations occurring in the block algorithm.

An adaptive framework for projection-based eigensolvers has been developed
[8], which allows the projection to be carried out with either polynomials or a con-
tour integration as in the FEAST method [19]. The latter approach requires the so-
lution of highly indefinite, ill-conditioned linear systems. A robust solver for these
has been identified and implemented [9].

The eigensolvers in ESSEX are complemented by domain-specific algorithms
for quantum physics computations such as the kernel polynomial method (KPM)
[26] for the computation of eigenvalue densities and spectral functions. These algo-
rithms, which are based on simple schemes for the iterative evaluation of (Cheby-
shev) polynomials of sparse matrices, are very attractive candidates for our holistic
performance engineering approach. For example, in a large-scale KPM computa-
tion [14, 15] we could achieve 11% of LINPACK efficiency on 4096 heterogeneous
CPU–GPU nodes of Piz Daint at Swiss National Supercomputing Centre (CSCS).
This is an unusually high value for sparse matrix computations whose performance
is normally much more restricted by the main memory bandwidth.

Such progress is possible because in ESSEX the algorithmic work on the above
methods goes hand-in-hand with the model-guided development of high-performance
MPI+X hybrid parallel kernels for the computational hot spots. They are included in
the “General, Hybrid, and Optimized Sparse Toolkit” (GHOST) [16]. Besides im-
plementations of sparse matrix–(multiple) vector multiplication, optionally chained
with vector updates and inner products to reduce data transfers, operations with
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“tall skinny” dense matrices, and other basic building blocks, GHOST also provides
mechanisms for thread-level task management to utilize the aggregate computa-
tional power of heterogeneous nodes comprising standard multicore CPUs, Intel
Xeon Phi manycore CPUs, and NVIDIA GPUs, and to enable asynchronous check-
pointing with very low overhead.

A “Pipelined Hybrid-parallel Iterative Solver Toolkit” (PHIST) [25] provides an
interface to the GHOST kernels and adapters to the Trilinos libraries Anasazi [1] and
Belos [2]. It also contains higher-level kernels and a comprehensive test framework.

A unified sparse matrix storage format for heterogeneous compute environments,
SELL-C-σ , has been proposed [13]. It is a generalization of the existing formats
Compressed Row Storage and (Sliced) ELLPACK with row sorting and allows near-
to-optimum performance for a wide range of matrices on CPU, Phi, and GPU, thus
often obviating the former need to use different formats on different platforms.

While the methods and software developed in ESSEX are applicable to general
eigenvalue problems our project specifically addresses quantum physics research
applications. Among these, the recent fabrication of graphene [4] and topological
insulator [11] materials has renewed the interest in the solution of large scale in-
terior eigenvalue problems. Realistic modeling of structured or composite devices
made out of these materials directly leads to large sparse matrix representations of
the Hamilton operator in the Schrödinger equation, and the eigenvalues and eigen-
vectors deep inside the spectrum, near the Fermi energy, determine the electronic
structure and topological character and thus the functioning of such devices.

A more comprehensive description of the results obtained within the ESSEX
project can be found in [25] and the references therein, and on the ESSEX homepage
https://blogs.fau.de/essex/.

In the following sections we focus on the BEAST-P eigensolver that is available
in the ESSR and in particular propose approaches for increasing its efficiency.

2 Accelerated Subspace Iteration With Rayleigh–Ritz Extraction

Eigenvalue problems (EVPs) Av = λv with real symmetric or complex Hermitian
matrices A arise in many applications, e.g., electronic structure computations in
physics and chemistry [3].

Often the matrix is very large and sparse, and only a few extreme or interior
eigenpairs (λ ,v) of the spectrum are required. In this case iterative solvers based on
Krylov subspaces, such as Lanczos or Jacobi–Davidson-type methods [17, 24], or
block variants of these [21, 20], tend to be most efficient. A common feature of such
algorithms is a subspace that is expanded by a single vector or a block of vectors in
each iteration, thus increasing its dimension.

In this work we focus on the situation when (i) the eigenpairs in a given interval
are sought, λ ∈ Iλ = [α,β ], (ii) these eigenvalues are in the interior of the spectrum,
and (iii) their number is moderately large (some hundreds, say). Then subspace
iteration, possibly coupled with a Rayleigh–Ritz extraction, may be competitive or
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superior to the afore-mentioned methods. The basic procedure is summarized in
Fig. 1; cf. also [22, 8].

Fig. 1 Key algorithmic steps for subspace iteration with Rayleigh–Ritz extraction.

Given: A ∈ Cn×n, Iλ = [α,β ]⊂ R
Sought: Those eigenpairs (λ ,v) of A such that λ ∈ Iλ

start with a subspace Y ∈ Cn×m of suitable dimension m
while not yet converged

compute U= f (A) ·Y for a suitable function f
compute AU = U∗AU and BU = U∗U and solve the size-m generalized EVP AUW = λBUW
replace Y with U ·W

The function f can be chosen in many different ways, ranging from f ≡ id (i.e.,
U= A ·Y, “power iteration”) to more sophisticated “filter functions;” cf., e.g., [22].
In particular, consider the “window function”

f (x)≡ χIλ (x) =
{

1, x ∈ Iλ ,
0, otherwise

and a column y j of Y, expanded w.r.t. an orthonormal system v1, . . . ,vn of A’s eigen-
vectors, y j = ∑

n
k=1 ηkvk. Then

f (A) ·y j =
n

∑
k=1

ηk f (λk)vk = ∑
λk∈Iλ

ηkvk ,

i.e., y j is projected onto the invariant subspace spanned by the desired eigenvectors.
With this choice of f , the procedure in Fig. 1 would terminate after just one itera-
tion. Especially for large matrices, however, χIλ (A) · yk can only be approximated,
either by using specialized algorithms for matrix functions f (A) · b [12, 23] or by
approximating the function: f ≈ χIλ . We will focus on the latter approach, in par-
ticular on using polynomials for approximating f . Very good approximation can be
achieved with rational functions, and methods for choosing these optimally have
been investigated [10] (cf. also [19] for the FEAST algorithm, where the rational
approximation is done via a numerical contour integration). However, rational func-
tions require the solution of shifted linear systems (A−σ I)x j = y j, and these can
be very challenging if direct solvers are not feasible.

In this work we will instead consider polynomial functions f (x) = p(x), where
p(x) is a polynomial of degree d. Then f (A) · y is easy to evaluate even if A is not
available explicitly but its action A · v on any vector v can be determined (e.g., for
very large sparse matrices whose nonzero entries are not stored but re-computed
whenever they are needed).

An important observation is that, in order for the overall algorithm in Fig. 1 to
work, we must be able to determine the number of eigenvalues that are contained in
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Iλ , e.g., to decide whether all sought eigenpairs have been found and to adjust the
dimension of the search space Y. This can be done by counting the singular values
of the current matrix U that are larger than some given bound τinside. Thus we must
have

p(x)≥ τinside for x ∈ [α,β ] (1)

in order not to miss one of the sought eigenpairs. For compatibility with the FEAST
realization of the projector we choose τinside = 0.5 throughout. By contrast, linearity
of the filter is not an issue: it is not necessary that p(x)≈ 1 in the interior of Iλ . (The
values should, however, not be too large to avoid numerical problems in the SVD
computation.)

For the approximate projector p(A) to be effective, it must dampen the compo-
nents v j corresponding to unwanted eigenvalues λ j 6∈ Iλ . Thus we require

|p(x)| ≤ τoutside for x 6∈ [α−δ ,β +δ ] (2)

for some threshold τoutside, e.g., τoutside = 0.01. The margin δ > 0 is necessary be-
cause a continuous function p cannot achieve (2) for all x 6∈ Iλ while fulfilling (1).
Note that if there are unwanted eigenvalues λ j ∈ (α − δ ,α)∪ (β ,β + δ ) then the
corresponding components v j may not be sufficiently damped to yield satisfactory
convergence of the overall method. In this case it may be necessary to increase the
degree of the polynomial; cf. [8]. Anyway p should be chosen such that a small
margin can be achieved. This is the main focus of this work.

The remainder of the article is organized as follows. In Sect. 3 we will discuss
how to reduce the margin while still trying to approximate the window function,
p(x) ≈ χIλ . In Sect. 4 we will see that the margin for [α,β ] can be reduced further
by approximating the window function for a smaller interval. Giving up the linearity
constraint within the interval yields another type of filter that is discussed in Sect. 5.
Numerical results presented in Sect. 6 show that the reduction of the margin also
leads to a lower number of operations (measured by the number of matrix–vector
multiplications) and faster execution for the overall eigensolver.

3 Polynomial Approximation of the Window Function

The Chebyshev approximation discussed in the following requires x ∈ [−1,1]. To
achieve this, the matrix A is shifted and scaled such that all its eigenvalues lie be-
tween −1 and 1. The search interval [α,β ] is transformed accordingly. Throughout
the following discussion we assume that this preprocessing has already been done.

It is well known [7] that the window function χ[α,β ] can be approximated by a
polynomial expansion

χ[α,β ](x)≈
d

∑
k=0

ckTk(x) , (3)

where the Tk are the Chebyshev polynomials of the first kind,
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T0(x) ≡ 1 ,

T1(x) = x ,

Tk(x) = 2x ·Tk−1(x)−Tk−2(x) , k ≥ 2,

and the coefficients are given by

c0 = 1
π
· (arccosα− arccosβ ) ,

ck = 2
kπ
· (sin(k · arccosα)− sin(k · arccosβ )) , k ≥ 1.

}
(4)

Using a finite expansion, however, leads to so-called Gibbs oscillations [26] close
to the jumps of the function, clearly visible in the left picture in Fig. 2. These os-
cillations can be reduced by using appropriate kernels [26], e.g., of Jackson, Fejér,
Lorentz, or Lanczos type. Incorporating a kernel amounts to replacing the ck in (3)
with modified coefficients c′k = gk ·ck. For the Lanczos kernel, which has proved suc-
cessful in the context of polynomial approximation [18], the corrections are given
by

gk =
(

sinc
k

d +1

)µ

, k ≥ 0 , where sincξ =
sin(πξ )

πξ
.

The parameter µ is assumed to be positive and integer.

Fig. 2 Dotted curves: window function χ[α,β ](x) for the interval [α,β ] = [0.238,0.262]; solid
curves: degree-1600 Chebyshev approximation p(x) without Lanczos kernel (left picture) and with
Lanczos kernel (µ = 2; right picture). The “damping condition” |p(x)| ≤ τoutside = 0.01 may be
violated in the light gray areas.

The right picture in Fig. 2 demonstrates the smoothing effect of the Lanczos ker-
nel (µ = 2). As the oscillations are removed almost completely, the margin δ (width
of the gray areas in Fig. 2) is reduced from approximately 0.02316 to 0.00334, even
if the resulting p has a much lower steepness in the points α and β . Roughly speak-
ing, the right picture in Fig. 2 suggests bad damping throughout the whole (smaller)
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margin, whereas in the left picture good damping may be achieved even at some
points within the (larger) margin.

To obtain a small margin δ , the filter polynomial should be as steep as possi-
ble at the points α and β and have oscillations |p(x)| ≥ τoutside only very close to
the interval. In the following we will consider three different approaches for in-
creasing the steepness while keeping the oscillations limited. The first approach—
discussed below—still aims at approximating the window function χ[α,β ]. The other
approaches are based on different target functions; they will be presented in Sec-
tions 4 and 5.

For the further use as a filter in the eigensolver the integrality restriction for µ is
not necessary. Indeed, non-integer µ values may lead to filters with smaller margin;
see Fig. 3 for µ =

√
2, with δ ≈ 0.00276. Thus the margin was reduced by another

factor of 1.21 with respect to µ = 2. In the remainder of the paper, this factor will
be called the gain of a filter:

gain=
δ (Chebyshev approximation with Lanczos kernel, µ = 2)

δ (filter under consideration)
. (5)

(A close look reveals that the amplitude of the oscillations outside the margin has
increased w.r.t. µ = 2, but not enough to violate the condition |p(x)| ≤ τoutside.)

Fig. 3 Window function
χ[α,β ](x) for the interval
[α,β ] = [0.238,0.262] (dotted
line) and degree-1600 Cheby-
shev approximation p(x) with
µ =
√

2 Lanczos kernel (solid
line).

According to Fig. 4, a gain of roughly 1.4 may be achieved with an approxima-
tion to the window function if the kernel parameter µ is chosen appropriately, and
“appropriately” depends on the degree d. (The optimal value for µ also depends on
α and β ; this dependence is not shown in the picture.) Note that µ can be optimized
before applying the filter p(A) to some vectors v because δ depends only on the
interval [α,β ] and the degree d, but not on A and v.
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Fig. 4 gain, as defined in
(5), by using different values
for the parameter µ in the
Lanczos kernel for [α,β ] =
[0.238,0.262].

4 Shrinking the Interval

The second approach to improving the filter is based on shrinking the interval to a
smaller one, [α,β ] 7→ [α̃, β̃ ] = [α +∆1,β −∆2] ⊆ [α,β ]. If the Lanczos parameter
µ is kept fixed, the shoulders of p will follow the interval boundaries and move
inwards. Thus, the resulting function values p̂(α) and p̂(β ) will drop below 0.5. We
then try to restore the property (1) by scaling the polynomial (via its coefficients ĉk):

p̃ = ϕ · p̂ , where ϕ =
0.5

min{p̂(α), p̂(β )}
. (6)

Figure 5 shows the resulting polynomial for α̃ = 0.24032 and β̃ = 0.25969.

Fig. 5 Window function
χ[α,β ](x) for [α,β ] =
[0.238,0.262] (dotted line)
and degree-1600 Cheby-
shev approximation p̃(x)
with µ = 2 Lanczos ker-
nel for the shrunken interval
[α̃, β̃ ] = [0.24032,0.25969]
before (dash-dotted) and after
(solid) scaling.

It remains to determine by which amount the interval should be shrunk. The shift
∆1 is determined by the slope p′(α): we choose it proportional to p(α)/p′(α), with
a proportionality factor σ ≥ 0, and analogously for β . Note that for low degrees d
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and narrow intervals [α,β ] the shoulder of p may not be very steep, and thus the
resulting interval can become empty: α̃ = α +σ

p(α)
p′(α) ≥ β +σ

p(β )
p′(β ) = β̃ . To avoid

this situation and to preserve a certain width of the interval, the shifts are limited to
∆i ≤ 0.9 · r, where r = (β −α)/2 is the radius of the original interval. In particular,
none of the endpoints is moved over the original midpoint.

Figure 6 reveals that a gain of almost 3 can be obtained with suitable combina-
tions (µ,σ) (note the logarithmic color coding). As σ = 0 disables shrinking, the
left border of the plot corresponds to the “d = 1600” curve in Fig. 4.

Fig. 6 log2(gain), as defined
in (5), by using different
values for the parameter µ

in the Lanczos kernel and
different shrink factors σ for
[α,β ] = [0.238,0.262] and
d = 1600.

lo
g2

(g
ai

n
)

The search for a suitable (µ,σ) combination is simplified by the observation that
there are just three “essentially different” patterns for the dependence gain(µ,δ ):
while Fig. 6 gives a typical pattern for “high” degrees, the patterns for “critical” and
“low” degrees are shown in Fig. 7. Whether a given degree d is to be considered
high, critical, or low, depends mainly on the width of the interval, β −α , and to a
lesser degree on the location of the interval’s midpoint with respect to [−1,1]: inter-
vals close to the origin require higher values of d than intervals near the boundaries
±1; see Fig. 8 for very similar patterns corresponding to different interval widths
and locations.

No matter if the degree is low, critical or high, the (µ,σ) combination yield-
ing the optimal gain is located close to the diagonal log2(µ) = σ . Therefore our
search considers only those combinations on a (∆ log2 µ,∆σ)-equispaced grid that
lie within a specified band along the diagonal (see Fig. 9) and selects the one giving
the highest gain.

This BAND search may be followed by a closer look at the vicinity of the se-
lected combination Pbest = (log2 µbest,σbest), either by considering the points on an
equispaced GRID centered at Pbest (with smaller step sizes ∆ ′ log2 µ � ∆ log2 µ ,
∆ ′σ � ∆σ ), or by following a PATH originating at Pbest: consider the eight neigh-
bors of Pbest at distances± 1

2 ∆ log2 µ ,± 1
2 ∆σ , go to the one giving the best gain, and

repeat until none of the neighbors is better (then halve the step sizes and repeat until
a prescribed minimum step size is reached).
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Fig. 7 Typical pattern of log2(gain), as defined in (5), for [α,β ] = [0.238,0.262]. Left picture:
“critical” degree (d = 565); right picture: “low” degree (d = 141).

Fig. 8 Intervals [α,β ] with the same width, but different location, or different width may lead
to almost the same pattern as in Fig. 6 if a suitable degree d is considered. Top left: [α,β ] =
[−0.984,−0.960], d = 400; top right: [α,β ] = [0.560,0.584], d = 1131; bottom left: [α,β ] =
[−0.012,0.012], d = 1600; bottom right: [α,β ] = [0.150,0.350], d = 200.
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Fig. 9 The points mark the (log2 µ,σ) combinations that are considered in the BAND search; cf.
Fig. 6 and Fig. 7 for the underlying log2(gain) patterns.

• • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • •

The GRID and PATH search might also be used without a preceding BAND search,
but the two-phase approach tends to be more efficient.

In a parallel setting, the evaluation of the gain at the different points in a BAND
or GRID search can be done concurrently, thus requiring only one global reduction
operation to determine the optimum combination (log2 µ,σ). Then each process
recomputes the coefficients c̃k corresponding to this combination to avoid global
communication involving a length-(d + 1) vector. The PATH search has lower po-
tential for parallelization, but tends to be more efficient serially, in particular if we
avoid to re-evaluate gain for combinations that already had been considered before
along the path.

5 Iteratively Compensating Filters

As already mentioned in Sect. 2, it is not necessary that f (x) ≈ 1 within [α,β ].
Consider instead the function

f1(x) =

 fmax− ( fmax−0.5) ·
(x−m

r

)d f
, x ∈ [α,β ]

0, otherwise
,

where r = (β −α)/2 is the radius of the interval and m = (α +β )/2 is its midpoint.
Thus, f1(x) is a degree-d f monomial within [α,β ], taking its maximum fmax at
the midpoint and f1(α) = f1(β ) = 0.5 at the boundaries, and f1(x) ≡ 0 outside
the interval. The two parameters may be chosen freely such that fmax > τinside and
d f ≥ 0 is an even integer. See the top left picture in Fig. 10 for the function f1 with
fmax = 5 and d f = 8.

We then determine a degree-d Chebyshev approximation p1 to f1 and scale it
to achieve min{p1(α), p1(β )} = 0.5 (top right picture in Fig. 10). To reduce the
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Fig. 10 Top left: The function f1 for [α,β ] = [0.238,0.262], fmax = 5 and d f = 8. Top right: The
resulting degree-1600 approximation p1(x) before (dash-dotted) and after (solid) scaling to achieve
min{p(α), p(β )} = 0.5. Bottom left: “Compensating” filter function f2 (thick line) and resulting
approximation p2 (thin line). Bottom right: Final filter polynomial p = p34.

oscillations outside [α,β ], we “compensate” for them by taking the negative error
−p1(x) as a target in the second step, i.e., we now approximate the function

f2 =

{
f1(x), x ∈ [α,β ]
−ρ · p1(x), otherwise

with a relaxation parameter ρ > 0 (we used ρ = 0.75). This is repeated until a
prescribed number of iterations (e.g., 50) is reached or the margin did not improve
during the last 3, say, iterations. In the example in Fig. 10 this procedure takes 34+3
iterations to reduce the margin from δ ≈ 0.01305 for y1 to 0.00150 for ybest = y34.

Note that in this approach the coefficients ck cannot be computed cheaply with a
closed formula such as (4). Using the orthogonality of the Chebyshev polynomials
w.r.t. the inner product

〈p,q〉=
∫ +1

−1
w(ξ )p(ξ )q(ξ )dξ with w(ξ ) =

1

π
√

1−ξ 2
,

the coefficients are given by
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ck =
〈 f ,Tk〉
〈Tk,Tk〉

and can be obtained by numerical integration. Here, f is the target function for
the current iteration. This makes determining iteratively compensating filters more
expensive than optimized shrunken Lanczos filters. (Cf. also [5] for an alternative
approach for approximating functions working with a modified inner product.)

6 Numerical Experiments

So far we have focused on the gain of the improved filters, i.e. on the reduction of
the margin δ where sufficient damping of unwanted eigenvalues may be violated.
When applying these filters in, e.g., iterative eigensolvers then the ultimate goal is
to speed up the computations. In our experiments we use the filters in a polynomial-
accelerated subspace iteration with Rayleigh–Ritz extraction and adaptive control of
the polynomial degrees; see [8] for a detailed description of this algorithm (BEAST-
P in the ESSR).

As the overall work is typically dominated by the matrix–vector multiplications
(MVMs), our first set of experiments determines if the improved filters lead to a
reduction of the overall number of MVMs. We use a test set comprising 21 matrices
with dimensions ranging from 1152 to 119908. Twelve matrices are taken from the
University of Florida matrix collection [6] and nine come from graphene modeling.
For each matrix we consider two search intervals Iλ containing roughly 300 eigen-
values. In Fig. 11 the resulting 42 problems are sorted by “hardness,” i.e., by the
overall number of MVMs taken by Chebyshev approximation with Lanczos kernel
(µ = 2). The plots show the reduction of the MVM count w.r.t. this reference filter if
we use (i) the shrunken Lanczos filters described in Sect. 4 with BAND optimization
alone or with BAND optimization, followed by PATH search, or (ii) the iteratively
compensating filters described in Sect. 5, or (iii) a combination of both. In the latter
case, we first determine the best shrunken Lanczos filter by a BAND+PATH search,
and only if this did not yield a gain ≥ 2.0 then an iteratively compensating filter is
determined as well, and the gain-maximal of the two filters is taken.

The data indicate that roughly 40–50% of the MVMs can be saved in most
cases with the combined approach and that most of the improvement can already
be achieved with just GRID optimization of shrunken Lanczos filters turned on. The
effectiveness of the iteratively compensating filters as a stand-alone method tends to
be inferior to filters involving shrunken Lanczos. (In general, the latter are better for
critical and high degrees, whereas iteratively compensating filters may be superior
for low degrees.) In a single case the improved filters involving shrunken Lanczos
led to an increase of the MVMs (by 60%). This seems to be an artefact of our adap-
tive scheme: All variants take seven iterations to find all 304 eigenpairs contained
in the search interval. With improved coefficients, 40% fewer MVMs are needed so
far, but then the adaptive control fails to detect completeness and triggers additional
iterations with increasing degree; we will investigate this issue further.
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Fig. 11 Ratios of the overall number of matrix-vector products w.r.t. Lanczos (µ = 2) for itera-
tively compensating filters (dash-dotted thin line), shrunken Lanczos filters with BAND optimiza-
tion (dotted line) BAND and PATH optimization (solid thin line), and combined filters (see main
text; solid thick line).

The above experiments were done with Matlab on machines with varying load
and therefore do not provide reliable timing information. Timings were obtained
with substantially larger matrices on the Emmy cluster (two 2.2GHz 10-core Xeon
2260v2 per node) at Erlangen Regional Computing Center with a parallel imple-
mentation featuring the performance-optimized kernels described in [14]. The data
in Tab. 1 indicate that using the improved coefficients allowed the adaptive scheme
to settle at a much lower degree for the polynomials, yielding a reduction of the
MVM count and overall runtime by roughly one half. Even with the complete opti-
mization of the coefficients done redundantly in each node, their computation took
only a small amount of the overall time. Parallelizing this step as described at the
end of Sect. 4 will reduce its time consumption even further.

7 Conclusions

After a very brief overview of the ESSEX project and some of its results in the
first funding period, we have focused on one method used for computing a moder-
ate number (some hundreds, say) of interior eigenpairs for very large symmetric or
Hermitian matrices: subspace iteration with polynomial acceleration and Rayleigh-
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Table 1 Final degree in the adaptive scheme (starting with d = 100 and increasing by factors of
2 or b

√
2c), overall number of MVMs, overall time, and time required for computing the coeffi-

cients of the polynomials, for two problems from modeling topological insulators, using standard
Chebyshev approximation with Lanczos kernel (µ = 2) or the improved coefficients for the filters.

Filter Final degree Overall MVMs Overall time Time for coeffs

Topological insulator, n = 268435456, 148 evals, 128 nodes à 20 cores
Lanczos (µ = 2) 4525 5598502 7.11 h 0.00 h
Improved (combined) 2255 2602360 3.44 h 0.02 h

Topological insulator, n = 67108864, 148 evals, 64 nodes à 20 cores
Lanczos (µ = 2) 2262 2726112 1.97 h 0.00 h
Improved (combined) 1127 1482035 1.10 h 0.01 h

Ritz extraction. We have presented two techniques for reducing the degree of the
polynomials. One of them was based on determining standard Chebyshev approx-
imations with suitable Lanczos kernels to a window function, but for a shrunken
interval. The other technique was iterative, starting with a polynomial-shaped target
function and trying to compensate the error made in the previous approximation.
In both cases the optimization of the coefficients of the final polynomial was done
with respect to the margin, i.e., the width of the area where sufficient damping of
unwanted eigenpairs cannot be guaranteed. Numerical experiments showed that the
polynomials thus obtained indeed also reduce the overall number of matrix–vector
multiplications in the eigensolver, and thus its runtime.
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