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Abstract 

A general technique to design advanced controllers 
for non-linear systems is described, using component 
oriented modeling and symbolic algorithms as used 
for Modelica models. Starting point are linear design 
techniques that use linear inverse models as a core 
part of the controller structure. Starting from such a 
structure, the approach is to replace the linear inverse 
model with a nonlinear one, resulting in a controller 
that is applicable over the full operating range of the 
(nonlinear) plant. It is shown that nonlinear inverse 
models may be automatically generated from the 
plant model in Modelica. 

1 Introduction 

The subject of this article is the systematic design of 
controllers for nonlinear systems, based on inversion 
of the plant model. Traditional design techniques 
require the nonlinear plant model to be linearised 
around a stationary operating point, after which lin-
ear methods may be applied to synthesize a control-
ler. In order to make this controller work over the 
full operating range of the plant, robust design tech-
niques and/or gain scheduling are applied. The first 
approach may considerably reduce achievable per-
formance if the plant dynamics vary strongly over 
the operating range, whereas the latter may involve 
designing many controllers at a grid of operating 
points and finding an interpolation scheme in be-
tween them. 
In linear design, inversion of plant dynamics is 
sometimes used to compensate for coupled input / 
output responses, or as an easy way to impose spe-
cific dynamic behavior of the closed-loop system [7]. 
Provision is that the linear plant model is minimum 
phase and, for some structures, stable. In a nonlinear 
context, the application of model inversion addition-
ally provides compensation of nonlinear dynamic 

behavior of the plant. This is exploited in design 
techniques such as feedback-linearization [19].  
The design approach in this article starts from any 
controller structure that is based on a linear inverse 
model of the plant. This model is replaced with a 
nonlinear inverse one, resulting in a controller that is 
valid for the full operating range of the plant. In case 
the plant model is available in Modelica, it will be 
demonstrated that inversion can be performed auto-
matically, exploiting symbolic algorithms and code 
generation features of a Modelica simulation envi-
ronment. This allows for a highly automated design 
process that directly results in nonlinear controllers 
that work in all operating conditions of the plant, 
avoiding the need for gain scheduling.  
This article is structured as follows. First general 
aspects of nonlinear inverse models are reviewed, as 
well as the possibility to derive these automatically 
from Modelica. In section 4, a number of common 
controller structures are discussed, for which the de-
scribed design approach is applied. Next, a design 
example will be discussed. In section 6 a number of 
common problems in deriving and applying nonlin-
ear inverse models will be described, as well as pos-
sible solutions or workarounds.  

2 Inversion of Nonlinear Models 

The goal is to use a nonlinear plant model in a con-
troller in order that the nonlinearities of the plant are 
directly taken care of in the control system. For lin-
ear systems, several control structures are known 
where an inverse plant model is part of the control-
ler. A single-input-single-output plant might be de-
scribed as transfer function  

 
( )
( )

n sy u
d s

=  (1) 

where “u” is the plant input, “y” is the plant output, 
“n(s)” is the numerator and “d(s)” is the denominator 
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of the transfer function. In section 4 several control 
structures will be investigated where an inverse 
model 

 
( )
( )

d su y
n s

=  (2) 

is part of the controller. Basically, the plant and the 
inverse plant model “cancel” each other due to the 
connection structure and by additional control blocks 
a desired transfer function of the closed loop system 
can be achieved. Although, this seems to be quite a 
“brute” force method, it will be shown that by ap-
propriate adaptations practically useful control sys-
tems can be designed. 
The essential idea is as follows: 
1. Take any control structure for linear systems that 

utilizes a linear inverse plant model. 
2. Replace the linear inverse plant model by a more 

detailed nonlinear inverse plant model. 
3. Determine the remaining part of the control sys-

tem by appropriate techniques, e.g., by tuning 
controller coefficients via parameter optimiza-
tion.  

Several different controller structures according to 
this technique will be discussed in section 4. The 
difficult part is issue (2): The nonlinear plant model 
should be constructed in a convenient way and the 
inverse model should be directly derived from the 
plant model. It turns out that Modelica is very well 
suited for this approach because Modelica is de-
signed to model complex systems, and since Mode-
lica tools, like Dymola [5], can generate nonlinear 
inverse models automatically: 
A continuous Modelica model is primarily mapped 
to a DAE (= set of Differential Algebraic Equations) 
of the form: 
 ( , , , )=0 f x x y u  (3) 

where x(t) are variables that appear differentiated in 
the model, y(t) are algebraic and u(t) are known in-
put functions of time t. It is possible to transform 
system (3) to the following state space form, at least 
numerically: 

 

1

2
1 1( , )

 
 
  =
 
 
 

x
x

f x u
y
w

 (4) 

where x1 and x2 form vector x such that the subset 
vector x1 is the state vector and contains the inde-
pendent variables of x. The new vector w contains 
higher order derivatives of x and of y that appear 

when differentiating equations of f(..) and that are 
treated as algebraic variables. For the computation of 
f1(..), it might be necessary to solve linear and/or 
non-linear algebraic systems of equations. The equa-
tions to be differentiated can be determined with the 
algorithm of Pantelides [15]. The selection of the 
state variables x1 can be performed with the “dummy 
derivative method” of Mattsson and Söderlind [16]. 
Both algorithms are, for example, available in the 
Modelica simulation environment Dymola [5]. 
An inverse model of the DAE (3) is constructed by 
exchanging the meaning of variables: A subset of the 
input vector, uinv, with dimension ninv, is treated no 
longer as known but as unknown, and ninv previously 
unknown variables from the vectors x and/ or y are 
treated as known inputs. The result is still a DAE 
which can be handled with the same methods as any 
other DAE. Examples are given in the following sec-
tions. This technique of constructing non-linear in-
verse models has been first applied in [17][18]. An 
inverse model can only be used in a controller if the 
DAE of the inverse model has a unique solution and 
if it is stable. For linear systems the latter require-
ment means that the plant must be a minimum phase 
system. In section 6 it is discussed how to proceed if 
these requirements are not fulfilled. 
Since the transformation from (3) to (4) might differ-
entiate equations, the known inputs of the inverse 
model may be differentiated too, i.e., the derivatives 
of these inputs must exist and must be provided ana-
lytically up to a certain order. These derivatives can 
be provided if, e.g., the inputs are available as ana-
lytic functions that can be differentiated sufficiently 
often, or by a desired reference model that in combi-
nation with the inverse DAE results in a DAE that 
does not require derivatives of inputs. Often, the ref-
erence model is selected as a filter such that a com-
bination of the filter states yields the needed deriva-
tives. For linear systems, this approach is well 
known. Take for example the following linear sys-
tem with one zero and two poles: 

 
1

( 2) ( 3)
sy u

s s
+=

− ⋅ +
 (5) 

The inverse model is constructed as 

 
( 2) ( 3) 1

( 1) ( 1)
s su y

s Ts
− ⋅ += ⋅

+ +
 (6) 

In order that the inverse model is causal (i.e., can be 
implemented as an algorithm), additional poles have 
to be added until the degree of the denominator is 
larger or, at least, as large as the degree of the nu-
merator. For this reason, a filter 1/( 1Ts + ) has been 
connected in series, making the combined transfer 
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function causal. Another possibility is not to control 
y, but one of its derivatives instead: 

( 1)
( 2) ( 3)

s sy s y u
s s

+= ⋅ = ⋅
− ⋅ +

 

The transfer function is proper now and may be in-
verted: 

( 2) ( 3)
( 1)

s su y
s s

− ⋅ +=
+

 

Connecting this controller with the plant (5) in series 
results in integrator behavior. A simple feedback 
loop may be added to place the integrator pole at a 
desired location. 

3 Constructing Inverse Models 

With a Modelica simulation environment, such as 
Dymola, the practical derivation of inverse models is 
straightforward, even for complex systems: 
1. Define the plant as Modelica model and include 

input and output signals of the plant over which 
the inversion shall take place. 

2. If necessary, provide a reference model or input 
filter of appropriate relative degree. The relative 
degree may be known from physical knowledge 
of the plant dynamics, or can be automatically 
derived by Dymola as described below. 

3. Connect the “u1” inputs of a “Mode-
lica.Blocks.Math.TwoInputs” block to the plant 
outputs, the “u2” inputs of this block to the out-
puts of the reference model, and the input of this 
model to an input signal connector (Mode-
lica.Blocks.Interfaces.RealInput) that defines the 
desired plant outputs. 

A typical example is shown in Fig. 1. On the left side 
the plant model with one input and one output is 

present. On the right side, a filter is used as reference 
model. The output of the filter should be connected 
to the output of the plant. This is not directly possi-
ble, because signal connectors can only be connected 
according to block diagram semantic and in block 
diagrams it is not allowed to connect two output sig-
nals with each other. For this reason the “TwoIn-
puts” block is used. It has two inputs u1 and u2 and 

is described by the equation “u1 = u2”. If the filter 
order is too low the DAE is not causal and Dymola 
prints an error message of the following form (Dy-
mola version 5.3b and later): 

Error: The model requires derivatives of 
some inputs as listed below: 
Order of input derivative 
  4        u1  
  2        u2  
  3        u3  
Error: Failed to reduce the DAE index 

In the second column the Modelica names of the in-
put signals are listed that need to be differentiated 
according to the differentiation order of the first col-
umn. The numbers in the first column are therefore 
the minimum order of the corresponding filters. 
If the inversion is to be based on a time derivative of 
the output, a sufficient number of integrators needs 
to be added, instead of increasing the filter order. 
There is always a filter order / number of integrators 
for which the system will translate. The higher the 
filter order, the more problems will occur when ap-
plying it in a control system. In such cases, one 
might remove dynamic elements from the plant and 
try it again. One might even use a stationary plant 
model. 

4 Example Controller Structures 

In this section different controller structures will be 
discussed that follow the general approach outlined 
in section 2. 

4.1 Inverse Model in Feedforward Path 

Different variants of linear controllers with two 
structural degrees of freedom are known. The most 
general form for linear, single-input/single-output 
systems has been proposed and analyzed by Kreis-
selmeier [12]. According to the approach sketched in 
section 2, the generalization using nonlinear inverse 
models is shown in Fig. 2. This structure has been 
applied in [22] to the control of robots and has been 
successfully validated with hardware experiments. In 
flight control, the “model following approach”, see 
for example [2], is a special case of this structure 
whereby the reference model is known as the “com-
mand block” providing state references for the in-
verse model as well as the feedback controller.  
In Fig. 2 the multi-input/multi-output plant has in-
puts u, measured signals ym and outputs yc that are 
primarily controlled. In many cases yc ∈ ym. For this 
controller structure the number of inputs must be 

Fig. 1. Definition of inverse model with Modelica 
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identical to the number of controlled variables: 
dim(yc) = dim(u). In this case the inverse plant 
model with (known) inputs yc and unknown outputs 
u is used in the feedforward path of the controller to 
compute the desired actuator inputs ud to the plant. 
A “reference model” defines the desired dynamic 
behavior of the closed loop system. It is often most 
convenient to use a filter, since the filter is param-
eterized by just the cut-off frequency, once the filter 
order and the filter type is fixed, and because a filter 
provides the “optimal” reference model with transfer 
function “1” below the cut-off frequency. There are 
also other useful choices of the reference model, see 
for example [2] for in-flight simulation.  
The outputs yc,dr of the reference model are the inputs 
to the inverse plant model. By solving a DAE system 
(3) or the symbolically transformed system (4), the 

inverse plant model computes the desired measure-
ment signals ym,d and the desired plant inputs ud. A 
feedback controller is used to stabilize the overall 
system and to improve robustness. This might be a 
simple PID like controller. 
It can be shown that the feedback controller has no 
effect, as long as the plant and the inverse plant 
models are identical, the plant and the inverse plant 
models are stable and both start at the same initial 
conditions. In this case the “reference model” deter-
mines the input/output behavior, i.e., it is the transfer 
function of the closed loop system. If these assump-
tions are not fulfilled, a control error occurs and the 
controller has to stabilize the system and cope with 
the imprecise inverse plant model and its initial con-
ditions. 
The structure in Fig. 2 has several advantages: 

ym,d

e u ycinverse
plant model feedback

controller plant

ud

uc
ym

-

reference
model

yc,d(t)

y c,dr,y c,dr..,y c,dr
(p)

controller

Fig. 2. Controller with two structural degrees of freedom and  
an inverse plant model in the feedforward path 

u yc

inv. desired
plant model

plant
uc

ym

controller part for robustness

filter

filter

ym f,ym f..,ym f
(p)

-

+

 
Fig. 5. Forcing a “desired plant” behavior using an inverse desired plant model in the feedback path 

yc,d

e uinverse
plant model

feedback
controller plant

yc = ym 

-

controller

 
Fig. 3. Compensation controller using an inverse plant model in the feedback path 

yc,d uinverse
plant model

feedback
controller

plant

controller
ym

 
Fig. 4. Feedback linearization 
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• The two controller parts (inverse plant model 
with reference model and feedback controller) 
can be designed independently from each other.  

• The controller structure can be applied to unsta-
ble plants provided the inverse model is stable, 
see section 6.1. 

• Since the inverse plant model is in the feedfor-
ward path, the calculation of ud and of ym,d might 
be performed offline if possible, so that hard 
real-time requirements for the solution of the in-
verse plant model are not present. 

The disadvantage of this structure is that for some 
applications the feedback controller may still have to 
be scheduled as a function of the operating condi-
tions. 
Inverse model-based feedforward control will be 
demonstrated at hand of an example in section 5. 

4.2 Compensation Controller 

The disadvantage of the inverse feedforward control-
ler can be avoided by moving the inverse model into 
the feedback path. This is shown in Fig 3. The feed-
back controller now only “sees” the combined in-
verse and plant model. The structure is a generaliza-
tion of the linear compensation controller described 
in Föllinger [10], page 266. For linear plant models 
the “feedback controller”, see Fig. 3, must have a 
relative degree that is equal or larger than the relative 
degree of the plant, in order that the system is proper. 
For single-input/single-output systems, a useful 
“feedback controller” is 

 
1

( ) 1cu e
r s

= ⋅
−

 (7) 

Under the assumption that the desired and the actual 
plant behavior is identical, the inverse and the actual 
plant model “cancel” each other and the transfer 
function from yc,d to yc is identical to 1/r(s), i.e., r(s) 
of the feedback controller defines the “desired” 
closed loop behavior. Note that it is assumed that yc 
is measurable (in this case, yc = ym). Alternatively, 
the procedure as described in section 2 may be ap-
plied: integrators are added to the inverse model in-
put before designing the feedback controller. 
This structure has the disadvantage that it can be ap-
plied to stable plants only. Also the inverse plant 
model needs to be stable. For a linear plant model 
this is obvious, since otherwise an unstable pole/zero 
cancellation occurs, resulting in an internally unsta-
ble system. For multi-input/multi-output systems it is 
nearly always possible (also for unstable plants) to 
construct the inverse of a stationary desired plant 
model. Once the control error e has reached a sta-

tionary value, the inverse plant model leads to a de-
coupled control loop. In other words, the different 
outputs might be controlled independently from each 
other by simple PID-like single-input/single-output 
controllers and the stationary inverse plant model is 
used to decouple the control loops from each other. 

4.3 Feedback linearization 

A complete theory to use nonlinear plant models as 
the controller kernel is “feedback linearization” (in 
aerospace applications also known as Nonlinear Dy-
namic Inversion, NDI), see for example Isidori [11] 
and Enns et. al. [7]. The basic structure is given in 
Fig 4. The principal difference compared with the 
compensation and feedforward controllers (Fig. 2,3) 
is that the states in the inverse model are obtained 
from the actual plant, via measurement and estima-
tion. Contrary to the compensation controller, the 
methodology can also be applied to unstable plants. 
When deriving feedback linearizing control laws 
manually, the outputs to be controlled are differenti-
ated until an analytical relation with a control input 
is found [19]. To this end “Lie” algebra is used. The 
number of required differentiations is the so-called 
relative degree of the specific output. If the system 
model is available in Modelica, the derivation of the 
control laws can be automated using a similar proce-
dure as described in section 2. However, instead of a 
filter of appropriate relative degree, a set of integra-
tors is added (see section 2): 

1
ii ipy

s
ν=  

where νi is the ith new model input, corresponding 
with the ith output (with relative degree pi). The de-
sired dynamic behavior of the closed-loop system is 
then imposed by application of an additional feed-
back law, like for example:  

(1) ( 1)
0, , , 1, , ( 1), ,( ) ( )... ( )pi

i i md i m i i m i pi i m ik y y k y k yν −
−= − − −   

(8)  
Note that this feedback law requires availability of 
the (pi-1)th derivative of the controlled output. This 
derivative may be obtained from measurements or, 
less favorably, from the computed value in the in-
verse model. In aerospace applications first or no 
time derivatives are usually required, since relative 
degrees of controlled variables tend to be low (1 or 
2). One reason for this is that control laws are de-
signed in the form of multiple cascaded loops [7]. In 
case the inverted model exactly represents the true 
system, the closed loop system becomes: 
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0,
, ,1

( 1), 1, 0,...
i

m i md ip p
p i i i

k
y y

s k s k s k−
−

=
+ + + +

 

Note that the coefficients may be selected to match 
the reference model in Fig. 2. 
In case time derivatives of the desired output yc,d,i are 
available, the relative degree (i.e. phase lag of the 
response) of this linear closed loop system may be 
reduced, provided that these are not too fast as to 
require too large control inputs.  
An important disadvantage of feedback linearization 
is that the state vector of the plant must be fully 
available from measurement and/or estimation. 
Automatic generation of feedback linearization con-
trol laws in Modelica will be illustrated in section 5. 
This procedure has been applied for an automatic 
landing system, see [13], and manual control laws 
for a fighter aircraft, see [21]. The software code for 
the automatic landing system was automatically gen-
erated with Dymola and successfully flight tested on 
a small passenger jet [3], see the figure below that 
shows one of the automatic landing tests. 

 

4.4 Robust Controllers 

All previous controller structures require that the 
plant model used as inverse system in the controller 
match the real plant “sufficiently” accurate. The 
controller structure in Fig. 5 uses an inverse model to 
achieve a more robust design. It was developed for 
linear systems with the goal to enhance robustness 
against disturbances and model errors, see [14][23] 
[1]. This structure is called “disturbance observer” in 
the literature although the name is misleading since it 
is actually an additional structural degree of freedom 
for a controller. It can be designed independently 
from the main control loop. In Fig. 5 the generaliza-
tion for nonlinear systems is shown: One important 
part is an inverse model of a desired plant behavior 
in the feedback path. Additionally, the same filter is 
present at two places. The standard disturbance 
observer uses a linear model for the inverse plant 
model. A nonlinear desired plant model provides 
more freedoms, since it might be impossible that a 
physical system can be forced to have the same 

linear behavior in its whole operating range. Note, 
there is the requirement that the number of 
measurement signals is identical to the number of 
plant inputs: dim(ym) = dim(u).  
For a single-input/single-output system where all 
parts are linear, the transfer function from uc to ym is 
given by: 

 
1

1 ( ) ( )
( ) ( )

m c

des

y uF s F s
P s P s

= ⋅− +
 (9) 

where F(s) is the filter, P(s) is the plant and Pdes(s) is 
the desired plant transfer function in the feedback 
loop. For low frequencies, F(s) ≈ 1 and therefore 

( )m des cy P s u≈ ⋅ . For high frequencies, F(s) ≈ 0 and 
then ( )m cy P s u≈ ⋅ . The effect of the disturbance 
observer is therefore, that it enforces the desired 
plant behavior for low frequencies. In other words, if 
there are modeling errors or disturbances then the 
disturbance observer enforces a desired plant behav-
ior below the cut-off frequency of the filter, i.e., the 
controller designed for the desired plant will usually 
work considerably better. 
The disturbance controller is usually combined with 
other controller structures. For example, by combin-
ing it with the structure from section 4.1, a controller 
with 3 structural degrees of freedom is obtained:  
• An inverse plant model from yc to u in the feed-

forward path is used for command following and 
for providing the desired measurements ym,d. 

• An inverse plant model from ym to u in the feed-
back path is used to make the closed loop system 
robust against model errors and disturbances. 

• The feedback controller in the feedback loop is 
used to stabilize the system. 

5 Example application 

In this section the feedforward and feedback lineari-
zation controller structures as discussed in the previ-
ous section will be illustrated on the following ex-
ample (the plant description is from Föllinger [9], 
page 279): 
A substance A is flowing continuously into a mixing 
reactor. Due to a catalyst, the substance reacts and 
splits into several base substances that are continu-
ously removed. The reaction generates energy and 
therefore the reactor is cooled with a cooling me-
dium. The cooling temperature Tc(t) in [K] is the 
primary actuation signal. Substance A is described 

M. Thümmel, G. Looye, M. Kurze, M. Otter, J. Bals

The Modelica Association 272 Modelica 2005, March 7-8, 2005



by its concentration c(t) in [mol/l] and its tempera-
ture T(t) in [K] according to the following DAE: 

 

/
0

11 12 13

21 22 23

T

c

c k e
c a c a a
T a T a a b T

εγ
γ
γ

−= ⋅ ⋅
= − ⋅ − ⋅ +

= − ⋅ + ⋅ + + ⋅

 (10) 

with 
14

0 11 21

12 22

13 23

1.24 10 0.00446 0.0303
10578 0.0141 2.41
0.0258 0.00378 1.37

k a a
a a

b a a
ε

= ⋅ = =

= = =

= = =

 

For the given input Tc(t) these are 1 algebraic equa-
tion for the reaction speed γ(t) and two differential 
equations for c(t) and T(t). The concentration c(t) is 
the signal to be primarily controlled (= yc) and the 
temperature T(t) is the signal that is measured (= ym). 

5.1 Inverse Model in Feedforward Path 

The inverse plant model is constructed from (10) by 
assuming that the variable to be controlled, i.e., the 
concentration c(t), is a known time function. By in-
spection or by using the Pantelides algorithm [15] it 
turns out that the first two equations of (10) have to 
be differentiated: 

 
/

02

11 12

Tcc T k e
T

c a c a

εεγ

γ

−⋅ = + ⋅ ⋅ 
 

= − ⋅ − ⋅
 (11) 

(10) and (11) are the inverse model of (10). A filter 
with an nth order pole on the negative real axis is 
used as “reference model”. Since the second deriva-
tive of the input appears (= c ), at least a filter of or-
der 2 is needed, such as: 

 
( )2

1
/ 1

desc c
s ω

= ⋅
+

 (12) 

with desc  the desired concentration, 2 fω π=  and f 
the cut-off frequency of the filter. A state space de-
scription of the filter is given by: 

 
( )
( )

desx c x

c x c

ω
ω

= − ⋅

= − ⋅
 (13) 

The needed second derivative of c is obtained by 
differentiating the second equation of (13): 

 ( )c x c ω= − ⋅  (14) 

Equations (10), (11), (13), (14) are the DAE of the 
inverse model of (10) with a prefilter of order 2, i.e., 
these are the connected blocks labeled as “inverse 
plant model” and as “reference model” in Fig. 2. It 

turns out that this DAE has two states. One possibil-
ity is to use the filter states {x, c} as state vector x1 
of the overall system. Here, the original plant states 
{c, T} are used as state vector x1. Transforming the 
equations to the state space form (4) results in the 
following sequence of assignment  statements to 
compute the derivative { },c T  of the state vector and 

of the output cT  as function of {c, T} 

 

( )
( )
( )

( )

/
0

11 12 13

11 12

2

/
0
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:
:
: /
:

:

: /

:

: /

T
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T

c

c k e
c a c a a
x c c
x c x

c x c

c a c a

TT c
c k e

T T a T a a b

ε

ε

γ
γ

ω
ω

ω
γ

γ
ε

γ

−

−

= ⋅ ⋅
= − ⋅ − ⋅ +
= +

′ = − ⋅
′′ ′= − ⋅
′ ′′= + ⋅

 ′
= ⋅ − ⋅ ⋅ 
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 (15) 

For notational clarity, the time derivatives of vari-
ables that are treated as purely algebraic variables (= 
“dummy derivative method”) are denoted with an 
apostrophe, such as γ ′ . Equations (15) are a set of 
differential equations in state space form: Given the 
desired concentrations desc , it is possible by numeri-
cal integration to compute the desired cooling tem-
perature cT  (= ud in Fig. 2) and the desired substance 
temperature T (= ym,d in Fig. 2). The latter is com-
pared with the measured substance temperature 
forming the control error e as input to the feedback 
controller. 
Even for this rather simple system, the derivation of 
the nonlinear feedforward controller is not so easy. 
Such a manual derivation becomes impractical if the 
plant model consists of hundreds or of thousands of 
equations as it is usual in complex Modelica models. 
It is now demonstrated how to derive this nonlinear 
feedforward controller in an automatic way: 
.

 

 
Fig 6. Modelica model of mixing unit with  

constant cooling temperature T_c 
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In Fig. 6 a Modelica model of the mixing unit is 
shown. The constant input is the cooling tempera-
ture; the outputs are the concentration c and the tem-
perature T of the substance. This model contains just 
the equations (10). Simulation results of this model 
are shown in Fig. 7. As can be seen, the system is 
unstable at this operating point 

In Fig. 8 the inverse model of the mixing unit is con-
structed by connecting the input “c_des” via a filter 
to the “c” output of the mixing unit, i.e., the concen-
tration c is treated as known input signal. 

 
When this system is translated without the filter, 
Dymola reports that the second derivative of c_des is 
needed. In a second step, the filter is included with 
order = 2 and Dymola translates without an error. 
Afterwards, the inverse model is connected with the 
plant model according to Fig. 2. The result is shown 
in Fig. 9. In order to not have a jump in the cooling 
temperature, a filter order of 3 instead of 2 is actually 
used. The cut-off frequency of the filter is set to 
1/300 Hz. It turns out that a simple P controller is 

sufficient to stabilize the system. A controller gain of 
20 is selected.  
Simulation results are shown in Fig. 10 for a jump of 
c_des = 0.492 to 0.237. The straight lines correspond 
to the nominal case, where the plant and the inverse 
plant model have the same parameters. The result is 
a good control behavior. The dashed lines corre-
spond to the case where the parameters of the plant 
are 50 % higher as the parameters of the inverse 
plant model to check the robustness of the design 
(only parameter ε  was not changed because the re-
sult is very sensitive to it). As can be seen, the result 
is still satisfactorily. For an actual design, it is useful 
to perform a Monte Carlo simulation by varying all 
model parameters and initial conditions of the plant 
systematically in order to determine how robust the 
control system is 

 

Fig. 7. Simulation results of mixing unit for c(t0) = 
0.237 mol/l, T(t0) = 323.9 K, T_c(t) = 308.5 K 

Fig 8. Inverse model of mixing unit

 

 

 
Fig. 10. Simulation results of mixing unit of Fig. 8
Straight line: same model parameters for plant and 

inverse plant model. Dashed line: model parameters 
of plant are enlarged by 50 % 

controller controller 

 
Fig 9. Control system with nonlinear feedforward path for mixing unit 

M. Thümmel, G. Looye, M. Kurze, M. Otter, J. Bals

The Modelica Association 274 Modelica 2005, March 7-8, 2005



5.2 Feedback linearization 

The compensation control scheme and the feedback 
linearization cannot be applied directly to the exam-
ple plant, since the concentration c is not measurable. 
One possibility is to use model knowledge in combi-
nation with estimation (e.g. a Kalman filter), but this 
is beyond the scope of this example. For this reason 
it is assumed that the concentration is measurable. In 
Modelica, design of feedback linearization and the 
compensation controllers start in the same way. This 
time two integrators are added, instead of an input 
filter, see Fig. 11. 

 
Fig 11. Inverse model of mixing unit for feedback lineari-

zation (compare with Fig. 8) 
In the case of the compensation controller, the inver-
sion work is done. For feedback linearization, the 
states in the inverse plant model must be replaced 
with measured ones. This can be performed by set-
ting the flag 

Advanced.TurnStatesIntoInputs = true 
before translation to transform all states into inputs 
in the generated code. This code can be incorporated 
with the export feature of Dymola in another envi-
ronment, such as Simulink from Mathworks. Cur-
rently, it is not possible to import this transformed 
system in Modelica again. Dynasim plans to support 
this in the future. For the example, the differentiated 
equations (11) are added manually to the model, and 
c  and the plant states (c,T) are selected as input 
variables (in case of complex models this manual 
derivation is not practical). The design is finished by 
adding the feedback controller. In case of feedback 
linearization, a usual choice is: 

ckcckc des 21 )(" −−=  

whereby c is available from measurement and c  is 
computed or obtained from differentiation. By 
choosing  

2
1 2(2 ) , 2(2 )k f k fπ π= = ,  

with f = 1/300 Hz, exactly the same closed loop dy-
namics is obtained as with the input filter of second 
order in section 5.1. Starting from the ideal response  

1
2

2 1

1
( )

k
r s s k s k

=
+ +

 

the feedback controller may also be shaped as: 
2

2 1
2

2

1
( ) 1c

k sT s
r s s k s

= =
− +

 

 

 

 

 
Fig 13. Closed-loop and ideal step response of the mixing 

reactor 

 
Fig 12. Closed loop system of mixing reactor and feedback linearization controller 
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whereby in the numerator 2s  has been added, since 
the input of the inverse model is effectively the sec-
ond time derivative of cdes. Fig. 13 shows the re-
sponse of the closed loop system to the same com-
mand as in Fig. 10. The command input has been 
smoothed with a first order filter (as in Fig. 8). The 
over-all closed-loop system is depicted in Fig. 12. 

6 Difficulties with Inverse Models 

When constructing inverse models for industrial sys-
tems, it is often the case that the generated inverse 
models do not work as expected. In this section, the 
major reasons are discussed and it is explained how 
to circumvent such problems. 

6.1 Unstable inverse models 

Usually, it is required that the inverse model is a sta-
ble system. For example, in the structure of Fig. 2, 
the inverse model is in the feedforward path and if it 
would not be stable, the overall system would be 
unstable as well. For linear single-input/single-output 
systems this situation is well known and can be eas-
ily analyzed. For example, take the following linear 
plant model: 

 
1

( 2) ( 3)
sy u

s s
−=

− ⋅ +
 (16) 

The inverse model together with a reference model is 

 
( 2) ( 3)
( 1) ( 1)
s su y
s Ts

− ⋅ +=
− ⋅ +

 (17) 

As can be seen, the inverse model is unstable, be-
cause the plant has an unstable zero. In other words, 
for linear systems the plant must be a minimum 
phase system in order that the inverse model is sta-
ble. For a general DAE no stability proof exists. 
Therefore many simulations have to be performed 
with the inverse DAE to check whether it is stable in 
the desired operation region. For certain classes of 
DAEs, it might be possible to prove that the inverse 
model is stable. An alternative is to linearize the 
plant model around several stationary operating 
points and check whether the transmission zeros are 
stable. Of course, none of these checks can guarantee 
that the inverse DAE is stable for simulations or sta-
tionary points that have not been analyzed. 
If the inverse plant is unstable, only approximate 
inverse plant models can be used for the design. For 
linear single-input/single-output systems this can be 
achieved by removing unstable zeros before invert-

ing the plant. E.g., in the example above, the ap-
proximate inverse plant model would be: 

 2

( 2) ( 3)
( 1)

s su y
Ts

− ⋅ +=
+

 (18) 

For a non-linear plant, one might choose other out-
puts of the plant as inputs to the inverse model, since 
this might change the stability behavior of the in-
verse plant, see for example [20]. Alternatively, the 
plant might be modified before inversion. These ad-
vices are demonstrated by the crane example in Fig. 
14. 

The crane consists of a horizontally moving crab and 
a rope on which the load is attached. For simplicity, 
the load is modeled as a mass point. The crab is 
driven by the external force “f”. The horizontal posi-
tion of the crab “s1” and its derivative “v1” are 
measured. The goal is to move the load to a specified 
horizontal position “s2”. 
For a non-linear disturbance observer, the inverse 
model from s1 to f is needed, since s1 is measured. 
The system is first linearized around the stationary 
position where the rope hangs vertically down (ϕ = 
0). The transfer function from f to s1 has 2 conjugate 
complex zeros on the imaginary axis, signaling an 
undamped oscillation of the inverse model. This can 
be improved by including linear damping (= d ϕ⋅ ) 
in the revolute joint for the inverse plant used in the 
controller. If the damping constant d is large enough, 
the two zeros on the imaginary axis are moved to the 
negative real axis. The disturbance observer is able 
to force the plant (that does have low damping) mov-
ing in such a way as if there would be high damping. 
The major goal is to position the load, i.e., to control 
the horizontal position “s2” of the load. Therefore, 
the feedforward control should use the inverse model 
from s2 to f. The transfer function from f to s2 of the 
linearized model has no zeros and a relative degree 
of 4. Constructing the inverse model from the non-
linear plant model requires, however, a filter of order 
2 instead of 4 as suggested by the linearized model. 
Simulating the inverse model results in a division by 
zero if 0ϕ = °  or 180ϕ = ° . To summarize, the 
structure of the inverse model equations is different 

f

s1

s2

ϕ

 
Fig 14. Crane consisting of horizontal moving 

crab and a load on a rope 
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at these two points and at 0ϕ ≠ °  and 180ϕ ≠ °  (the 
DAE index is 5 for 0ϕ = °  and 180ϕ = °  and the 
DAE index is 3 otherwise). Since the division by 
zero occurs when computing ϕ , the plant model 
should be changed to compute ϕ  in a different way. 
This can be accomplished by taking the inertia of the 
load into consideration (previously it was neglected). 
With a non-zero inertia, the transfer function from f 
to s2 of the linearized plant has 2 conjugate complex 
zeros on the imaginary axis and a relative degree of 
2. Again, by introducing damping in the revolute 
joint, these two zeros are moved to the negative real 
axis. Note, that the inverse model is very insensitive 
with respect to the newly introduced load inertia. 
To summarize, for the crane example the inverse 
plant models from s1 to f and from s2 to f can be 
constructed by inverting a modified plant that has a 
load inertia and additionally damping in the revolute 
joint. A simpler alternative is also available: Before 
inversion, the angle φ is fixed to 0°  and therefore s1 
= s2, and the plant to be inverted is described by the 
equations (mcrab is the mass of the crab and mload is 
the mass of the load): 
 crab load 1( )m m s f+ ⋅ =  (19) 

which can be easily inverted. This example demon-
strates that it might be necessary to slightly modify 
the original plant model in order that the inverse 
model of the plant can be used in a controller. 

6.2 Equations that cannot be inverted 

A plant may have equations that cannot be inverted. 
Examples are time delays, backlash, friction, hys-
teresis. This can be fixed by approximating the prob-
lematic elements in such a way that the resulting 
equation leads to a unique inverse. 

A typical example is shown in Fig. 15. The original 
backlash characteristic y1 = f1(u) is not invertible 

because for y1 = 0, there are an infinite number of 
solutions (u = -1 ... +1). In Fig. 15 an approximation 
y2 = f2(u) is shown that is strict monotonic and 
therefore the inverse function has a unique solution.  
It might also occur that tables have to be inverted. 
Formally, a table in one dimension is defined as a 
function y = f(u). Inversion of this function means to 
solve a non-linear equation. This can be often quite 
easily avoided by providing already the inverse tabu-
lated values u = g(y) in the plant before inverting the 
plant model. The advantage is that the solution is 
faster and more robust. This problem was, e.g., en-
countered in [21], where control surface effective-
ness of a military jet tended to have a local maxi-
mum as a function of the deflection. This was solved 
by adapting tables and internal limitations of control 
commands. 
The inverse plant model may have also other singu-
larities at particular operating points or regions that 
prevent an inversion, e.g., due to divisions by zero, 
singular linear or singular non-linear systems. The 
reason is that the corresponding inverse model has 
no or infinitely many solutions in particular points or 
in particular regions of the state space. Again, one 
remedy is to change the plant model before the in-
version, e.g., by neglecting dynamic elements or by 
approximating components with functions that are 
less problematic to invert. 

6.3 Actuator limits 

Every control system is inherently limited by con-
straints in the actuator or other parts of the plant and 
therefore the question arises how to cope with these 
restrictions. When inverting a plant model, such con-
straints have to be removed before the inversion. 
Otherwise no unique solution of the inverse exists 
anymore, because there are infinitely many solutions 
when an actuator is in one of its limits. As a result, 
usually only the trivial action is possible to add ap-
propriate limiters to the outputs of inverse models. 
This will only help for short-time violations of the 
constraints because the control system is effectively 
switched off when the actuators are in their limits. 
The most effective way to cope with actuator con-
straints in any control system is to adapt the desired 
control signals, such as yc,d(t) in Fig. 2. In the most 
general case this means to solve a trajectory optimi-
zation problem, i.e., to determine actuator signals 
u(t) such that the plant outputs yc(t) have a desired 
behavior, e.g., reach the desired position in minimum 
time or with minimum energy, without violating the 
plant constraints. The result is used as yc,d(t). A typi-
cal example can be found in [8]. Note, if the plant is 

-2.5 0.0 2.5
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Fig. 15. Backlash (y1) and approximate  

backlash (y2) 
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y2 
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unstable and the inverse plant model is stable, it 
might be considerably simpler to solve the trajectory 
optimization problem with the inverse plant instead 
with the plant model. Usually, trajectory optimiza-
tion problems are difficult to solve and therefore 
highly simplified plant models are used. 
Take for example the crane model from section 6.1. 
The basic requirement is to move the crab from posi-
tion s1=a to s1=b in a short time. The plant model is 
simplified by fixing the angle to 0ϕ = °  resulting in 
equation (19). Based on (19), the actuator limit 

maxf f≤  can be directly transformed into a limit of 
the acceleration: 

 ( )1 max ,/ crab load maxs f m m≤ +  (20) 

Together with limits on the maximum speed, due to 
the maximum speed of the motor, 1 1,maxs s≤ , and 
the requirement to move in minimum time from a to 
b it is straightforward to construct the analytic solu-
tion of the desired movement s1,d(t). This solution is, 
e.g., available via the block Modelica.Blocks.-
Sources.KinematicPTP. Note, the plant model used 
for the trajectory optimization problem and for the 
inverse plant model in the feedforward path accord-
ing to Fig. 2 are identical here. In such a case, the 
feedforward controller can be removed and can be 
replaced by the result of the trajectory optimization: 

1,ds  and 1, , 1,( )d crab load max df m m s= + ⋅ . For the tra-
jectory optimization problem an fmax should be used 
that is, say, 10 % - 20 % smaller as the actual limit in 
order to provide some margin for the feedback con-
troller. 
If the desired control variables yc,d(t) are not known 
in advance but generated online, e.g., by an operator, 
online optimization techniques have to be used: The 
operator request is reduced such that the plant con-
straints are fulfilled in the next sample time instant. 
A well known measure in flight control is the so-
called daisy-chain. In case a control input saturates, a 
secondary, redundant control input is brought in that 
provides the remaining required control power. In 
[21] for example, lateral deflection of the thrust vec-
tor is used to yaw the aircraft in case the rudder satu-
rates. 

6.4 Real-time implementation 

If inverse plant models are part of the controller, lin-
ear and non-linear systems of equations as well as 
non-linear differential equations might have to be 
solved in every sampling interval of the controller. 
The techniques developed for hardware-in-the-loop 

simulations can be also applied for such an applica-
tion. The methods described in [6] are available in 
Dymola [5] with the Dymola real-time option and 
can be applied by selecting the appropriate options 
when translating the inverse model (Simulation / 
Setup / Realtime / Inline integration method). Only 
fixed step integrators can be used for a real-time ap-
plication. Via simulations, the appropriate step size 
of the integrator has to be determined. 

6.5 Robustness 

As already mentioned in section 5, the use of inverse 
model equations gives rise to robustness issues, since 
any mismatch between the inverted model equations 
and the actual plant will leave part of the nonlineari-
ties and couplings uncompensated. The usual ap-
proach is to provide robustness to model uncertainty 
via the (linear) feedback controller (Fig. 2,3,4) or the 
filter (Fig. 5). This can be done by application of a 
robust control synthesis technique [2], or by robust 
parameter tuning in a classical structure, e.g. using 
multi-model techniques and enforcing sufficient sta-
bility margins [13]. 
Tolerances on parameters in the model also appear in 
the inverse model equations. In [13] it has been 
shown that these parameters may be very effectively 
used as additional tuning parameters in multi-
objective optimization. The result is a model that is 
basically inverted at a location in the parameter 
space that provides the highest level of robustness. 

7 Summary 

Several control structures have been discussed that 
are based on non-linear inverse plant models. These 
structures are attractive since it is possible to cope 
directly with operating point dependencies. The dif-
ficult part to construct an inverse model can be per-
formed automatically even for complex systems: The 
plant is modeled with Modelica, inputs and outputs 
are exchanged and a Modelica simulation environ-
ment, such as Dymola, generates automatically the 
appropriate C code for the inverse plant model, in-
cluding real-time integration algorithms. The gener-
ated code can be easily embedded into Simulink 
from Mathworks using the corresponding Dymola 
export option. Via Mathworks Realtime-Workshop, 
the code can be finally downloaded to different tar-
get processors. 
The presented controller structures can be used in all 
types of areas such as control of robots, vehicles, 
aircrafts, satellites, ships, motors, air conditioning 
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systems. The most important requirement is that an 
appropriate plant model is available. Then, the in-
verse modeling approach is in principle fully auto-
matic, although the practical application is usually 
more difficult. The essential issues have been dis-
cussed in section 6 and also possible remedies 
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