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Lorentz force velocimetry (LFV) is a non-contact electromagnetic flow measurement
technique for electrically conducting liquids. It is based on measuring the flow-induced
force acting on an externally arranged permanent magnet. Motivated by extending LFV
to liquid metal two-phase flow measurement, in a previous test we considered the free
rising of non-conductive bubbles/particles in a thin tube of liquid metal (GaInSn) initially
at rest. We observed that the Lorentz force signals strongly depend on the size of the
bubble/particle and on the position where it is released. Moreover, the force signals
cannot be reproduced in detail, which necessitates a statistical analysis. This is caused
by chaotic trajectories due to the rising velocities of about ∼200mm/s. Therefore, in
this paper, we use an improved setup for controlled particle motions in liquid metal. In
this experiment, the particle is attached to a straight fishing line, which suppresses any
lateral motion, and is pulled by a linear driver at a controllable velocity (0–200mm/s).
For comparison, we solve the induction problem numerically using Oseen’s analytical
solution of the flow around a translating sphere that is valid for small but finite Reynolds
numbers. This simplification is made since the precise hydrodynamic flow is difficult to
measure or to compute. The aim of the present work is to check if our simple numerical
model can provide Lorentz forces comparable to the experiments. Although Oseen’s
solution becomes inaccurate near the sphere for finite Reynolds numbers, it provides a
fore-aft asymmetry of the flow and is globally well-behaved. It provides an upper limit
to the measurement results. We recover the peak-delay of the Lorentz force signals as
well.

Introduction. Two-phase flows in an electrically conducting liquid occur
in a number of metallurgical processes. For example, in continuous casting of
steel, argon bubbles are injected in order to prevent clogging of the submerged
entry nozzle and to mix the melt in the mold. Hence, liquid metal two-phase flows
are not only of fundamental interest but also of practical importance. Among the
various methods to measure them [1], one promising candidate is Lorentz force
velocimetry (LFV) [2, 3]. LFV is based on the electromagnetic induction when
a static localized magnetic field is applied to a conducting liquid. The current
density j is induced according to Ohm’s law for moving conductors, i.e.

j = σ(E+ u×B), (1)

where σ is the electrical conductivity of the liquid, E is the electric field, and u

is the liquid velocity, respectively. In general, the magnetic field B is the sum
of the applied magnetic field B0 and the secondary magnetic field b. However,
in our experiment, we have B ≈ B0 because of a very low magnetic Reynolds
number (Rm∼10−4). The induction problem can then be analyzed in the quasi-
static limit [4], i.e. the back-reaction of the flow on the magnetic field is negligible.
Therefore, the Lorentz force density can be defined by the simplified expression

fL = j×B0. (2)
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In LFV, we measure the counter-force to this flow-braking Lorentz force,
which acts on the permanent magnet. When a small permanent magnet is used,
the measured force can be used to evaluate the local velocity in the vicinity of the
magnet. Earlier work has demonstrated the capability of LFV to detect a particle
rising in liquid metal at rest [5]. We observed that the Lorentz force strongly
depends on the size of the bubble/particle. However, the free rising velocity and
the particle trajectory cannot be controlled, which is problematic for the analysis
of Lorentz force signals. Therefore, in this paper, we present the results obtained in
an improved setup with controllable particle motions in liquid metal, by which we
evaluate the reproducibility of the Lorentz force signals. Additionally, the results
of a simple numerical model are compared with the experiments.

This paper is organized as follows: in Section 1 the experimental setup is
explained. In Section 2 we present our numerical model. In Section 3 we present
the experimental and numerical results and discuss them. The concluding remarks
are given in Section 4.

1. Experimental setup. As shown in Fig. 1, the experimental setup con-
sists of a plastic vessel (60×60×400mm3) filled with liquid metal GaInSn. The
spherical particle made of plastic (6mm diameter) is electrically non-conducting
and fixed on the fishing line, which is pulled through the top and bottom holes
of the vessel and moves in a 10-mm-distance in parallel to the left side wall. The
velocity of the sphere is controlled by an additional linear driver, which provides
speeds in the range of 0 to 200mm/s. The effect of the moving fishing line is
neglected because of its small size (0.1mm in diameter). Our LFV consists of a
12×12×12mm3 permanent magnet, which is installed at 10-mm-distance on the
side of the liquid. Its magnetic flux density is measured by a Gauss meter and
is shown in Fig. 2. The Interference-Optical-Force-Sensor (IOFS) [6] measures
the x-component of the Lorentz forces induced by the displacement flow of liquid
around the particle.
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Fig. 1. Schematic of the experimental setup: 1 – LFV; 2 – spherical particle; 3 –
fishing line; 4 – o-ring (top-view at the upper-right corner).
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Fig. 2. The magnetic flux density Bz measured by the Gauss meter (at the particle
position Bz =19.31mT.

The results of the particle velocity u0 =10mm/s with a travelling distance of
283mm are shown in this paper. Therefore, the particle Reynolds number Red
can be estimated as follows

Red =
u0dρ

µ
= 162.3, (3)

where d=6mm is the diameter of the particle, ρ=6.492 g/cm3 is the density of
GaInSn, and µ=0.0024Pa·s is the dynamic viscosity of GaInSn, respectively. As
expected, the magnetic Reynolds number Rm is small

Rm = µ0σu0d = 2.6× 10−4, (4)

where µ0 is the vacuum magnetic permeability, σ = 3.46×106 S/m is the conduct-
ivity of GaInSn at 20oC, respectively. It suggests that the secondary magnetic field
can be neglected in the numerical simulation due to Rm ≪ 1. For the Hartmann
number Ha we obtain

Ha = B0d

√

σ

µ
= 4.4, (5)

where B0 =19.31mT is the magnetic flux density at the center of the sphere (see
also Fig. 2). This value demonstrates that in the present experiment the Lorentz
force is comparable to viscous friction. Finally, to describe the ratio of the Lorentz
forces to the inertial forces, we have the interaction parameter (Stuart number)

N =
σB2

0
d

ρu0

= 0.12, (6)

which is small in our experiments. We use the so-called “kinematic approach” [7]
for our numerical simulation, although Ha is not small and may modify the flow
near the boundaries. Here the velocity is prescribed by an analytical solution for
the flow around a moving sphere.

2. Numerical model. The geometry of the numerical model is shown in
Fig. 3, which is equivalent to the experiment. Here the domain of the liquid is a
60×60×400mm3 rectangular cuboid. At 10-mm-distance on the side of it stays
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Fig. 3. Schematic of the geometry in simulation (view on the (x, z)-plane).

a cubic permanent magnet of 12mm side-length. Inside the cuboid, there is a
rigid sphere of d=6mm, which locates at 10-mm-distance to the liquid boundary.
The x-axial distance between the magnet and the sphere in the simulation is
L2 ∈ [−90, 90]mm.

We want to compute the electromagnetic induction of a pre-defined velocity
field and a localized magnetic field. Thus, the governing equations read

∇
2Φ = ∇ · (u×B0), (7)

j = σ[−∇Φ + (u×B0)], (8)

fL = j×B0, (9)

where u = (ux, uy, uz) is the velocity field in the reference system, and Φ is the
electrical potential. The imposed magnetic field of the permanent magnet is cal-
culated from the analytical solution presented by Furlani [8], which is determined
by the integration of

B0(x, y, z) =
µ0Ms

4π

2
∑

k=1

(−1)k
y2
ˆ

y1

x2
ˆ

x1

(x−x′)x+(y−y′)y+(z−zk)z

[(x−x′)2+(y−y′)2+(z−zk)2]3/2
dx′dy′. (10)

In Eq. (10), Ms is the surface magnetization of the magnet, (x1, x2), (y1, y2),
(z1, z2) are the coordinates of the magnet’s corners, x, y, z are the unit vector
in the x-, y-, z-directions, respectively. To describe the velocity field using the
analytical solutions, a spherical coordinate system is introduced and fixed in the
center of the sphere (see Fig. 3):

x = r cos θ, y = r sin θ cosφ, z = r sin θ sinφ. (11)
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We use the analytical solutions of the flow generated by a sphere moving in
the negative x-direction, which was originally found by Oseen [9, 10]. Usually it is
represented as a Stokes stream function. The radial and angular components of
velocity are

ur = −u0

3ra2 exp

{

rRe

2a
(cos θ−1)

}(

rRe

a
(1+cos θ)+2

)

−2a3
(

3
r

a
+Re cos θ

)

4r3Re
,

uθ = u0

sin θ

(

3ar2 exp

{

rRe

2a
(cos θ − 1)

}

+ a3
)

4r3
, (12)

uφ = 0,

where r is the radial coordinate, a = d/2 is the sphere radius, and Re is one half
of the particle Reynolds number Red, respectively. Then we implement Eq. (12)
into our geometry as

ux = ur cos θ − uθ sin θ,

uy = ur sin θ cosφ+ uθ cos θ cosφ,

uz = ur sin θ sinφ+ uθ cos θ sinφ.

(13)

Finally, we may solve Eqs. (7)–(9) by implementing Eqs. (10)–(13), respect-
ively, and obtain the reaction force F′

L
on the permanent magnet as

F′

L = −

ˆ

V

fLdV. (14)

The simulations in this paper were done by the commercial code COMSOL
Multiphysics. The finite Element Method (FEM) is used to determine the forces
acting in the fluid. The solution domain is a rectangular cuboid with a sphere cut
out. For this model, we use the hybrid tetrahedral mesh. In the computational
domain, the elements are uniformly distributed over the x-axis. Smaller elements
are applied in the region, where the gradient of the velocity field is large. The
influence of discretization was examined by using meshes with different numbers
of elements. The mesh used in subsequent computations in Section 3 is shown in
Fig. 4. The effect of mesh quality on the Lorentz forces is checked and illustrated
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z

Fig. 4. Mesh used in simulations with 6.8× 104 elements.
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Fig. 5. Mesh study with Re=0.01, u0 =10mm/s, at L2 =0mm.

in Fig. 5, by which we show the deviation of the force amplitude of (Fi − F0)/F0,
where F0 is the is the x-component (axial) Lorentz force (L2 =0, u0 =10mm/s,
Re=0.01) in the case of maximum number of mesh elements. The influence of
mesh quality on Lorentz forces is below 10−3.

3. Results and discussion. The LFV measurement results of ten re-
peated cases of particle motion are shown in Fig. 6. With the particle velocity
u0 =10mm/s and the particle travelling distance 283mm, the actual travelling
time of the particle is 28.3 s, during which we observed the “double peaks” of the
Lorentz forces. In between these two peaks, the trough occurs at about 14.15 s,
when the magnet is right at the L2=0mm (zero position). Additionally, the first
peaks are 2.3 – 3µN and occur shortly before the L2=0mm position, whereas the
second peaks are 4 – 4.8µN and are after the zero position. In such cases, we ob-
served the good reproducibility of the force signals, which can hardly been seen in

L
o
re
n
tz

fo
rc
e
si
g
n
a
ls
,
[µ
N
]

Measurement time, [s]

Fig. 6. Mesh study with Re=0.01, u0 =10mm/s, at L2 =0mm.
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the previous study [5]. This is because the Reynolds number now (∼160) is much
lower than that in the previous study (∼4000), and the wake behind the sphere is
still a “Stable Vortex Region”. According to Taneda [11], the vortex-ring in the
wake of a sphere starts to oscillate at about Re=200. After 28.3 s the particle
stops its motion, but there are still Lorentz force signals lasting about 20 s due to
the remaining liquid motions in the vessel.

As for the numerical simulation, the analytical solutions of the flow around a
translating sphere (Eqs. (12), (13)) were implemented. We set u0 =10mm/s and
investigated the velocity profile depending on the Reynolds number. Although
the Reynolds number should be depending on u0, one may still be able to check
the influence of the Reynolds number on the asymmetry of the flow by assuming
a constant velocity and an adjustable viscosity. The velocity fields on the (x, z)-
plane with Re=0.1, 1, 2, 5 are shown in Fig. 7, respectively. We observe that
the velocity field around the sphere becomes more asymmetric as the Reynolds
number increases. However, when Re > 1, the velocity fields of the Oseen solution
are significantly suppressed in the near-sphere region and becomes unphysical.
Therefore, in the following results we are only interested in the cases of Re ≤ 1.
It should be noted that Oseen’s solution is derived for an unbounded flow around
the sphere. In the present case, the velocity is non-zero on the walls, since the

0 2.5 5.0 7.5 10

Fig. 7. The velocity field on the (x, z) plane (u0 =10mm/s, contour of
√
u2
x + u2

z

[m/s], from top to bottom Re=0.1, 1, 2, 5, respectively).
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Fig. 8. Eddy current density distributions on the (x, z) plane (Re= 0.01, contour of
√

j2x + j2y + j2z [A/m2], from top to bottom L2 =–10, –4, 0, 4, 10mm, respectively).

distance to the wall is not very large. We do not expect the analytical flow to
correspond closely to the actual flows in the experiment. Nevertheless, it may be
presumed that the relatively slowly decaying viscous velocity distributions provide
an indication of the maximal force signals.

To reproduce the measurement cases, in the simulation model we set the
permanent magnet to different locations (L2) and observed the development of
the eddy current density distributions and the Lorentz force density distribu-
tions, which are shown on the (x, z) symmetry plane (x ∈ [−50, 50]mm, z ∈

[−20, 10]mm) in Figs. 8–11, respectively. The eddy current density distributions
of Re= 0.01 are shown in Fig. 8 for L2 = −10,−4, 0, 4, 10mm, respectively. They
show that the eddy currents are mainly induced in the near-magnet region and in
the near-particle region, because the velocity and B0 are more significant there.
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Fig. 9. Eddy current density distributions on the (x, z) plane (Re= 1, contour of
√

j2x + j2y + j2z [A/m2], from top to bottom L2 =–10, –4, 0, 4, 10mm, respectively).

The distributions for L2 and −L2 are symmetrical about the “zero” position, be-
cause both the velocity and B0 are symmetric in this way. However, we observe
the asymmetry of the eddy current density distributions in Fig. 9 for identical
parameters except for Re= 1. A more significant induction of the eddy current
occurs downstream the “zero” position instead of that at the “zero” position. This
is obviously caused by the asymmetric velocity field at Re= 1. The Lorentz force
density distributions of Re= 0.01 are shown in Fig. 10, which similarly illustrates
the symmetric distributions. Additionally, we observe more contribution of the
Lorentz force density to the total force in the near-magnet region than that in the
case of eddy current density distribution because of the large gradient of B0 in
the z-direction. In Fig. 11 we see the Lorentz force density distribution for Re=1,
which becomes asymmetric with respect to the “zero” position as well.
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Fig. 10. Lorentz force density distributions on the (x, z) plane (Re= 0.01,, contour of
√

f2
x + j2y + f2

z [N/m3], from top to bottom L2 =–10, –4, 0, 4, 10mm, respectively).

From the simulation we obtained total Lorentz forces which depend on the
axial distance L2 between the magnet and the sphere. In order to compare the ex-
perimental and numerical results, the time t in the measurement was transformed
to the distance L′ by

L′ = u0(t− t0), (15)

where t0 =14.15 s is the middle time point of particle travelling in Fig. 6. Thus, the
simulation and the experiment have the same “zero” position coordinate and can
be compared in Fig. 12. The simulation showed that the Lorentz force peaks de-
creased as the Reynolds number increased. Additionally, we observed the trend of
asymmetry depending on the Reynolds number. The higher the Reynolds number,
the further the Lorentz force peak-position is to the “zero” position. It should be
stressed that the results are physical only at low Reynolds number cases (Re ≤ 1).
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Fig. 11. Lorentz force density distributions on the (x, z) plane (Re= 1, contour of
√

f2
x + j2y + f2

z [N/m3], from top to bottom L2 =–10, –4, 0, 4, 10mm, respectively).

One measurement case (Re∼160) in Fig. 6 is shown in Fig. 12 as well. Unfortu-
nately, the Reynolds number in the measurement is beyond the capability of our
velocity solution, and thus we cannot do a one-to-one comparison. However, the
measurement and the simulations together form a reasonable trend. Our model
can provide the upper-limit of the Lorentz force for the experiment.

We extract the peak-position from the simulations and plot the distance of
peak-delay ∆L/d depending on the Reynolds number in Fig. 13. At small Reynolds
numbers, the peak-delay is about (0÷2)d. We observed the nonlinearity of the
peak-delay behavior as well.

4. Conclusions. In this paper, we present Lorentz force measurements of
a spherical particle rising in liquid metal initially at rest. The analytical solu-
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Fig. 12. Lorentz force signals in simulation and experiment.
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Fig. 13. The normalized delay of the peaks of Lorentz force signals.

tion of the flow around a moving sphere is applied in our numerical model, and
the Lorentz forces are compared to experiments. In view of many simplifications,
the peak values of the Lorentz force from the analytical velocity fields provide
the upper-limit for the measurement results. The peak-delay of the Lorentz force
is observed by both experiments and simulations, where we see its nonlinear de-
pendence on the Reynolds number. Although the numerical model is physical
only in the cases of low Reynolds numbers, it provides reasonable estimation of
the Lorentz force behavior in the experiments. Accurate CFD simulations will be
required to reproduce the force signals quantitatively.
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