Computational predictions of amphiphile aggregation for early compartmentalisation.

Richard J Gillams¹, Markus Meringer² & H James Cleaves II^{1,3}

1. Earth-Life Sciences Institute, Tokyo Institute of Technology. 2. Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen. 3. Institute for Advanced Studies, Princeton.

Introduction

- Extant biology uses a vast array of lipids to perform a \bullet range of tasks.
- Compartmentalisation is critical for the existence of \bullet extant life, providing:
 - Separation of chemical environments.
 - Enhanced local concentration of molecules.
 - Interfaces with reduced dimensionality.
- Want to be able to predict which kind of molecules are able to aggregate to form environments that can harbour/encourage complex chemistry/life.
- Using high resolution models is not compatible • with the long length and time scales required to predict self-assembly/aggregation behavior.
 - Therefore it is important to develop a computationally efficient way to predict aggregation and screen large compound libraries.

The existence of individuals, leading to \bullet competition and evolution.

Approach

- There are a range of methods available for producing or accessing libraries of molecules.
- Through the recent explosion of lipidomics, there are a \bullet number of tools for mass spectrometry which include large compound libraries.
 - LipidBlast.
 - LipidHome.
 - Metabolite databases.
- These give access to biologically relevant lipids, but do not facilitate the identification of novel molecules.
- The work reported here involves the development of an exhaustive library of molecules based on design rules outlined below.
- This library was interrogated in order to identify molecules which possess properties which are commensurate with an ability to form membranes.
- These properties relate to both the propensity for aggregation and the shapes of the aggregates which would be formed.

Library generation

Exhaustive library generation can be achieved with Molgen.

Library interrogation

Once a library of amphiphilic molecules has been constructed,

- Within Molgen a set of disallowed molecular motifs and ranges of molecule parameters govern the creation of chemical structures.
- Through this approach, a library of fatty acids can be developed.

Due to the amphiphilic nature of self-assembling molecules, the distribution of heteroatoms within the molecules in question is not uniform. This is challenging to overcome in an efficient fashion using Molgen.

- chemoinformatics approaches can be used to evaluate these structures.
- Chemical descriptors are computationally efficient to calculate and describe the properties of molecules based on chemical structure alone.
- Examples in the scientific literature identify chemical descriptors that have proved effective indicators for aggregation behavior.
- The most successful descriptors have included properties such as the Kier-Hall index, estimated partition coefficients and measures of the polarity of the molecule, as shown below.
- By plotting these descriptors it is possible to assess the coverage of chemical space achieved by the library of molecules.

To enhance the efficiency, a computational pipeline has been • developed. This involves generating sections of the molecules, which are then combined using a reaction simulation protocol. ChemAxon Reactor is used for this purpose.

Further Work

- Identify ways to gain comprehensive chemical space coverage without relying on exhaustive structure generation.
- Develop QSPR models to predict behaviour.
- Design novel self-assembling systems.
- Test with experiment.

