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Abstract 

Knowing the characteristics of urban environments is crucial for managing cities and 

planning an infrastructure which satisfies the needs of its inhabitants. This knowledge is 

also essential to assess the effects of natural hazards and, amongst others, it allows 

estimations about the amount of people that could be affected. For that reason up-to-date 

information about urban environments is of high interest. The average built-up height and 

the share of built-up area are two basic parameters which allow conclusions to be drawn 

about existing buildings and about the amount of people living in an area. However, a 

manual recording of these parameters is often not possible due to too fast and uncontrolled 

urban growth, and many surveying techniques which provide a high accuracy, e.g. LIDAR, 

are too expensive for a comprehensive application. Thus, the aim of this master thesis was 

to develop a method which provides exhaustive, up-to-date and accurate information about 

both parameters mainly based on freely available data. 

In this study, satellite imagery recorded by ESA’s Sentinel-2 satellite was chosen as data 

basis, because it is freely accessible, globally available, has a high resolution of 10 meters 

and with a revisit time of five days it is always up-to-date. In the first step of the method 

presented several sets of features, like mathematical morphologies, textures and statistical 

features, were derived from Sentinel-2 scenes showing the urban areas of interest. 

Subsequently, based on these features the average built-up height and the share of built-up 

area were predicted with four different regression algorithms: Random forest, Gaussian 

process regression, neural network and support vector regression. Afterwards, the single 

predictions were combined into a final result via an ensemble learning technique. Within 

this study stacked generalization and local selection were applied as ensemble learning 

approaches and their performance was compared. Before the prediction the four regressors 

had been trained with the features calculated from the Sentinel-2 imagery and with 

reference data derived from TandDEM-X data, which is quite costly. However, since the 

aim of this study was to develop a low-priced method, the use of expensive training data 

for every prediction was contrary to the goal set. In order to overcome this drawback and 

reduce the necessary usage of TanDEM-X data, a domain adaptation procedure was 

integrated. In the domain adaptation process the four regressors were trained on a Sentinel-

2 scene, the so-called source domain, where reference data were available. Afterwards, the 

regressors predicted the average built-up height and the share of built-up area for another 

scene, the target domain, where only Sentinel-2 imagery was present. In the end, the single 

predictions of the four different regressors were again combined via an ensemble learning 

procedure. 
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Experimental results were obtained for the cities of Berlin, Cologne, Hamburg and Munich 

for which reference data were available. Each city was separately used as source domain 

for the other three cities so that the accuracy of the presented method could be assessed via 

the available reference data. Finally, the domain adaptation approach developed in this 

study had a mean absolute error (MAE) of 3.97 meters on average regarding the average 

built-up height and a MAE of 9.05 % on average regarding the share of built-up area. 

However, depending on the combination of source and target domain the MAE can vary a 

lot and under optimal conditions a MAE of 1.23 meters or 3.73 % can be achieved. 
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1 Introduction 

In recent years, global urbanisation has increasingly posed a challenge for city planners 

worldwide and it can be assumed that the situation will not become less dynamic in the 

nearby future. It is expected that the bulk of the world’s population growth over the next 

decades will take place in the urban areas of developing countries (Jiang, O’Neil 2017). 

Many of the cities affected, and especially their informal settlements, have grown too fast 

for a manual record of the changes of building stock and population increase. However, it 

is important to know the structural characteristics of urban environments, e.g. for analysing 

urban processes or estimating the actual population size. Exact information on the 

population number in an area is crucial for the administration of urban areas and for the 

provision of a sufficient infrastructure which meets the basic needs of the inhabitants, like 

clean water, food, shelter, basic health care or electricity. Moreover, in case of a natural 

disaster it is essential to know how many people are affected in order to estimate how many 

emergency shelters and how much emergency supply are necessary. Current events, like 

hurricane Irma which devastated parts of the Caribbean in September 2017 or the 

earthquake that hit Mexico City on the 19th of September 2017, illustrate the necessity of 

such data. For the characterization of urban environments as well as for the assessment of 

the damage potential of natural risks the average built-up height and the share of built-up 

area in a settlement area are important parameters. Since in-situ measurements are often 

not available or complete, remote sensing represents an appropriate way for a 

comprehensive and continuous data acquisition.  

Since building density and height are two of the most important aspects of urban 

characterization, there have been various studies presenting a broad variety of methods for 

the derivation of these two parameters from remote sensing data. Information recorded by 

spaceborne Synthetic Aperture Radar (SAR) systems are a widely used data basis to detect 

building densities and heights (e.g. Brunner et al. 2010; Guida et al. 2010; Tison et al. 2004) 

or building density based on their polarimetric backscattering properties (Kajimoto, Susaki 

2013). However, the complex scattering mechanisms of urban structures often have 

negative effects on the accuracy of building height estimations from SAR data (Zhu et al. 

2012). Another approach to building height detection is the utilization of the airborne light 

detection and ranging (LIDAR) technique, which provides detailed height information of a 

surveyed area with a very high resolution (e.g. Meng et al. 2009; Rottensteiner et al. 2007; 

Verma et al. 2006; Dakowicz et al. 2005). Nowadays, the application of LIDAR is restricted 

by the very high provision costs for large-scale LIDAR data. Furthermore, high-resolution 

optical satellite imagery is used to detect building height, e.g. through detecting building 
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shadows (Kim et al. 2007; Dare 2005) or using stereo satellite images (Alobeid et al. 2009). 

Both methods need expensive data pre-processing in the form of building detection or the 

correct alignment of images. A relatively new alternative to gain height information of 

urban areas is supplied by the TanDEM-X mission, a spaceborne radar interferometer 

which provides a global digital elevation model (DEM) with a resolution of approximately 

12 meters (Krieger et al. 2007). However, opposing the direct provision of accurate global 

height data are the high acquisition costs, which restrict the usage of these data at a global 

scale. 

In this study, a method is presented which combines information from selected TanDEM-

X scenes with global available optical data from the Sentinel-2 mission in order to calculate 

the average built-up height and the share-of built up area in urban environments. ESA’s 

Sentinel-2 satellite captures images from the surface of the earth with a ground resolution 

of 10 meters and bands covering the visible and near infrared (NIR) spectrum. Moreover, 

the relatively short revisit time of five days or even less provide up-to-date records which 

are freely available via a data hub (Drusch et al. 2012). In order to increase the amount of 

input information several spectral, morphological and textural features are derived from the 

initial Sentinel-2 imagery. 

First of all, the four Sentinel-2 bands (Red, Green, Blue, NIR) and their spectral information 

can be seen as initial pointers for the derivation of building heights and the share of built-

up area, since man-made structures have higher values in the visible spectrum whereas 

vegetation is more striking in NIR. This circumstance can be used to distinguish between 

sealed and non-sealed areas and thus help to determine the share of built-up area. Different 

combinations of the four bands, like the well-known Normalized Density Vegetation Index 

(NDVI), increase the amount of spectral information and thus have the ability to improve 

the final classification or regression result (Zhang et al. 2017). In an image morphological 

segmentation procedures extract the geometric shape of structures which are brighter or 

darker than their surroundings. Since buildings are generally bright structures which cast 

shadows, morphological segmentation is ideally suitable for the detection of buildings in 

optical images (Pesaresi, Benediktsson 2001). The third group of features used in this study 

are textures which are concerned with the statistical distribution of grey tones in an image. 

A widely accepted method to extract textural features from remote sensing images is the 

Grey Level Co-occurrence Matrix (GLCM) (Shanmugan 1981). Textural features extracted 

with the GLCM were already used for extracting quantitative information of building 

density and have improved the overall result (Karathanassi et al. 2000). 

The previously presented features are used in combination with TanDEM-X data to train 

machine-learning algorithms for regressions which afterwards are used to predict the 
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average built-up height and the share of built-up area for urban scenes solely based on the 

Sentinel-2 features. With this approach a possibility is given to provide comprehensive 

height and share of built-up information. Thus, the main drawback of the TanDEM-X data, 

their restricted availability, is tried to overcome. In previous studies with similar 

approaches different types of machine-learning algorithms were used to calculate 

characteristics of urban environments. Xian and Crane (2005) built regression trees trained 

with Landsat imagery for the prediction of percentage coverage of impervious surface in 

urban areas, whereas Hu and Weng (2009) utilized Artificial Neural Networks (ANN). 

Another approach was presented by Dell'Acqua and Gamba (2003), who estimated building 

density at SAR satellite images using co-occurrence matrices for texture extraction and 

neurofuzzy classifiers for density prediction. Zhang et al. (2017) trained a Support Vector 

Regression (SVR) algorithm for urban density estimation from optical data. In general, few 

studies can be found which deal with the application of machine-learning algorithms for 

the estimation of the share of built-up area or similar problems and even less studies attend 

to the prediction of average built-up height.  

In contrast to related studies, the method presented in this work does not only fall back on 

one type of algorithm but combines the results of the four following different regression 

algorithms in an ensemble learning approach: Random Forest (RF), Gaussian Process 

Regression (GP), Artificial Neural Networks (NN) and Support Vector Regression (SV). 

All four algorithms were trained separately with features derived from Sentinel-2 imagery 

of Berlin, Cologne, Hamburg and Munich. From Tandem-X data and the global urban 

footprint (GUF) covering the same area the share of built-up area and the average built-up 

height were calculated with 200, 500 and 800 meter resolution with a method presented by 

Geiß et al. (2017). These parameter values were utilized to train the regressors and to test 

the accuracies of their predictions.  

Subsequent to the training procedure, the hyper-parameters of the regressors were tuned 

via a grid search and the algorithms were boosted with an adapted version of the 

Adaboost.RT boosting algorithm (Solomatine, Shrestha 2004). The original AdaBoost.RT 

algorithm was designed to improve the prediction accuracy of weak learners. However, 

after tuning the regressors cannot be designated as weak learners anymore and thus the 

standard AdaBoost.RT approach is no longer suitable. In this study an adapted version of 

AdaBoost.RT was developed by introducing the random subspace method of Ho (1998) to 

it. This extended AdaBoost.RT algorithm is capable of improving the prediction accuracies 

of already well-working regressors. After boosting, predictions for the share of built-up 

area and the average built-up height are made for parts of each scene which were not 

recognised during training.  
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In this study the four regressors were trained separately on the Sentinel-2 scenes of Berlin, 

Cologne, Hamburg and Munich. Subsequently, each regressor predicted the average built-

up height and the share of built-up area for every scene. Consequently, there were four 

different predictions available per scene and parameter, but only one is needed. In order to 

solve this problem without losing already gathered information, the predictions of the four 

single boosted regressors were aggregated for each Sentinel-2 scene into a single final 

outcome via an ensemble learning technique. Therefore, two different ensemble learning 

strategies were tested and compared within this study: local selection presented by 

Bruzzone and Melgani (2005) and stacked generalization which was developed by Wolpert 

in 1992. It was assumed that at least one of the tested ensemble learning procedures would 

lead to predictions which would be more robust than the single predictions of the boosted 

regressors and at the same time at least as accurate as the predictions of the boosted 

regressors.  

In the method outlined so far the regressors have made predictions for the same scene they 

were trained and tested on. For the given four scenes Tandem-X data, and thus values for 

the average built-up height and the share of built-up area, are available. However, the long-

term goal is to train the regressors on a scene where the prediction parameters are available 

and make predictions for scenes where this information is not at disposal. The transfer of a 

regressor from one scene, also called source domain, to another scene or target domain is 

called transfer learning or domain adaptation (Margolis 2011). In the second part of this 

study the presented method was executed a second time, in which the regressors were 

trained on one scene and predict the average built-up height and the share of built-up area 

for the other three scenes. Since reference data are available for all four scenes, the 

prediction accuracy of the domain adaptation can be assessed. However, during test runs it 

became obvious that the four domains were too different to apply a simple transfer of 

regressors. In order to align the input data of the source and target domain, different 

methods were utilized in previous studies, like selecting only very similar features for 

prediction (Uguroglu, Carbonell 2011) or transforming the data (Pan et al. 2011). Most of 

the time these methods are work- and time-consuming and thus the choice fell on histogram 

matching, which is an easy to implement but nevertheless suitable normalization method 

for domain adaptation (Matasci et al. 2015b). Consequently, a histogram matching between 

the source and target domains was conducted prior to the calculation of features. It was 

expected that a domain adaptation conducted with previously adjusted input data would 

provide sufficient results in combination with the developed method. 

The method presented in this study combines several well-known and well-studied 

techniques in a new way which, so far, has not been presented. It represents an efficient 

tool for the prediction of the average built-up height and share of built-up area in urban 
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environments, which are important parameters for a broad variety of scientific issues. Also, 

it combines the advantages of the data from the Sentinel-2 mission, free global availability, 

with those of the TanDEM-X data which is very accurate height information. Thus, the 

presented method can be seen as the basis for the future provision of comprehensive built-

up height information. 

The study at hand is structured in the following way: The first part deals with the study 

sites, the input TanDEM-X and Sentinel-2 data and the features derived from them. Section 

two describes the method in detail, the results of which are presented in section three and 

subsequently discussed in the fourth chapter. Finally, a conclusion is drawn in section five. 

2 Methodology 

The methodical approach presented in this study is subdivided into four major parts. In the 

first step different types of features are derived from Sentinel-2 imagery, including 

morphological image descriptors, textures and band statistics. Additional features are 

computed by subtracting Sentinel-2 bands from each other in various combinations (i.e. 

band ratios). This provision of a broad variety of features is expected to be a solid basis for 

the prediction of building density and building height in the following step. 

Second, reference data for the average built-up height and the share of built-up area, which 

were computed according to the method of Geiß et al. (2017) from TanDEM-X data, are 

combined with the aforementioned features. This is the input for the training of multiple 

regression algorithms. The latter comprise random forest (RF), Gaussian process regression 

(GP), neural network (NN) and support vector regression (SV). Subsequently, the 

hyperparameters of the algorithms are optimized via a tuning procedure. Furthermore, a 

boosting algorithm is applied on each regressor in order to further improve their prediction 

abilities. After training and testing the accuracy of the regressors predictions on the built-

up height and the share of built-up area are made for further labelled data which form the 

basis for the later ensemble learning. 

The goal of the third section is to combine the four single predictions of the applied boosted 

regressors with an ensemble learning approach to a single final result. With Local Selection 

(LS) and Stacked Generalization (SG) two different ensemble learning procedures are 

applied and their results are compared.  

In the final part of the methodology an approach for a domain adaptation (DA) process 

based on histogram matching is presented. The DA enables the transfer of regressors which 

were priorly trained on a source Sentinel-2 scene (the so-called source domain) on a 

spatially disjunct target domain. 



 

 

 

 

 

 

 

This is an excerpt from the thesis “Machine Learning-based Regression for 
Characterization of Urban Environments with Sentinel-2”. 

 

Please contact Henrik Schrade for a full version of the thesis.  

 

 

Extended works on this topic are documented in: Geiß, C., Schrade, H., Aravena 
Pelizari, P., and Taubenböck, H. (2020): Multistrategy Ensemble Regression for 
Mapping of Built-Up Height and Density with Sentinel-2 Data. ISPRS Journal of 
Photogrammetry and Remote Sensing, 170, 57–71. 

 



 

69 
 

List of Literature 

Alobeid A., Jacobsen K., Heipke C. (2009): Building height estimation in urban areas  

 from very high resolution satellite stereo images. In: ISPRS Hannover Workshop,  

 pp. 2-5. 

Basak D., Pal S., Patranabis D. C. (2007): Support vector regression. In: Neural  

 Information Processing-Letters and Reviews, 11(10), pp. 203-224. 

Bazi Y., Bruzzone L., Melgani F. (2005): An unsupervised approach based on the  

 generalized Gaussian model to automatic change detection in multitemporal SAR

 images. In: IEEE Transactions on Geoscience and Remote Sensing, 43(4), pp.  

 874-887. 

Ben-David S. (2009): On the training/Test Distributions Gap: A Data Representation  

 Learning Framework, In: Quionero-Candela J., Sugiyama M., Schwaighofer A.,  

 Lawrence N. D. (2009): Dataset shift in machine learning. The MIT Press 

             Scholarship Online. 2013. 

Benediktsson J. A., Pesaresi M., Amason K. (2003): Classification and feature extraction  

 for remote sensing images from urban areas based on morphological  

 transformations. In: IEEE Transactions on Geoscience and Remote Sensing,  

 41(9), pp. 1940-1949. 

Bergmeir C. N., Benítez Sánchez J. M. (2012): Neural networks in R using the Stuttgart  

 neural network simulator: RSNNS. American Statistical Association. In: Journal 

             of Statistical Software, 46( 7), pp. 1-26. 

Bishop C. M. (1995): Neural networks for pattern recognition. Oxford university press. 

Blaschke T. (2010): Object based image analysis for remote sensing. In: ISPRS journal of  

 photogrammetry and remote sensing, 65(1), pp. 2-16. 

Breiman L. (2001): Random forests. In: Machine learning, 45(1), pp. 5-32. 

Breiman L. (1996a): Stacked regressions. In: Machine learning, 24(1), pp. 49-64. 

Breiman L. (1996b): Bagging predictors. In: Machine learning, 24(2), pp. 123-140. 

Briem G. J., Benediktsson J. A., Sveinsson J. R. (2002): Multiple classifiers applied to  

 multisource remote sensing data. In: IEEE transactions on geoscience and remote  

 sensing, 40(10), pp. 2291-2299. 

 

 



 

70 
 

Brunner D., Lemoine G., Bruzzone L., Greidanus H. (2010): Building height retrieval 

 from VHR SAR imagery based on an iterative simulation and matching  

             technique. In: IEEE Transactions on Geoscience and Remote Sensing, 48(3), pp. 

             1487-1504. 

Bruzzone L., Melgani F. (2005): Robust multiple estimator systems for the analysis of  

 biophysical parameters from remotely sensed data. In: IEEE Transactions on  

 Geoscience and Remote Sensing, 43(1), pp. 159-174. 

Camps-Valls G., Tuia D., Bruzzone L., Benediktsson J. A. (2014): Advances in  

             hyperspectral image classification: Earth monitoring with statistical learning  

 methods. In: IEEE Signal Processing Magazine, 31(1), pp. 45-54. 

Coltuc D., Bolon P., Chassery J. M. (2006): Exact histogram specification. In: IEEE  

 Transactions on Image Processing, 15(5), pp. 1143-1152. 

Dalla Mura M., Benediktsson J. A., Waske B., Bruzzone L. (2010): Morphological  

 attribute profiles for the analysis of very high resolution images. In: IEEE  

 Transactions on Geoscience and Remote Sensing, 48(10), pp. 3747-3762. 

Dakowicz M., Gold C. M., Kidner D. B. (2005): Building reconstruction using LIDAR  

 data. In: In Proceedings 4th ISPRS Workshop on Dynamic and Multi- 

 dimensional GIS, pp. 156-161. 

Dare P. M. (2005): Shadow analysis in high-resolution satellite imagery of urban areas.  

 In: Photogrammetric Engineering & Remote Sensing, 71(2), pp. 169-177. 

Dayhoff J. E., DeLeo J. M. (2001): Artificial neural networks. In: Cancer, 91(S8), pp.  

 1615-1635. 

Dell'Acqua F., Gamba P. (2003): Texture-based characterization of urban environments  

 on satellite SAR images. In: IEEE Transactions on Geoscience and Remote  

 Sensing, 41(1), pp. 153-159. 

Dietterich T. G. (2002): Ensemble learning. In: The handbook of brain theory and neural  

 networks, 2, pp. 110-125. 

Do C. B. (2007): Gaussian processes. https://www.cs229.stanford.edu/section/cs229- 

 gaussian_processes.pdf. Accessed 29 August 2017 (29.08.2017). 

Drusch M., Del Bello U., Carlier S., Colin O., Fernandez V., Gascon F., Hoersch B., Isola  

 C., Laberinti P., Martimort P., Meygret A., Spoto F., Sy O., Marchese F.,  

 Bargellini P. (2012): Sentinel-2: ESA's optical high-resolution mission for GMES  

 operational services. In: Remote Sensing of Environment, 120, pp. 25-36. 



 

71 
 

Du S., Zhang F., Zhang X. (2015): Semantic classification of urban buildings combining  

 VHR image and GIS data: An improved random forest approach. In: ISPRS  

 journal of photogrammetry and remote sensing, 105, pp. 107-119. 

Freund Y., Schapire R. E. (1995): A desicion-theoretic generalization of on-line learning  

 and an application to boosting. In: European conference on computational  

 learning theory, Springer, Berlin, Heidelberg, pp. 23-37. 

García-Pedrajas N., Ortiz-Boyer D. (2008): Boosting random subspace method. In:  

 Neural Networks, 21(9), pp. 1344-1362. 

Geiß C., Wurm M., Taubenböck H. (2017): Towards large-area morphologic  

 characterization of urban environments using the TanDEM-X mission and  

 Sentinel-2. In: IEEE Urban Remote Sensing Event (JURSE), 2017 Joint, pp. 1-4. 

Geiß C., Klotz M., Schmitt A., Taubenböck H. (2016): Object-based morphological  

 profiles for classification of remote sensing imagery. In: IEEE Transactions on  

 Geoscience and Remote Sensing, 54(10), pp. 5952-5963. 

Geiß C., Jilge M., Lakes T., Taubenböck H. (2015): Estimation of seismic vulnerability  

 levels of urban structures with multisensor remote sensing. In: IEEE Journal of  

 Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), pp.  

 1913-1936. 

Gonzalez R. C., Woods R. E. (2002): Digital Image Processing. Second Edition. Prentice  

 Hall. 

Grömping U. (2009): Variable importance assessment in regression: linear regression  

 versus random forest. In: The American Statistician, 63(4), pp. 308-319. 

Guida R., Iodice A., Riccio D. (2010): Height retrieval of isolated buildings from single  

 high-resolution SAR images. In: IEEE Transactions on Geoscience and Remote  

 Sensing, 48(7), pp. 2967-2979. 

Gunn S. R. (1998): Support vector machines for classification and regression. In: ISIS  

 technical report, 14, pp. 85-86. 

Härdle W., Simar L. (2007): Applied multivariate statistical analysis. Springer Science &  

 Business Media, Springer-Verlag Berlin Heidelberg. 

Hall M. A. (1999): Correlation-based feature selection for machine learning (Doctoral  

 dissertation, The University of Waikato). 

Haralick R. M. (1979): Statistical and structural approaches to texture. In: Proceedings of  

 the IEEE, 67(5), pp. 786-804. 



 

72 
 

Haralick R. M., Shanmugam K. (1973): Textural features for image classification. In:  

 IEEE Transactions on systems, man, and cybernetics, 3(6), pp. 610-621. 

Ho T. K. (1998): The random subspace method for constructing decision forests. In:  

 IEEE transactions on pattern analysis and machine intelligence, 20(8), pp. 832- 

 844. 

Hornik K., Stinchcombe M., White H. (1989): Multilayer feedforward networks are  

 universal approximators. In: Neural networks, 2(5), pp. 359-366. 

Hu X., Weng Q. (2009): Estimating impervious surfaces from medium spatial resolution  

 imagery using the self-organizing map and multi-layer perceptron neural  

 networks. In: Remote Sensing of Environment, 113(10), pp. 2089-2102. 

Huang X., Lu Q., Zhang L. (2014): A multi-index learning approach for classification of  

 high-resolution remotely sensed images over urban areas. In: ISPRS Journal of  

 Photogrammetry and Remote Sensing, 90, pp. 36-48. 

Hultquist C., Chen G., Zhao K. (2014): A comparison of Gaussian process regression,  

 random forests and support vector regression for burn severity assessment in  

 diseased forests. Remote sensing letters, 5(8), pp. 723-732. 

Jiang L., O’Neill B. C. (2017): Global urbanization projections for the Shared  

 Socioeconomic Pathways. In: Global Environmental Change, 42, pp. 193-199. 

Jiang J. (2008): A literature survey on domain adaptation of statistical classifiers.  

 http://www.sifaka. cs.uiuc.edu/jiang4/domainadaptation/survey (22.08.2017). 

Kajimoto M., Susaki J. (2013): Urban density estimation from polarimetric SAR images  

 based on a POA correction method. In: IEEE Journal of Selected Topics in  

 Applied Earth Observations and Remote Sensing, 6(3), pp. 1418-1429. 

Karathanassi V., Iossifidis C. H., Rokos D. (2000): A texture-based classification method  

 for classifying built areas according to their density. In: International Journal of  

 Remote Sensing, 21(9), pp. 1807-1823. 

Kim T., Javzandulam T., Lee T. Y. (2007): Semiautomatic reconstruction of building  

 height and footprints from single satellite images. In: IEEE Geoscience and  

 Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, pp. 4737- 

 4740. 

Kira K., Rendell L. A. (1992): A practical approach to feature selection. In: Sleeman D., 

 Edwards P. (ED.)(1992): Proceedings of the ninth international workshop on  

 Machine learning, San Mateo, Morgan Kaufman Publishers, Inc., pp. 249-256. 



 

73 
 

Kopal V., Holena V. K. M. (2015): Comparing Non-Linear Regression Methods on  

 Black-Box Optimization Benchmarks. In: Yaghob J. (Ed.) (2015): ITAT 2015,  

 Prague, Charles University in Prague pp. 135–142. 

Krieger G., Moreira A., Fiedler H., Hajnsek I., Werner M., Younis M., Zink M. (2007):  

 TanDEM-X: A satellite formation for high-resolution SAR interferometry. In:  

 IEEE Transactions on Geoscience and Remote Sensing, 45(11), pp. 3317-3341. 

Lee L. (1999): Measures of distributional similarity. In: Proceedings of the 37th annual  

 meeting of the Association for Computational Linguistics on Computational  

 Linguistics, Association for Computational Linguistics, pp. 25-32. 

Liaw A., Wiener M. (2002): Classification and regression by randomForest. In: R news,  

 2(3), pp. 18-22. 

Lönnblad L., Peterson C., Rögnvalsson T. (1992): Pattern recognition in high energy  

 physics with artificial neural networks—JETNET 2.0. In: Computer Physics  

 Communications, 70(1), pp. 167-182. 

Löw F., Conrad C., Michel U. (2015): Decision fusion and non-parametric classifiers for  

 land use mapping using multi-temporal RapidEye data. In: ISPRS Journal of  

 Photogrammetry and Remote Sensing, 108, pp. 191-204. 

Lopez G., Rubio M. A., Martınez M., Batlles F. J. (2001): Estimation of hourly global  

 photosynthetically active radiation using artificial neural network models. In:  

 Agricultural and forest Meteorology, 107(4), pp. 279-291. 

Martin M. E., Aber J. D. (1997): High spectral resolution remote sensing of forest canopy  

 lignin, nitrogen, and ecosystem processes. In: Ecological applications, 7(2), pp.  

 431-443. 

Matasci G., Volpi M., Kanevski M., Bruzzone L., Tuia,D. (2015a): Semisupervised  

 Transfer Component Analysis for Domain Adaption in Remote Sensing Image  

 Classification, In: IEEE Transactions on Geoscience and Remote Sensing,  

 Vol.53(7), pp. 3550-3564. 

Matasci G., Longbotham N., Pacifici F., Kanevski M., Tuia D. (2015b): Understanding  

 angular effects in VHR imagery and their significance for urban land-cover  

 model portability: A study of two multi-angle in-track image sequences. In:  

 ISPRS Journal of Photogrammetry and Remote Sensing, 107, pp. 99-111. 

Margolis A. (2011): A literature review of domain adaptation with unlabelled data. In:  

 Tec. Report 2011, University of Washington, pp. 1-42. 



 

74 
 

Mellor A., Boukir S. (2017): Exploring diversity in ensemble classification: Applications  

 in large area land cover mapping. In: ISPRS Journal of Photogrammetry and  

 Remote Sensing, 129, (July 2017), pp. 151–161.  

Melo J. (2012): Gaussian processes for regression: a tutorial. Technical Report 2012,  

 Faculty of Engineering, University of Porto, Portugal. 

Meng X., Wang L., Currit N. (2009): Morphology-based building detection from airborne  

 LIDAR data. In: Photogrammetric Engineering & Remote Sensing, 75(4), pp.  

 437-442. 

Meyer D., Wien F. T. (2001): Support vector machines. In: R News, 1(3), pp. 23-26. 

Okujeni A., van der Linden S., Suess S., Hostert P. (2017): Ensemble Learning From  

 Synthetically Mixed Training Data for Quantifying Urban Land Cover With  

 Support Vector Regression. In:  IEEE Journal of Selected Topics in Applied  

 Earth Observations and Remote Sensing, 10(4), pp. 1640-1650. 

Pacifici F., Chini M., Emery W. J. (2009): A neural network approach using multi-scale  

 textural metrics from very high-resolution panchromatic imagery for urban land- 

 use classification. In: Remote Sensing of Environment, 113(6), pp. 1276-1292. 

Panov P., Džeroski S. (2007): Combining Bagging and Random Subspaces to Create  

 Better Ensembles. In: R. Berthold M., Shawe-Taylor J., Lavrač N. (Dds)(2007):  

 Advances in Intelligent Data Analysis VII. IDA 2007. Lecture Notes in Computer  

 Science, 4723. Springer, Berlin, Heidelberg, pp. 118-129. 

Persello C. (2013): Interactive domain adaptation for the classification of remote sensing  

 images using active learning. In: IEEE Geoscience and Remote Sensing Letters,  

 10(4), pp. 736-740. 

Pesaresi M., Gerhardinger A. (2011): Improved textural built-up presence index for  

 automatic recognition of human settlements in arid regions with scattered  

 vegetation. In: IEEE Journal of Selected Topics in Applied Earth Observations  

 and Remote Sensing, 4(1), pp. 16-26. 

Pesaresi M., Gerhardinger A., Kayitakire F. (2008): A robust built-up area presence index  

 by anisotropic rotation-invariant textural measure. In:  IEEE Journal of Selected  

 Topics in Applied Earth Observations and Remote Sensing, 1(3), pp. 180-192. 

Pesaresi M., Benediktsson J. A. (2001): A new approach for the morphological  

 segmentation of high-resolution satellite imagery. In: IEEE transactions on  

 Geoscience and Remote Sensing, 39(2), pp. 309-320. 

Quinlan J. R. (1986): Induction of decision trees. In: Machine learning, 1(1), pp. 81-106. 



 

75 
 

Quinonero-Candela J., Rasmussen C. E., Williams C. K. (2007): Approximation methods  

 for Gaussian process regression. In: Large-scale kernel machines, Neural  

 Information Processing, Cambridge, MA, USA, MIT Press, pp. 203-224. 

Rasmussen C. E., Williams C. K. (2006): Gaussian processes for machine learning (Vol.  

 1). London: Cambridge: MIT press. 

Rasmussen C. E. (2003): Gaussian Processes in Machine Learning, In: Bousquet O., von  

 Luxburg U., Rätsch G. (Eds.). (2011): Advanced Lectures on Machine Learning:  

 ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen,  

 Germany: August 4-16, 2003, Revised Lectures (Vol. 3176). Springer, pp. 63-71. 

Richards J. A., Jia X. (2006): Remote sensing digital image analysis (Vol. 4). Berlin: 

  Springer Verlag Berlin Heidelberg. 

Robnik-Šikonja M., Kononenko I. (1997): An adaptation of Relief for attribute estimation  

 in regression. In: Machine Learning: Proceedings of the Fourteenth International  

 Conference (ICML’97), pp. 296-304. 

Rodriguez-Galiano V. F., Ghimire B., Rogan J., Chica-Olmo M., Rigol-Sanchez J. P.  

 (2012): An assessment of the effectiveness of a random forest classifier for land- 

 cover classification. In: ISPRS Journal of Photogrammetry and Remote Sensing,  

 67, pp. 93-104. 

Rottensteiner F., Trinder J., Clode S., Kubik K. (2007): Building detection by fusion of  

 airborne laser scanner data and multi-spectral images: Performance evaluation  

 and sensitivity analysis. In: ISPRS Journal of Photogrammetry and Remote  

 Sensing, 62(2), pp. 135-149. 

Rouse Jr J., Haas R. H., Schell J. A., Deering D. W. (1974): Monitoring vegetation  

 systems in the Great Plains with ERTS. In: NASA. Goddard Space Flight Center  

  3d ERTS-1 Symp., 1, Sect. A pp. 309-317. 

Schmidhuber J. (2015): Deep learning in neural networks: An overview. In:  Neural  

 networks, 61, pp. 85-117. 

Shanmugan K. S., Narayanan V., Frost V. S., Stiles J. A., Holtzman J. C. (1981): Textural  

 features for radar image analysis. In: IEEE Transactions on Geoscience and  

 Remote Sensing, (3), pp. 153-156. 

Shrestha D. L., Solomatine D. P. (2006): Experiments with AdaBoost. RT, an improved  

 boosting scheme for regression. In:  Neural computation, 18(7), pp. 1678-1710. 

Skurichina M., Duin R. P. (2002): Bagging, boosting and the random subspace method  

 for linear classifiers. In: Pattern Analysis & Applications, 5(2), pp. 121-135. 



 

76 
 

Solomatine D. P., Shrestha D. L. (2004): AdaBoost. RT: a boosting algorithm for  

 regression problems. In: IEEE Neural Networks, 2004. Proceedings. 2004 IEEE  

 International Joint Conference, 2, pp. 1163-1168. 

Sun S. (2013): A survey of multi-view machine learning. Neural Computing and  

 Applications, 23(7-8), pp. 2031-2038. 

Tao D., Tang X., Li X., Wu X. (2006): Asymmetric bagging and random subspace for  

 support vector machines-based relevance feedback in image retrieval. In: IEEE  

 transactions on pattern analysis and machine intelligence, 28(7), pp. 1088-1099. 

Taubenböck H., Roth A., Esch T., Felbier A., Müller A., Dech S. (2011): The vision of  

 mapping the global urban footprint using the TerraSAR-X and TanDEM-X  

 mission. In Zlatanova, Ledoux, Fendel, Rumor (Eds.) (2012): Urban and regional  

 data management, London, Taylor & Francis Group pp. 243–251.  

Ting K. M., Witten I. H. (1997): Stacked Generalization: when does it work?, In:  

 Working Paper Series 97/03, Hamilton, New Zealand: Department of Computer  

 Science, University of Waik. 

Tison C., Tupin F., Maitre H. (2004): Retrieval of building shapes from shadows in high  

 resolution SAR interferometric images. In: Geoscience and Remote Sensing  

 Symposium, 2004. IGARSS'04. Proceedings. 2004 IEEE International, 3, pp.  

 1788-1791.  

Tooke T. R., Coops N. C., Webster J. (2014): Predicting building ages from LiDAR data  

 with random forests for building energy modeling. In: Energy and Buildings, 68,  

 pp. 603-610. 

Tuia D., Persello C., Bruzzone L. (2016): Domain Adaption for the Classification of  

 Remote Sensing Data – An Overview of recent advances, In: IEEE Geoscience  

 and Remote Sensing Magazine, June 2016, pp. 41-57. 

Tuia D., Munoz-Mari J., Gomez-Chova L., Malo J. (2013): Graph matching for  

 adaptation in remote sensing. In: IEEE Transactions on Geoscience and Remote  

 Sensing, 51(1), pp. 329-341. 

Uguroglu S., Carbonell J. (2011): Feature selection for transfer learning. In: Gunopulos  

 D., Hofmann T., Malerba D., Vazirgiannis M. (Eds) (2011): Machine Learning  

 and Knowledge Discovery in Databases. ECML PKDD 2011. Lecture Notes in  

 Computer Science, 6913. Springer, Berlin, Heidelberg, pp. 430-442. 



 

77 
 

Vapnik V., Golowich S. E., Smola A. J. (1997): Support vector method for function  

 approximation, regression estimation and signal processing. In: Advances in  

 neural information processing systems, pp. 281-287. 

Vapnik V. N., Chervonenkis A. J. (1974): Theory of pattern recognition. Nauka, In  

 Russian 

Verma V., Kumar R., Hsu S. (2006): 3d building detection and modeling from aerial lidar  

 data. In: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society  

 Conference on, 2, pp. 2213-2220. 

Verrelst J., Alonso L., Camps-Valls G., Delegido J., Moreno J. (2012): Retrieval of  

 vegetation biophysical parameters using Gaussian process techniques. In: IEEE  

 Transactions on Geoscience and Remote Sensing, 50(5), pp. 1832-1843. 

Wang G., Ma J. (2011): Study of corporate credit risk prediction based on integrating  

 boosting and random subspace. In: Expert Systems with Applications, 38(11), pp.  

 13871-13878. 

Waske B., van der Linden S. (2008): Classifying multilevel imagery from SAR and  

 optical sensors by decision fusion. In: IEEE Transactions on Geoscience and           

  Remote Sensing, 46(5), pp. 1457-1466. 

Wolpert D. H. (1992): Stacked generalization. In: Neural networks, 5(2), pp. 241-259. 

Xian G., Crane M. (2005): Assessments of urban growth in the Tampa Bay watershed  

 using remote sensing data. In: Remote Sensing of Environment, 97(2), pp. 203- 

 215. 

Yu L., Liu H. (2003): Feature selection for high-dimensional data: A fast correlation- 

 based filter solution. In: ICML, 3, pp. 856-863. 

Zhang T., Huang X., Wen D., Li J. (2017): Urban Building Density Estimation From  

 High-Resolution Imagery Using Multiple Features and Support Vector  

 Regression. In: IEEE Journal of Selected Topics in Applied Earth Observations  

 and Remote Sensing, pp. 1-16. 

Zeileis A., Hornik K., Smola A., Karatzoglou A. (2004): kernlab-an S4 package for  

 kernel methods in R. In: Journal of statistical software, 11(9), pp. 1-20. 

Zhu Z., Woodcock C. E., Rogan J., Kellndorfer J. (2012): Assessment of spectral,  

 polarimetric, temporal, and spatial dimensions for urban and peri-urban land  

 cover classification using Landsat and SAR data. In: Remote Sensing of  

 Environment, 117, pp. 72-82. 



 

78 
 

Zhu G., Blumberg D. G. (2002): Classification using ASTER data and SVM algorithms:  

 The case study of Beer Sheva, Israel. In: Remote sensing of Environment, 80(2),  

 pp. 233-240. 

  


