

# THE GERMAN JECAM SITE DEMMIN – STATUS AND FUTURE PERSPECTIVES.

**Spengler, D.;** Ahmadian, N.; Borg, E.; Harfenmeister, K.; Hohmann, C.; Hüttich, C.; Itzerott, S.; Maass, H.; Missling, K.-D.; Schmullius, C.; Truckenbrodt, S.; Conrad, C.

Earth Observation Technologies for Crop Monitoring: A Workshop to Promote Collaborations among GEOGLAM/JECAM/Asia-RiCE 2018

> Taichung City, Taiwan 17-20 September, 2018

HELMHOLTZ-ZENTRUM POTSDAM DEUTSCHES GEOFORSCHUNGSZENTRUM



Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft



### PURPOSE OF PROJECT: TERRESTRIAL ENVIRONMENTAL OBSERVATORIES (TERENO)

- Climatological models forecast a significant climate change (Period: 100 years)
- increase of annual mean temperature between 2.5 to 3.5 C°,
- decrease of annual mean precipitation of up to 30 %



regional scale

**DEMMIN** is part of TERENO – German Nort-Easthern Lowlands Observatory

GFZ Helmholtz-Zentrum Free data access via TERENO data portal: http://teodoor.icg.kfa-juelich.de



# DURABLE ENVIRONMENTAL MULTIDISCIPLINARY MONITORING INFORMATION NETWORK (DEMMIN)

- CAL/VAL site for remote sensing missions and methods at agricultural areas (since 1999)
- Cooperation with Farmers managing approx. 30,000 ha
- Test-site region has an dimension of 50 to 50 km<sup>2</sup>
- Mean Size of fields is 80 ha and in maximum 300 ha

### Berlin •DEMMIN Objectives

DEMMIN

- •Combination of in-situ data and remote sensing data analysis for:
- Crop parameter estimation (crop type, crop status, crop pattern)
- Soil parameter retrieval (soil moisture, organic matter)
- Evapotranspiration modelling

•→ High resolution data analysis (automatic data processing and analysis of multi sensor data (e.g. TSX, Sentinel-1 & 2, Landsat-8 + in-situ + modelling)

# HYDROLOGY, SOIL AND CROP





#### Hydrological Characterization:

- diffuse, undeveloped water network,
- innumerable lakes and water filled hollows (germ: Sölle)
- Peat bogs along the rivers

Rivers: Trebel, Tollense, Peene Lakes: Kummerower lake - 0.2 m above sea level Baltic See Malchiner lake - 0.6 m above sea level Baltic See

Peene: approx. depth 2 - 3 m; approx. slope 0.03%

### Pedological Characterization:

- Sand to sandy-loam soils
- Heterogeneous soil cover

### **Crop Characterization:**

- Wheat, barley, maise, potato, sugar beet, rapeseed,
- Everage field sizes: 80 -100ha

Borg et al. (2009)

HEI MHOLTZ



# **DEMMIN - PERMANENT DATA INFRASTRUCTURE**

#### Data infrastructure

Agrarian meteorological network: 43 weather stations (GFZ: 20, DLR: 23)

Soil moisture measuring network: 62 gauging stations (agricultural fields)

#### 15min data interval / Web-based data access

Soil documentation & soil analysis at each soil moisture station:

~110 soil profiles , ~1 m depth; Parameter: texture, pH, CaCO3, OM

**Crop data** from association of local agricultural companies, Yield Mapping

#### Phenology data:

GFZ

Helmholtz-Zentrum

5 observation stations (German Meteorological Service - DWD)

Soil maps, DEM 10, etc.

Large RS Database (> 50 Datasets / year)



DATA free available with DOI via GFZ data services

# **DEMMIN - PERMANENT DATA INFRASTRUCTURE**

### environmental measurement stations



### Soil moisture network



#### Helmholtz-Zentrum Potsdam

## $\rightarrow$ Input data for modelling

# PLANNING OF DEMMIN EDDY FLUX TOWER AT CROPLAND

## **Eddy Flux Tower**

# **Monitor GHG fluxes**

2D anemometer 3D sonic anemometer  $ICOS H_2O / CO_2 / CH_4$  analyzers  $IRGA CO_2 / H_2O$  analyzers Temperature / humidity / pressure 4 component radiation sensors / PAR Precipitation / snow height



### H2020/HYPERNETS project

+

### "instruments"

New low-power, low-weight, lowcost hyperspectral radiometer



"system"

Azimuth and zenith pointing for Water and Land BRDF LED calibration source AERONET-OC and RADCALNET style data portal

"network"

+





### Globally validation sites (e.g. DEMMIN)

HYPERNETS Consortium (RBINS, TARTU, LOV, CNR, NPL, GFZ, CONICET)

# EARTH OBSERVATION (EO) DATA RECEIVED/USED



| Missions                 | Space<br>Agency<br>/Supplier | Optical /<br>Thermal/<br>SAR | Number of<br>scenes          | Challenges |
|--------------------------|------------------------------|------------------------------|------------------------------|------------|
| Sentinel-1               | ESA                          | SAR                          | ~ 120/ year                  |            |
| Sentinel-2               | ESA                          | Optical                      | ~ 15-30<br>cloud free scenes | clouds     |
| RapidEye                 | Planet                       | Optical                      | ~ 10-15<br>cloud free scenes | clouds     |
| Landsat-8                | USGS                         | Optical /<br>Thermal         | ~ 5-10<br>cloud free scenes  | clouds     |
| Radarsat-2               | CSA                          | SAR                          | ~ not analysed<br>so far     |            |
| Hyperspectral<br>airborn | GFZ                          | Optical /<br>Thermal         | ~ 1-2/ year                  |            |
| UAV                      | GFZ                          | Optical /<br>Thermal         | ~ 1-2/ year                  |            |



# **OBJECTIVES – OBSERVED PARAMETERS**

- Crop identification
- Crop Growth Condition/Stress

• Yield Potential Prediction

• Soil Moisture



Evapotranspiration Modelling



# MONITORING / FIELD CAMPAIGNS / EXPERIMENTS

- Measurements of soil and vegetation ever 11 days (25 single points at the test site)
  - Soil moisture analysis
  - Vegetation parameter (LAI, cover, crop type, phenology, height, chlorophyll, biomass, yield
- Soil analysis
  - geophysical measurements, laboratory soil parameter analysis
- ASD-spectral measurements (1-2 times/year)
- 2018 DEMMIN 2.0 student campaigns started
  - 5 campaigns with student groups
  - Standardized sampling Field Reader



11 day cycle (March – October, 2012 – today)



# 2018 DEMMIN 2.0 STUDENT CAMPAIGNS





|        | Parameter                    | Equipment/ Method     | Sampling<br>frequency per SSU | SSU                       |
|--------|------------------------------|-----------------------|-------------------------------|---------------------------|
|        | Hyperspectral data *         | ASD FieldSpec         | 10                            | Only 1, 3, 5, 7, 9        |
|        |                              | SpectralEvolution     | 5                             | Only 1, 3, 5, 7, 9        |
|        | Aerosol optical thickness *  | Sun photometer        | 1                             | Only at 5                 |
|        | Cloud coverage               | Digital camera        | 1                             | Only at 5                 |
|        | Landscape photos             | Digital camera        | 4                             | Only at 5                 |
|        | Fractional vegetation cover  | Digital camera        | 2                             | All                       |
|        | Prop. of senescent material  | Digital camera        | 2                             | All                       |
| 2      | Fractional vegetation cover  | Estimate              | 4 × 1                         | All                       |
|        | Prop. of senescent material  | Estimate              | 4 × 1                         | All                       |
| C      | Canopy height                | Folding ruler         | 4                             | All                       |
|        |                              | Photo of board        | 2                             | All                       |
|        | Leaf Area Index              | LI-COR LAI-2200       | $4 \times ABBBB$              | All                       |
|        | Biomass (all)                | Gravimetrical         | 1 quadrat                     | All                       |
| 5      | Leaf chlorophyll content     | SPAD-502Plus          | 4 + 3 + 3                     | All                       |
|        | Soil moisture                | HH2 moisture<br>meter | 5                             | All                       |
|        | Soil moisture                | Gravimetrical         | 5                             | Only at 5                 |
|        | Soil roughness               | Pin profiler          | 4 (45°)                       | Only at 5 (1 per<br>year) |
| R<br>S | Orientation of planting rows | Compass               | 1                             | Only at 5 (1 per          |
|        | Row spacing                  | Folding ruler         | 5                             | year)                     |
|        | Stems per plant              | Counting              | 5                             | Only at 5 (1 per          |
|        |                              |                       |                               | year)                     |
|        |                              |                       |                               | Only at 5 (1 per          |
|        |                              |                       |                               | year)                     |
|        | Phenology                    | BBCH-scale            | 3 (x students)                | All                       |



### RESULTS: A PROGRESSIVE CROP-TYPE CLASSIFICATION USING MULTITEMPORAL REMOTE SENSING DATA AND PHENOLOGICAL INFORMATION

| Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TERENO, AgriFusion, JECAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Study Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Demmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Landsat-7 & -8, RapidEye, Sentinel-2, phenology data (DWD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rule-based fuzzy C-Means Clustering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OA of 89% (2015) / 78% (2016) / 84% (2017) / 89% (2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Benefits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\rightarrow$ independence of training data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\rightarrow$ first results in spring with improving accuracy during season                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Outlook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | operational use to access current crop type information at any time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 20<br>20<br>20<br>20<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | summer crops<br>summer crops<br>a<br>b<br>com<br>b<br>com<br>b<br>com<br>b<br>com<br>b<br>com<br>b<br>com<br>b<br>com<br>b<br>com<br>b<br>com<br>b<br>com<br>b<br>com<br>b<br>com<br>b<br>com<br>com<br>com<br>com<br>com<br>com<br>com<br>com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| winter grain<br>minimum from the state of the | potato<br>sugar beets<br>sugar beets |  |  |  |  |  |

## Needs adaption and further validation at other sites

1st July

1st June Date 1st August

**GFZ** Heupel[Harfenmeister], K., Spengler, D. & Itzerott, S. PFG (2018) 86: 53. https://doi.org/10.1007/s41064-018-0050-7

1st Apri

1st May

1st March

# RETRIEVAL OF BIOPHYSICAL PARAMETERS ACCURACY ASESSMENT BY *IN-SITU MEASUREMENTS*

#### **Determination of FPAR/LAI of winter wheat based on Landsat und MODIS Data**

- Data fusion algorithm: STARFM
- Method for parameter retrieval of FPAR/LAI: RandomForest
- Results: high frequent FPAR/LAI maps in 30m resolution (winter wheat)



Dahms, T., Seissiger, S., Conrad, C., Borg, E. (2016): Modelling Biophysical Parameters Of Maize Using Landsat 8 Time Series. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI(B2): 171Dahms, T., Conrad, C., Babu, D.K., Schmidt, M., Borg, E. (2017); Derivation of biophysical parameters from fused remote sensing data. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, 2017, pp.



# MODELLING OF EVAPOTRANSPIRATION

- Based on METRIC, Allen 2007
- Surface energy balance
  - partly empirical models e.g: soil heat flux
- Selection of reference points with defined ET
  - low vegetation index, high temperatur -> ET = 0
  - High vegetation index, low temperatur, -> ET = reference ET
- Calibration of sensible heat fluxes with reference points
- Calculation of area wide ET
- Challenges: based on thermal data
  -> very limited data, low resolution









# in development

# DETERMINATION OF SOIL PARAMETER – (SURFACE ORGANIC MATTER CONENT)

#### Soil pattern detection at different test fields



Blasch et al. 2015(1), Blasch et Blasch et al. 2016

# COLLABORATION

- DEMMIN is core test site for many nat. + international research projects
  - H2020 ERAGAS/GHGmanage, H2020 HYPERNETS, H2020 ERAPLANET GEOEssentials/iCUPE
  - GLAM.DE, AgriFusion, Climate KIC
- Contribution to SAR intercomparison experiment
  - Coordinated from our side by Nima Ahmadian (University Würzburg, Germany)
  - Crop cover data
- Improve contribution to nat./int. Cal/Val activities
- Further collaborations are welcome!



# PLANS FOR NEXT GROWING SEASON

- Optimize students measurements campaigns
- Installation of new instruments
  - Eddy Flux + HYPERNETS
- Do you anticipate using the same type/quantity of EO data next year?
  - Improving of automatic data analysis is foreseen
  - Implementation of further data into the analysis (Radarsat-2, Spot5)
  - Improving thermal data analysis
  - Improving synergetic multi-sensor data analysis



HELMHOL



# THANK YOU VERY MUCH

### Contacts:

Daniel Spengler (GFZ Potsdam):daniel.spengler@gfz-potsdam.deErik Borg (DLR):erik.borg@dlr.deChristopher Conrad (Uni Halle/Uni Würzburg):christopher.conrad@uni-wuerzburg.de



