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Abstract — Current satellite images provide us with detailed 

information about the state of our planet, as well as about our 

technical infrastructure and human activities. A range of 

already existing commercial and scientific applications try to 

analyze the physical content and meaning of satellite images by 

exploiting the data of individual, multiple or temporal 

sequences of images. However, what we still need today are 

advanced tools to automatically analyze satellite images in 

order to extract and understand their full content and 

meaning. To remedy this exploration problem, we outline a 

highly automated and application-adapted data-mining and 

content interpretation system consisting of five main 

components, namely Data Sources (selection and storage of 

relevant images), Data Model Generation (patch cutting and 

generation of feature vectors), Database Management System 

(systematic data storage), Knowledge Discovery in Databases 

(clustering and content labeling), and Statistical Analytics 

(generation of classification maps). As test sites, we selected 

UNESCO-protected areas in Europe that include coastal areas 

for monitoring and an area known in the Mediterranean Sea 

that contains fish cages. The analyzed areas are: the Curonian 

Lagoon in Lithuania and Russia, the Danube Delta in 

Romania, the Hardangervidda in Norway, and the Wadden 

Sea in the Netherlands. For these areas, we are providing the 

results of our image content classification system consisting of 

image classification maps and additional statistical analytics 

based on three different use cases. The first use case is the 

detection of wind turbines vs. boats in the Wadden Sea. The 

second use case is the identification of fish cages/aquaculture 

along the Mediterranean coast. Finally, the third use case 

describes the differences between beaches, dams, dunes, and 

tidal flats in the Danube Delta, the Wadden Sea, etc. The 

average classification accuracy that we obtained is ranging 

from 80% to 95% depending on the type of available images. 

Keywords - coastal monitoring; data mining; protected areas; 

Sentinel-1; Sentinel-2; TerraSAR-X. 

I. INTRODUCTION 

In Earth observation (EO) [1], a very popular satellite 
image analysis system is the one from Digital Globe, named 
Tomnod, or Google Earth together with its related tools, 
which are targeting general user topics. In addition, in the 
EO domain, there are systems such as LandEX [2], which is 
a land cover analysis system, while GeoIRIS [3] is a system 
that allows the user to refine a given query by iteratively 
specifying a set of relevant, and a set of non-relevant images. 
A similar information retrieval system is IKONA [4], which 
is using relevance feedback in order to exploit very high 
resolution EO images. Further, the Knowledge-driven 

Information Mining (KIM) system [5] is an example of an 
active learning system providing semantic interpretation of 
image content. The KIM concept evolved into the TELEIOS 
prototype [6], complementing the scope of searching for EO 
images with additional geo-information and in-situ data 
integrated into an operational EO system [7] to interpret 
TerraSAR-X images. A similar concept to the KIM concept 
is presented in [8], while in [9] a data mining approach for 
Big Data is described. 

Our proposed system is very fast compared with the other 
existing systems, and can retrieve with only a few examples 
the desired category with higher accuracy. The diversity of 
applications that can be considered for such systems are 
rather broad and include, for instance, coastal environmental 
monitoring (sea level, tides and wave direction), land 
cover/use changes, disaster monitoring, forest management, 
ice monitoring, monitoring of active volcanoes, waste 
deposit site management, traffic monitoring, vegetation 
monitoring, urban sprawl, soil moisture dynamics, etc. 

The paper is organized as follows. Section II describes 
the selected test areas with a number of results obtained with 
the proposed methodology. Section III presents our datasets. 
Section IV details the data mining methodology applied in 
this paper. Section V shows the results for three selected 
cases. Section VI concludes the paper together with the 
future work. The acknowledgements close the paper. 

II. SELECTION OF TEST AREAS, USE CASES, AND 

APPLICATIONS 

The use case selection is closely related to the 
ECOPOTENTIAL project that focuses on a targeted set of 
internationally recognized protected areas in Europe, 
European territories and beyond, including mountainous, 
arid and semi-arid, and coastal and marine ecosystems [10]. 

We emphasize here a number of use cases for monitoring 
coastal environments. The first four use cases are 
internationally recognized protected areas as UNESCO 
(United Nations Educational, Scientific and Cultural 
Organization) Natural Heritage sites. These selected use 
cases are the Wadden Sea with the Dutch Delta (in the 
Netherlands), the Danube Delta (in Romania), the Curonian 
Lagoon (in Lithuania and Russia), and the Hardangervidda 
(in Norway). The last use case is an area that has a large 
aquaculture located between Albania and Greece.  

A. The Wadden Sea, Netherlands 

Site description: The Wadden Sea (Dutch: Waddenzee, 
German: Wattenmeer, Danish: Vadehavet) is an intertidal 
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zone in the south-eastern part of the North Sea. It lies 
between the coast of N-W continental Europe and the range 
of Frisian Islands, forming a shallow body of water with tidal 
flats and wetlands [11], protected by a 450 km long chain of 
barrier islands, the Wadden Islands. The Wadden Sea region 
measures about 22,000 km

2
, divided between land and sea. 

About 63% of the region lies in Germany, with about 30% in 
the Netherlands, and 7% in Denmark [12]. In 2009, the 
Dutch-German Wadden Sea was inscribed on the UNESCO 
World Heritage List, and the Danish part was added in 2014. 

The landforms in the Wadden Sea region have essentially 
been created from a marine or tidal environment [13]. 

Typical for the Wadden Sea are large tidal flats, which 
are characterized by very high benthic biomass and 
productivity, dominated by molluscs and polychaetes.  

State-of-the-art publications: In the research literature 
there are several studies treating the Wadden Sea area along 
the years. In order to understand the Wadden Sea dynamics, 
a number of recent publications [14][15][16][17] already 
used remote sensing images and addressed the issue of 
Synthetic Aperture Radar (SAR) satellite image 
classification and interpretation in these areas. At present, the 
option of data fusion from different sensors has not yet been 
fully exploited. 

Image interpretation goal: The Wadden Sea area faces a 
strong economic impact due to recreation, fisheries and 
maritime traffic. The last impact is due to, e.g., the ports of 
Bremerhaven, Hamburg, and Rotterdam whereby the traffic 
runs through or nearby this area, which makes the 
monitoring of sand banks and any decrease of the water 
depth and the tide levels in this area a critical topic for 
maritime security. A second important topic is the 
monitoring of biodiversity as described by [10]. 

Typical examples: The diversity of categories identified 
from a single image and a typical classification map of the 
Wadden Sea and its surrounding areas are shown in Figures 
1 and 2. 

B. The Danube Delta, Romania 

Site description: The Danube Delta is the second largest 
river delta in Europe and is the best preserved one on the 
continent [18]. Formed over a period of more than 10,000 
years, the Danube Delta continues to grow due to the 67 
million tons of alluvia deposited every year by the Danube 
River [19]. The delta is an ideal test and validation area for 
vegetation monitoring as it is characterized by high 
biodiversity and various crops. 

The Delta is formed around the three main channels of 
the Danube, named after their respective ports Chilia (in the 
north), Sulina (in the middle), and Sfantu Gheorghe (in the 
south). 

The greater part of the Danube Delta lies in Romania 
(Tulcea County), while its northern part, on the left bank of 
the Chilia arm, is situated in Ukraine (Odessa Oblast). Its 
total surface is 4,152 km

2
 of which 3,446 km

2
 are in 

Romania. The waters of the Danube, which flow into the 
Black Sea, form the largest and best preserved delta in 
Europe. In 1991, the Danube Delta was inscribed on the 
UNESCO World Heritage List due do its biological 
uniqueness. 

State-of-the-art publications: In the image processing 
literature there are not many studies treating the Danube 
Delta especially for SAR data [20][21][22]. However, the 
monitoring of biodiversity from in-situ measurements has 
attracted more interest [23]. 

Image interpretation goal: At the mouth of the Danube, 
the alluvial discharge decreases every year from 81 million 
tons in 1894, to 70 million tons in 1939, 58 million tons in 
1982, and about 22 million tons in 2015. This makes it 
interesting to monitor the evolution of the alluvial discharge 
and to investigate its impact on the Danube Delta and the 
three channels together with their ports (Chilia, Sulina, and 
Sfantu Gheorghe) through the years. 

The data can be combined with other types of 
information, such as the volume of water of each channel in 
order to prepare flood risk maps needed for the safety of the 
shipping traffic and also for the local authorities to protect 
the human settlements. Another image interpretation goal is 
vegetation monitoring, in particular, biodiversity issues and 
crop type analyses. 

Typical examples: The diversity of categories identified 
from a single image and a typical classification map of the 
Danube Delta and its surrounding areas are shown in Figures 
3 and 4.  

C. The Curonian Lagoon, Lithuania and Russia 

Site description: The Curonian Lagoon is the largest 
European lagoon. Situated in the southern part of the Baltic 
Sea with a total area of 1584 km

2
, the lagoon receives water 

from the River Nemunas. The salinity of the water is higher 
and fluctuates between the northern and southern part of the 
lagoon [10]. The entire Lithuanian part of the Curonian 
Lagoon has been designated as a NATURA 2000 area and in 
2000 the Curonian Spit cultural landscape was as well 
inscribed on the UNESCO World Heritage List. 

State-of-the-art publications: In the remote sensing 
literature, there are not many studies treating the Curonian 
Lagoon especially for SAR data. However, the monitoring of 
biodiversity has attracted greater interest [24][25][26]. 

Image interpretation goal: We analyzed the effect of 
socio-economic activities of the area regarding: the ceasing 
commercial fisheries, the prohibition of the extraction of 
mineral resources, the agricultural sector, the hunting sector, 
the restriction of recreational use of the aquatic areas, and the 
oil drilling/pollution of the area. 

Typical examples: The diversity of categories identified 
from a single image and a typical classification map of the 
Curonian Lagoon and its surrounding areas are shown in 
Figures 5 and 6. 
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Figure 2. Diversity of categories identified from a single image    Figure 4. Diversity of categories identified from a single image of  
                of the Wadden Sea, the Netherlands.      the Danube Delta. 
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Figure 3. Sentinel-1A quick-look view (left) and classification map (right) for an image of the  

Danube Delta and the surrounding areas. 

 

Figure 1. Sentinel-1A quick-look view (left) and classification map (right) for an image of the  

Wadden Sea, Lake IJssel, and Marker Lake, and its surrounding areas. 
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Figure 6. Diversity of categories identified from a single image         Figure 8.Diversity of categories identified from single images  
                         of the Curonian Lagoon.       of the Hardangervidda. 

 
 

D. The Hardangervidda, Norway 

Site description: The Hardangervidda is the largest 
peneplain (eroded plain) plateau in Europe with a cold year-
round alpine climate, and one of Norway's largest glaciers. 
The largest extent covers an area of about 6,500 km

2
 at an 

average elevation of 1100 m and is part of the 
Hardangervidda National Park, which is a protected area. 
The plateau with its boulders and rock outcrops are the 
remnants of mountains that were worn down by the glaciers 
during the quaternary Ice Ages [10]. The landscape of the 
Hardangervidda is characterized by barren, treeless, and 
shrubby moorland interrupted by numerous lakes, streams 
and rivers. 

State-of-the-art publications: In the remote sensing 
literature, there are very few publications that are 

investigating the Hardangervidda and its surrounding areas 
using SAR data. One of these publications is the monitoring 
of wet snow [27]. 

Image interpretation goal: We analyzed the effects in 
time of the high mountain plateau with its unique artic flora 
and fauna, and the land use (e.g., grazing by livestock and 
fishing) [10]. 

Typical examples: The diversity of categories identified 
from a single image and a typical classification map of the 
Hardangervidda and its surrounding areas are shown in 
Figures 7 and 8. 

E. Aquaculture, Albania and Greece 

Site description: Along the Mediterranean coast we can 
find a number of aquaculture areas/fish cages.  
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Figure 9. Sentinel-1B quick-look view (left) and classification map (right) for an image covering the border 

area between Albania and Greece and the surrounding areas. 
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Figure 7. Sentinel-1A quick-look view (left) and the “patch-based” classification map (right) for an image of 

the Hardangervidda, Norway. 
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The authors of [28] identified 248 cages with a circular 
diameter larger than 40 m and 20,976 cages within 10 km 
offshore. The majority of these fish cages/aquaculture (see 
Figure 1 in [29]) are located in Greece (49%) and Turkey 
(31%). Based on this context, we selected an area along the 
Greek coast near Corfu Island. 

State-of-the-art publications: In this area of aquaculture / 
fish cages, there are many remote sensing publications. In 
two recent publications ([30] and [31]), the authors are using 
Sentinel-1 SAR images in order to monitor aquaculture and 
to count fish cages.  

Image interpretation goal: Using the satellite imagery 
available through the Sentinels or TerraSAR-X, we can 
detect these fish cages/aquaculture with a better or lower 
accuracy using SAR or optical data. This information can be 
used later to estimate the fish farm production in the area. 
We can extend the analysis to the entire Mediterranean coast 
and the results can be compared with the reports [32] 
published by FAO (United Nations Food and Agriculture 
Organization). 

Typical examples: The diversity of categories identified 

from a single image and a typical classification map of the 

area between Albania and Greece close to Corfu Island are 

shown in Figures 9 and 10.  

 
Figure 10. Diversity of categories identified from a single image of the area 

between Albania and Greece and its surrounding areas. 

III. DATASETS 

An important aspect to be addressed is the compilation of 
a reference dataset for test and validation of the different 
systems. We already possess an initial synthetic aperture 
radar dataset composed of 1000 TerraSAR-X images and 
100 Sentinel-1 images covering target areas from around the 
world.  

From this database, about 295 TerraSAR-X and 25 
Sentinel-1A images have already been annotated by a remote 
sensing expert using a semi-automatic semantic annotation 
system resulting in a semantic catalogue of hundreds of 
semantic labels grouped in a 3-level hierarchical scheme 
[33]. This annotated database mainly covers urban and 
industrial areas together with their infrastructure 
predominantly from Europe, and can be considered as our 
initial ground truth dataset [34]. 

Our latest dataset also contains optical satellite data with 
multi-spectral images (e.g., Sentinel-2A), and synthetic 
aperture radar images (e.g., TerraSAR-X and Sentinel-1A / 
1B). These data cover 10 protected areas from Europe 
(national parks, mountains, arid and semi-arid areas, and 
coastal and marine ecosystems) [10]. 

IV. METHODOLOGY 

The data mining system [7] (used in this paper) is 
composed of five modules: Data Sources (DS), Data Model 
Generation (DMG), Database Management System (DBMS), 
Knowledge Discovery in Databases (KDD), and Statistical 
Analytics (SA). It’s the first one that explores, discovers, 
extracts semantics, and understands Big EO data. 

Our data mining methodology is shown in Figure 11 and 
a pseudo-code segment is given in Table 1. For more details 
about the implementation and algorithms, see [7]. 

The DS module collects the relevant data related to each 
use case to be processed and analyzed in the other modules. 

The DMG module transforms the original format of 
original Earth observation products into smaller and more 
compact product representations that include image 
descriptors, metadata, image patches, etc.  

The DBMS module is used for storing all the generated 
information and allows querying and retrieval of the 
available image data.  

The KDD module is in charge of finding patterns of 
interest from the processed data and presenting them to the 
user. Moreover, the KDD module allows annotating the 
image content by using machine learning algorithms and 
human interaction resulting in physical categories.  

The SA module provides classification maps of each 
dataset and distribution results of the retrieved categories in 
an image. 

These five modules are operated automatically and 
interactively with and without user interaction.  

 

Figure 11. The proposed data mining system that includes the following modules: Data Sources, Data Model Generation, Database Management System, 

Knowledge Discovery in Databases (KDD), and Statistical Analytics (SA) [6]. 



395

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I.  THE PROPOSED METHODOLOGY.  
 

Step 1: Data Sources (DS) EO Dataset  

             Select and download typical EO images and store  

             them into our EO Dataset. 

Step 2: Data Model Generation (DMG) 

 for each EOi image (i=1…N) do 

        tile EOi into pi,j patches (j=1…M), where the  

                     size of the patches depends on the image  

                     resolution 

       store all pi,j into the DBMS 

       for each pi,j patch do 

             extract an fi,j primitive feature vector  

            from optical / SAR algorithms 

            //e.g., Gabor filters with 5 scales and 6 

            orientations and compute the means and 

            standard deviations of the coefficients // 

 store all fi,j vectors into the DBMS 

       end 

 end 

Step 3: Knowledge Discovery in Databases (KDD) 

 if rk  (k=1…K) ∄ do //if the patch reference label 

                            has not yet been generated// 

        for all fi,j primitive feature vectors do 

              group the fi,j into gk clusters and group  

              them into ck categories using an SVM 

                           (Support Vector Machine) 

              for each ck category do 

      select an rk semantic annotation label

      //visual support via Google Earth // 

      store reference rk labels into the DBMS 

  end 

         end 

 else // routine processing after label generation// 

        for all fi,j primitive feature vectors do 

               group the fi,j into gl clusters (l=1…L) and 

               group them into cl categories using an  

                            SVM 

  store all gl into the DBMS 

  for each cl category do 

        select an al semantic annotation 

       //visual support via Google Earth// 

       store  al labels into the DBMS 

  end 

          end 

 end 

Step 4: Statistical Analytics (SA) 

 for selected EOi and its al do 

       generate classification maps  

       compare obtained al annotations with rk        

                     //reference annotations (generated previously)//

       and generate change maps 

       compute characteristic metrics    

                    //e.g., precision/recall by comparing the results 

                    with the rk // 

 end 

V. RESULTS AND DISCUSSIONS 

For the selected areas of interest, different use cases can 
be considered such as: detection of Wind turbines vs. Boats; 
Fish cages/Aquaculture; differences between Beaches, Tidal 
flats, and Dams; etc.  

For our first example, we selected the Wadden Sea area 
and we show the results for the detection of Wind Turbines 
vs. detection of Boats. The images were acquired in order to 
cover, as much as possible, the same area on the surface 
and/or the same acquisition date or a close date between the 
acquisitions. The data set consists of different images 
acquired by three different satellites: a TerraSAR-X image 
acquired on May 13, 2015 with a resolution of 2.9 meters, a 
Sentinel-1A image acquired on May 15, 2015 with a 
resolution of 20 meters, and a Sentinel-2A single quadrant-
image acquired on April 21, 2016 with a resolution of 10 
meters (comprising only the RGB bands). In Figure 12, we 
show the available data for the Wadden Sea protected area. 

All these images were tiled into patches, and from each 
patch a feature vector was extracted. We classified the 
images considering only two categories of interest, namely 
Wind turbines and Boats (see Figure 13). Based on the 
extracted features and the specific patterns of these 
categories, we were able to separate them during 
classification. Figures 14, 15, and 16 illustrate the retrieved 
categories after the classification back-projected on the 
quick-look of each image product. For each image product, 
the locations of Wind turbines and Boats are marked in green 
and blue, respectively. 

The complete processing chain from ingestion to 
annotation was run on a desktop PC with software coded in 
Java 8 and Matlab R2105a. The PC used for our experiments 
had a processor clock rate of 2.40 GHz, and a RAM capacity 
of 8 GB. Typically, we obtain a CPU usage of less than 25% 
as we store all image files onto disk and have to wait for the 
completion of all data transfers. The actual memory 
allocation of our PC configuration is less than 50 MBytes per 
image. The classification and display of a new set of 
retrieved patches needs about 4 to 6 ms when we have a 
collection volume of 2 GBytes of image data.  

The accuracy of the results was computed separately for 
each sensor and for each retrieved category. For each image 
(EOi) we compared the category al with its corresponding 
reference category rk and we computed its classification 
accuracy. The attained average accuracy is 93%, ranging 
from 80% to 95% depending on the image type (e.g., 
TerraSAR-X, Sentinel-1A, or Sentinel-2A). When we 
compare the different SAR sensors, we notice that the overall 
classification accuracy is higher for the high resolution 
instruments, for example for TerraSAR-X. 

For the second example, we selected an area between 
Albania and Greece in order to identify Fish 
cages/Aquaculture (Figure 17). The goal of this second 
example is to extract, from different image products, as 
much as possible, all the visible patches from the images that 
contain this category. 

The location of the area of interest (Fish 
cages/Aquaculture) is close to Corfu Island and is shown in 
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Figure 18 and marked with pushpins [29]. The satellite 
images were acquired by different sensors around the same 
period: the TerraSAR-X product was acquired on January 
19, 2017, the Sentinel-1B product on January 15, 2017, and 
the Sentinel-2A product on October 15, 2016 (when the area 
of interest was not covered by Clouds). Figure 19 shows the 
available data for the investigated area. 

All three images are covering the area of interest where 
the Fish cages/Aquaculture are located, but not in all three 
images we can see the entire aquaculture. This is because of 
the sensor type (SAR or multi-spectral), resolution, and 
maybe because of the feature extraction methods being used 
for classification. 

The images were tiled into patches, and from each patch 
a feature vector was extracted based on the type of sensor. 
Further, we classified the image patches and chose three 
semantic labels, namely Aquaculture, Boats, and Harbor 
infrastructures. 

Figure 20 illustrates the retrieved categories after the 
classification projected on the quick-look image of each 
product. In each image the location of the semantic labels are 
marked in blue, red, and green.  

 
Figure 12. Locations of the Wadden Sea shown on OpenStreetMap; the 

TerraSAR-X footprints are in green, the Sentinel-1A footprint is in orange, 

and the Sentinel-2A footprint (all quadrants) is in blue. 

 
Figure 13. In-situ data: Wind turbines [35] vs. Boats/Ships [36]. 

 

Figure 14. TerraSAR-X “patch-based” classification results of two 

categories back-projected onto a SAR image of Flevoland, the Netherlands. 

 
Figure 15. Sentinel-1A “patch-based” classification results of two 

categories back-projected onto a SAR image of the Wadden Sea, Lake 
IJssel, and Marker Lake, and the surrounding areas in the Netherlands. 

 
Figure 16. Sentinel-2A “patch-based” classification results of two 

categories projected on a (gray level) image of the German and Dutch 

Wadden Sea. 

 
Figure 17. In-situ data: Fish cages [37] vs. Aquaculture [38]. 

 

We can conclude that, when the product has a higher 
resolution, we can better identify the area of interest, and 
with higher accuracy. 

The third example aims at the differences between 
Beaches, Dams, Dunes, and Tidal flats, categories that we 
can find within the images available in our dataset (e.g., the 
Danube Delta, the Curonian Lagoon, or the Wadden Sea). In 
this case, we obtained similar accuracy results with the 
previous cases.  

For illustration, we selected the area of the Wadden Sea 
and the area of the Danube Delta. In Figure 22, we show the 
results for the identification of Dams, Dunes, and Deltas or 
Tidal flats in the Wadden Sea. The image was acquired by 
Sentinel-1 on May 15, 2015 with a resolution of 20 meters. 
We tiled this image into patches and extracted a feature 
vector that is used further for classification. We classified the 
images considering only three categories of interest, namely 
Dams, Dunes, and Tidal flats (see the in-situ data in Figure 
21). Based on the extracted features and the specific patterns 
of these categories, we were able to separate them during 
classification. 
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Figure 18. Locations of areas of interest (Fish cages/ Aquaculture) on 

Google Maps between Greece and Albania marked with red pushpins [29]. 

 
Figure 19. Locations of areas of interest (Fish cages / Aquaculture) on 
OpenStreetMap between Greece and Albania marked in purple. The 

satellite images were acquired by around the same date and by TerraSAR-

X (in green), by Sentinel-1B (in orange), and by Sentinel-2A (in blue). 

 
Figure 20. Comparative “patch-based” classification results of TerraSAR-X (top left), Sentinel-1B (top right), and (gray level) Sentinel-2A (bottom center) 

projected on an image covering our area of interest. 
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The classification map was generated by back-projecting 
it on the image quick-look of the retrieved categories; then 
the locations of Dams, Dunes, and Tidal flats were marked in 
blue, red, and green, respectively. 

 
Figure 21. In-situ data: Dams [39] vs. Dunes [40] vs. Tidal flats [41]. 

 
Figure 22. Sentinel-1A “patch-based” classification results of three 

categories back-projected onto a SAR image of the Wadden Sea, Lake 

IJssel, and Marker Lake, and the surrounding areas in the Netherlands. 

 
Figure 23. In-situ data: Beaches [42] vs. Deltas [43]. 

 

 
Figure 24. Sentinel-1A “patch-based” classification results of two 

categories back-projected onto a SAR image of the Danube Delta and its 

surrounding areas in Romania. 

 

In Figure 24, we show the results for the identification of 
Beaches or Sand banks and Deltas in the Danube Delta. The 
classification was made by considering only two categories 
(see the in-situ data in Figure 23). Based on the extracted 
features and the specific patterns of these categories, we 
were able to separate them during classification. The 
locations of Beaches and Deltas are marked in blue, and 
green, respectively. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, as an extension of [1], we analyzed several 
protected areas all over Europe by a high- and a medium-
resolution space-borne instrument (delivering SAR and 
multi-spectral images). The accuracy of the results was 
computed for each sensor by comparing the retrieved results 
with reference data and this accuracy is on average about 
97%.  

By exploiting the specific imaging details and the 
retrievable semantic categories of these three image types 
(TerraSAR-X, Sentinel-1, and Sentinel-2), we can 
semantically fuse the image classification maps. In order to 
verify the classification results, we had to compare them with 
in-situ data.  

For future evaluation, we plan to compare the 
classification accuracy of the wind turbines considering more 
parameters such as: the size of the pylons, the blade angles of 
the wind turbines, the rotation rates of the propellers, and the 
viewing direction and the resolution of the satellite images.  

At the moment, there exist some studies about wind 
turbines [44][45][46] using SAR images but none of the 
existing papers analyzes all these parameters simultaneously. 
Therefore, we plan to compare the results from the point of 
view of accuracy between high-resolution vs. medium-
resolution and between SAR vs. multi-spectral sensors. 

In future, we plan to compare the performances acquired 
so far with the ones of the new system that will be developed 
under the CANDELA project [47].  

In addition, depending on user feedback and responses by 
interested institutions, we could offer our software package 
to national and international authorities to support their 
coastline monitoring and disaster handling activities. 
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