
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

M. Thümmel, G. Looye, M. Kurze, M. Otter, J. Bals
DLR Oberpfaffenhofen, Germany
Nonlinear Inverse Models for Control
pp. 267-279

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

Nonlinear Inverse Models for Control
Gertjan Looye, Michael Thümmel, Matthias Kurze, Martin Otter, Johann Bals

DLR Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany
{Getjan.Looye, Michael.Thuemmel, Matthias.Kurze, Martin.Otter, Johann.Bals}@DLR.de

Abstract

A general technique to design advanced controllers
for non-linear systems is described, using component
oriented modeling and symbolic algorithms as used
for Modelica models. Starting point are linear design
techniques that use linear inverse models as a core
part of the controller structure. Starting from such a
structure, the approach is to replace the linear inverse
model with a nonlinear one, resulting in a controller
that is applicable over the full operating range of the
(nonlinear) plant. It is shown that nonlinear inverse
models may be automatically generated from the
plant model in Modelica.

1 Introduction

The subject of this article is the systematic design of
controllers for nonlinear systems, based on inversion
of the plant model. Traditional design techniques
require the nonlinear plant model to be linearised
around a stationary operating point, after which lin-
ear methods may be applied to synthesize a control-
ler. In order to make this controller work over the
full operating range of the plant, robust design tech-
niques and/or gain scheduling are applied. The first
approach may considerably reduce achievable per-
formance if the plant dynamics vary strongly over
the operating range, whereas the latter may involve
designing many controllers at a grid of operating
points and finding an interpolation scheme in be-
tween them.
In linear design, inversion of plant dynamics is
sometimes used to compensate for coupled input /
output responses, or as an easy way to impose spe-
cific dynamic behavior of the closed-loop system [7].
Provision is that the linear plant model is minimum
phase and, for some structures, stable. In a nonlinear
context, the application of model inversion addition-
ally provides compensation of nonlinear dynamic

behavior of the plant. This is exploited in design
techniques such as feedback-linearization [19].
The design approach in this article starts from any
controller structure that is based on a linear inverse
model of the plant. This model is replaced with a
nonlinear inverse one, resulting in a controller that is
valid for the full operating range of the plant. In case
the plant model is available in Modelica, it will be
demonstrated that inversion can be performed auto-
matically, exploiting symbolic algorithms and code
generation features of a Modelica simulation envi-
ronment. This allows for a highly automated design
process that directly results in nonlinear controllers
that work in all operating conditions of the plant,
avoiding the need for gain scheduling.
This article is structured as follows. First general
aspects of nonlinear inverse models are reviewed, as
well as the possibility to derive these automatically
from Modelica. In section 4, a number of common
controller structures are discussed, for which the de-
scribed design approach is applied. Next, a design
example will be discussed. In section 6 a number of
common problems in deriving and applying nonlin-
ear inverse models will be described, as well as pos-
sible solutions or workarounds.

2 Inversion of Nonlinear Models

The goal is to use a nonlinear plant model in a con-
troller in order that the nonlinearities of the plant are
directly taken care of in the control system. For lin-
ear systems, several control structures are known
where an inverse plant model is part of the control-
ler. A single-input-single-output plant might be de-
scribed as transfer function

()
()

n sy u
d s

= (1)

where “u” is the plant input, “y” is the plant output,
“n(s)” is the numerator and “d(s)” is the denominator

Nonlinear Inverse Models for Control

The Modelica Association 267 Modelica 2005, March 7-8, 2005

of the transfer function. In section 4 several control
structures will be investigated where an inverse
model

()
()

d su y
n s

= (2)

is part of the controller. Basically, the plant and the
inverse plant model “cancel” each other due to the
connection structure and by additional control blocks
a desired transfer function of the closed loop system
can be achieved. Although, this seems to be quite a
“brute” force method, it will be shown that by ap-
propriate adaptations practically useful control sys-
tems can be designed.
The essential idea is as follows:
1. Take any control structure for linear systems that

utilizes a linear inverse plant model.
2. Replace the linear inverse plant model by a more

detailed nonlinear inverse plant model.
3. Determine the remaining part of the control sys-

tem by appropriate techniques, e.g., by tuning
controller coefficients via parameter optimiza-
tion.

Several different controller structures according to
this technique will be discussed in section 4. The
difficult part is issue (2): The nonlinear plant model
should be constructed in a convenient way and the
inverse model should be directly derived from the
plant model. It turns out that Modelica is very well
suited for this approach because Modelica is de-
signed to model complex systems, and since Mode-
lica tools, like Dymola [5], can generate nonlinear
inverse models automatically:
A continuous Modelica model is primarily mapped
to a DAE (= set of Differential Algebraic Equations)
of the form:
 (, , ,)=0 f x x y u (3)

where x(t) are variables that appear differentiated in
the model, y(t) are algebraic and u(t) are known in-
put functions of time t. It is possible to transform
system (3) to the following state space form, at least
numerically:

1

2
1 1(,)

 
 
  =
 
 
 

x
x

f x u
y
w

 (4)

where x1 and x2 form vector x such that the subset
vector x1 is the state vector and contains the inde-
pendent variables of x. The new vector w contains
higher order derivatives of x and of y that appear

when differentiating equations of f(..) and that are
treated as algebraic variables. For the computation of
f1(..), it might be necessary to solve linear and/or
non-linear algebraic systems of equations. The equa-
tions to be differentiated can be determined with the
algorithm of Pantelides [15]. The selection of the
state variables x1 can be performed with the “dummy
derivative method” of Mattsson and Söderlind [16].
Both algorithms are, for example, available in the
Modelica simulation environment Dymola [5].
An inverse model of the DAE (3) is constructed by
exchanging the meaning of variables: A subset of the
input vector, uinv, with dimension ninv, is treated no
longer as known but as unknown, and ninv previously
unknown variables from the vectors x and/ or y are
treated as known inputs. The result is still a DAE
which can be handled with the same methods as any
other DAE. Examples are given in the following sec-
tions. This technique of constructing non-linear in-
verse models has been first applied in [17][18]. An
inverse model can only be used in a controller if the
DAE of the inverse model has a unique solution and
if it is stable. For linear systems the latter require-
ment means that the plant must be a minimum phase
system. In section 6 it is discussed how to proceed if
these requirements are not fulfilled.
Since the transformation from (3) to (4) might differ-
entiate equations, the known inputs of the inverse
model may be differentiated too, i.e., the derivatives
of these inputs must exist and must be provided ana-
lytically up to a certain order. These derivatives can
be provided if, e.g., the inputs are available as ana-
lytic functions that can be differentiated sufficiently
often, or by a desired reference model that in combi-
nation with the inverse DAE results in a DAE that
does not require derivatives of inputs. Often, the ref-
erence model is selected as a filter such that a com-
bination of the filter states yields the needed deriva-
tives. For linear systems, this approach is well
known. Take for example the following linear sys-
tem with one zero and two poles:

1

(2) (3)
sy u

s s
+=

− ⋅ +
 (5)

The inverse model is constructed as

(2) (3) 1

(1) (1)
s su y

s Ts
− ⋅ += ⋅

+ +
 (6)

In order that the inverse model is causal (i.e., can be
implemented as an algorithm), additional poles have
to be added until the degree of the denominator is
larger or, at least, as large as the degree of the nu-
merator. For this reason, a filter 1/(1Ts +) has been
connected in series, making the combined transfer

M. Thümmel, G. Looye, M. Kurze, M. Otter, J. Bals

The Modelica Association 268 Modelica 2005, March 7-8, 2005

function causal. Another possibility is not to control
y, but one of its derivatives instead:

(1)
(2) (3)

s sy s y u
s s

+= ⋅ = ⋅
− ⋅ +

The transfer function is proper now and may be in-
verted:

(2) (3)
(1)

s su y
s s

− ⋅ +=
+

Connecting this controller with the plant (5) in series
results in integrator behavior. A simple feedback
loop may be added to place the integrator pole at a
desired location.

3 Constructing Inverse Models

With a Modelica simulation environment, such as
Dymola, the practical derivation of inverse models is
straightforward, even for complex systems:
1. Define the plant as Modelica model and include

input and output signals of the plant over which
the inversion shall take place.

2. If necessary, provide a reference model or input
filter of appropriate relative degree. The relative
degree may be known from physical knowledge
of the plant dynamics, or can be automatically
derived by Dymola as described below.

3. Connect the “u1” inputs of a “Mode-
lica.Blocks.Math.TwoInputs” block to the plant
outputs, the “u2” inputs of this block to the out-
puts of the reference model, and the input of this
model to an input signal connector (Mode-
lica.Blocks.Interfaces.RealInput) that defines the
desired plant outputs.

A typical example is shown in Fig. 1. On the left side
the plant model with one input and one output is

present. On the right side, a filter is used as reference
model. The output of the filter should be connected
to the output of the plant. This is not directly possi-
ble, because signal connectors can only be connected
according to block diagram semantic and in block
diagrams it is not allowed to connect two output sig-
nals with each other. For this reason the “TwoIn-
puts” block is used. It has two inputs u1 and u2 and

is described by the equation “u1 = u2”. If the filter
order is too low the DAE is not causal and Dymola
prints an error message of the following form (Dy-
mola version 5.3b and later):

Error: The model requires derivatives of
some inputs as listed below:
Order of input derivative
 4 u1
 2 u2
 3 u3
Error: Failed to reduce the DAE index

In the second column the Modelica names of the in-
put signals are listed that need to be differentiated
according to the differentiation order of the first col-
umn. The numbers in the first column are therefore
the minimum order of the corresponding filters.
If the inversion is to be based on a time derivative of
the output, a sufficient number of integrators needs
to be added, instead of increasing the filter order.
There is always a filter order / number of integrators
for which the system will translate. The higher the
filter order, the more problems will occur when ap-
plying it in a control system. In such cases, one
might remove dynamic elements from the plant and
try it again. One might even use a stationary plant
model.

4 Example Controller Structures

In this section different controller structures will be
discussed that follow the general approach outlined
in section 2.

4.1 Inverse Model in Feedforward Path

Different variants of linear controllers with two
structural degrees of freedom are known. The most
general form for linear, single-input/single-output
systems has been proposed and analyzed by Kreis-
selmeier [12]. According to the approach sketched in
section 2, the generalization using nonlinear inverse
models is shown in Fig. 2. This structure has been
applied in [22] to the control of robots and has been
successfully validated with hardware experiments. In
flight control, the “model following approach”, see
for example [2], is a special case of this structure
whereby the reference model is known as the “com-
mand block” providing state references for the in-
verse model as well as the feedback controller.
In Fig. 2 the multi-input/multi-output plant has in-
puts u, measured signals ym and outputs yc that are
primarily controlled. In many cases yc ∈ ym. For this
controller structure the number of inputs must be

Fig. 1. Definition of inverse model with Modelica

Nonlinear Inverse Models for Control

The Modelica Association 269 Modelica 2005, March 7-8, 2005

identical to the number of controlled variables:
dim(yc) = dim(u). In this case the inverse plant
model with (known) inputs yc and unknown outputs
u is used in the feedforward path of the controller to
compute the desired actuator inputs ud to the plant.
A “reference model” defines the desired dynamic
behavior of the closed loop system. It is often most
convenient to use a filter, since the filter is param-
eterized by just the cut-off frequency, once the filter
order and the filter type is fixed, and because a filter
provides the “optimal” reference model with transfer
function “1” below the cut-off frequency. There are
also other useful choices of the reference model, see
for example [2] for in-flight simulation.
The outputs yc,dr of the reference model are the inputs
to the inverse plant model. By solving a DAE system
(3) or the symbolically transformed system (4), the

inverse plant model computes the desired measure-
ment signals ym,d and the desired plant inputs ud. A
feedback controller is used to stabilize the overall
system and to improve robustness. This might be a
simple PID like controller.
It can be shown that the feedback controller has no
effect, as long as the plant and the inverse plant
models are identical, the plant and the inverse plant
models are stable and both start at the same initial
conditions. In this case the “reference model” deter-
mines the input/output behavior, i.e., it is the transfer
function of the closed loop system. If these assump-
tions are not fulfilled, a control error occurs and the
controller has to stabilize the system and cope with
the imprecise inverse plant model and its initial con-
ditions.
The structure in Fig. 2 has several advantages:

ym,d

e u ycinverse
plant model feedback

controller plant

ud

uc
ym

-

reference
model

yc,d(t)

y c,dr,y c,dr..,y c,dr
(p)

controller

Fig. 2. Controller with two structural degrees of freedom and
an inverse plant model in the feedforward path

u yc

inv. desired
plant model

plant
uc

ym

controller part for robustness

filter

filter

ym f,ym f..,ym f
(p)

-

+

Fig. 5. Forcing a “desired plant” behavior using an inverse desired plant model in the feedback path

yc,d

e uinverse
plant model

feedback
controller plant

yc = ym

-

controller

Fig. 3. Compensation controller using an inverse plant model in the feedback path

yc,d uinverse
plant model

feedback
controller

plant

controller
ym

Fig. 4. Feedback linearization

M. Thümmel, G. Looye, M. Kurze, M. Otter, J. Bals

The Modelica Association 270 Modelica 2005, March 7-8, 2005

• The two controller parts (inverse plant model
with reference model and feedback controller)
can be designed independently from each other.

• The controller structure can be applied to unsta-
ble plants provided the inverse model is stable,
see section 6.1.

• Since the inverse plant model is in the feedfor-
ward path, the calculation of ud and of ym,d might
be performed offline if possible, so that hard
real-time requirements for the solution of the in-
verse plant model are not present.

The disadvantage of this structure is that for some
applications the feedback controller may still have to
be scheduled as a function of the operating condi-
tions.
Inverse model-based feedforward control will be
demonstrated at hand of an example in section 5.

4.2 Compensation Controller

The disadvantage of the inverse feedforward control-
ler can be avoided by moving the inverse model into
the feedback path. This is shown in Fig 3. The feed-
back controller now only “sees” the combined in-
verse and plant model. The structure is a generaliza-
tion of the linear compensation controller described
in Föllinger [10], page 266. For linear plant models
the “feedback controller”, see Fig. 3, must have a
relative degree that is equal or larger than the relative
degree of the plant, in order that the system is proper.
For single-input/single-output systems, a useful
“feedback controller” is

1

() 1cu e
r s

= ⋅
−

 (7)

Under the assumption that the desired and the actual
plant behavior is identical, the inverse and the actual
plant model “cancel” each other and the transfer
function from yc,d to yc is identical to 1/r(s), i.e., r(s)
of the feedback controller defines the “desired”
closed loop behavior. Note that it is assumed that yc
is measurable (in this case, yc = ym). Alternatively,
the procedure as described in section 2 may be ap-
plied: integrators are added to the inverse model in-
put before designing the feedback controller.
This structure has the disadvantage that it can be ap-
plied to stable plants only. Also the inverse plant
model needs to be stable. For a linear plant model
this is obvious, since otherwise an unstable pole/zero
cancellation occurs, resulting in an internally unsta-
ble system. For multi-input/multi-output systems it is
nearly always possible (also for unstable plants) to
construct the inverse of a stationary desired plant
model. Once the control error e has reached a sta-

tionary value, the inverse plant model leads to a de-
coupled control loop. In other words, the different
outputs might be controlled independently from each
other by simple PID-like single-input/single-output
controllers and the stationary inverse plant model is
used to decouple the control loops from each other.

4.3 Feedback linearization

A complete theory to use nonlinear plant models as
the controller kernel is “feedback linearization” (in
aerospace applications also known as Nonlinear Dy-
namic Inversion, NDI), see for example Isidori [11]
and Enns et. al. [7]. The basic structure is given in
Fig 4. The principal difference compared with the
compensation and feedforward controllers (Fig. 2,3)
is that the states in the inverse model are obtained
from the actual plant, via measurement and estima-
tion. Contrary to the compensation controller, the
methodology can also be applied to unstable plants.
When deriving feedback linearizing control laws
manually, the outputs to be controlled are differenti-
ated until an analytical relation with a control input
is found [19]. To this end “Lie” algebra is used. The
number of required differentiations is the so-called
relative degree of the specific output. If the system
model is available in Modelica, the derivation of the
control laws can be automated using a similar proce-
dure as described in section 2. However, instead of a
filter of appropriate relative degree, a set of integra-
tors is added (see section 2):

1
ii ipy

s
ν=

where νi is the ith new model input, corresponding
with the ith output (with relative degree pi). The de-
sired dynamic behavior of the closed-loop system is
then imposed by application of an additional feed-
back law, like for example:

(1) (1)
0, , , 1, , (1), ,() ()... ()pi

i i md i m i i m i pi i m ik y y k y k yν −
−= − − −

(8)
Note that this feedback law requires availability of
the (pi-1)th derivative of the controlled output. This
derivative may be obtained from measurements or,
less favorably, from the computed value in the in-
verse model. In aerospace applications first or no
time derivatives are usually required, since relative
degrees of controlled variables tend to be low (1 or
2). One reason for this is that control laws are de-
signed in the form of multiple cascaded loops [7]. In
case the inverted model exactly represents the true
system, the closed loop system becomes:

Nonlinear Inverse Models for Control

The Modelica Association 271 Modelica 2005, March 7-8, 2005

0,
, ,1

(1), 1, 0,...
i

m i md ip p
p i i i

k
y y

s k s k s k−
−

=
+ + + +

Note that the coefficients may be selected to match
the reference model in Fig. 2.
In case time derivatives of the desired output yc,d,i are
available, the relative degree (i.e. phase lag of the
response) of this linear closed loop system may be
reduced, provided that these are not too fast as to
require too large control inputs.
An important disadvantage of feedback linearization
is that the state vector of the plant must be fully
available from measurement and/or estimation.
Automatic generation of feedback linearization con-
trol laws in Modelica will be illustrated in section 5.
This procedure has been applied for an automatic
landing system, see [13], and manual control laws
for a fighter aircraft, see [21]. The software code for
the automatic landing system was automatically gen-
erated with Dymola and successfully flight tested on
a small passenger jet [3], see the figure below that
shows one of the automatic landing tests.

4.4 Robust Controllers

All previous controller structures require that the
plant model used as inverse system in the controller
match the real plant “sufficiently” accurate. The
controller structure in Fig. 5 uses an inverse model to
achieve a more robust design. It was developed for
linear systems with the goal to enhance robustness
against disturbances and model errors, see [14][23]
[1]. This structure is called “disturbance observer” in
the literature although the name is misleading since it
is actually an additional structural degree of freedom
for a controller. It can be designed independently
from the main control loop. In Fig. 5 the generaliza-
tion for nonlinear systems is shown: One important
part is an inverse model of a desired plant behavior
in the feedback path. Additionally, the same filter is
present at two places. The standard disturbance
observer uses a linear model for the inverse plant
model. A nonlinear desired plant model provides
more freedoms, since it might be impossible that a
physical system can be forced to have the same

linear behavior in its whole operating range. Note,
there is the requirement that the number of
measurement signals is identical to the number of
plant inputs: dim(ym) = dim(u).
For a single-input/single-output system where all
parts are linear, the transfer function from uc to ym is
given by:

1

1 () ()
() ()

m c

des

y uF s F s
P s P s

= ⋅− +
 (9)

where F(s) is the filter, P(s) is the plant and Pdes(s) is
the desired plant transfer function in the feedback
loop. For low frequencies, F(s) ≈ 1 and therefore

()m des cy P s u≈ ⋅ . For high frequencies, F(s) ≈ 0 and
then ()m cy P s u≈ ⋅ . The effect of the disturbance
observer is therefore, that it enforces the desired
plant behavior for low frequencies. In other words, if
there are modeling errors or disturbances then the
disturbance observer enforces a desired plant behav-
ior below the cut-off frequency of the filter, i.e., the
controller designed for the desired plant will usually
work considerably better.
The disturbance controller is usually combined with
other controller structures. For example, by combin-
ing it with the structure from section 4.1, a controller
with 3 structural degrees of freedom is obtained:
• An inverse plant model from yc to u in the feed-

forward path is used for command following and
for providing the desired measurements ym,d.

• An inverse plant model from ym to u in the feed-
back path is used to make the closed loop system
robust against model errors and disturbances.

• The feedback controller in the feedback loop is
used to stabilize the system.

5 Example application

In this section the feedforward and feedback lineari-
zation controller structures as discussed in the previ-
ous section will be illustrated on the following ex-
ample (the plant description is from Föllinger [9],
page 279):
A substance A is flowing continuously into a mixing
reactor. Due to a catalyst, the substance reacts and
splits into several base substances that are continu-
ously removed. The reaction generates energy and
therefore the reactor is cooled with a cooling me-
dium. The cooling temperature Tc(t) in [K] is the
primary actuation signal. Substance A is described

M. Thümmel, G. Looye, M. Kurze, M. Otter, J. Bals

The Modelica Association 272 Modelica 2005, March 7-8, 2005

by its concentration c(t) in [mol/l] and its tempera-
ture T(t) in [K] according to the following DAE:

/
0

11 12 13

21 22 23

T

c

c k e
c a c a a
T a T a a b T

εγ
γ
γ

−= ⋅ ⋅
= − ⋅ − ⋅ +

= − ⋅ + ⋅ + + ⋅

 (10)

with
14

0 11 21

12 22

13 23

1.24 10 0.00446 0.0303
10578 0.0141 2.41
0.0258 0.00378 1.37

k a a
a a

b a a
ε

= ⋅ = =

= = =

= = =

For the given input Tc(t) these are 1 algebraic equa-
tion for the reaction speed γ(t) and two differential
equations for c(t) and T(t). The concentration c(t) is
the signal to be primarily controlled (= yc) and the
temperature T(t) is the signal that is measured (= ym).

5.1 Inverse Model in Feedforward Path

The inverse plant model is constructed from (10) by
assuming that the variable to be controlled, i.e., the
concentration c(t), is a known time function. By in-
spection or by using the Pantelides algorithm [15] it
turns out that the first two equations of (10) have to
be differentiated:

/

02

11 12

Tcc T k e
T

c a c a

εεγ

γ

−⋅ = + ⋅ ⋅ 
 

= − ⋅ − ⋅
 (11)

(10) and (11) are the inverse model of (10). A filter
with an nth order pole on the negative real axis is
used as “reference model”. Since the second deriva-
tive of the input appears (= c), at least a filter of or-
der 2 is needed, such as:

()2

1
/ 1

desc c
s ω

= ⋅
+

 (12)

with desc the desired concentration, 2 fω π= and f
the cut-off frequency of the filter. A state space de-
scription of the filter is given by:

()
()

desx c x

c x c

ω
ω

= − ⋅

= − ⋅
 (13)

The needed second derivative of c is obtained by
differentiating the second equation of (13):

 ()c x c ω= − ⋅ (14)

Equations (10), (11), (13), (14) are the DAE of the
inverse model of (10) with a prefilter of order 2, i.e.,
these are the connected blocks labeled as “inverse
plant model” and as “reference model” in Fig. 2. It

turns out that this DAE has two states. One possibil-
ity is to use the filter states {x, c} as state vector x1
of the overall system. Here, the original plant states
{c, T} are used as state vector x1. Transforming the
equations to the state space form (4) results in the
following sequence of assignment statements to
compute the derivative { },c T of the state vector and

of the output cT as function of {c, T}

()
()
()

()

/
0

11 12 13

11 12

2

/
0

21 22 23

:
:
: /
:

:

: /

:

: /

T

des

T

c

c k e
c a c a a
x c c
x c x

c x c

c a c a

TT c
c k e

T T a T a a b

ε

ε

γ
γ

ω
ω

ω
γ

γ
ε

γ

−

−

= ⋅ ⋅
= − ⋅ − ⋅ +
= +

′ = − ⋅
′′ ′= − ⋅
′ ′′= + ⋅

 ′
= ⋅ − ⋅ ⋅ 

= + ⋅ − ⋅ −

 (15)

For notational clarity, the time derivatives of vari-
ables that are treated as purely algebraic variables (=
“dummy derivative method”) are denoted with an
apostrophe, such as γ ′ . Equations (15) are a set of
differential equations in state space form: Given the
desired concentrations desc , it is possible by numeri-
cal integration to compute the desired cooling tem-
perature cT (= ud in Fig. 2) and the desired substance
temperature T (= ym,d in Fig. 2). The latter is com-
pared with the measured substance temperature
forming the control error e as input to the feedback
controller.
Even for this rather simple system, the derivation of
the nonlinear feedforward controller is not so easy.
Such a manual derivation becomes impractical if the
plant model consists of hundreds or of thousands of
equations as it is usual in complex Modelica models.
It is now demonstrated how to derive this nonlinear
feedforward controller in an automatic way:
.

Fig 6. Modelica model of mixing unit with

constant cooling temperature T_c

Nonlinear Inverse Models for Control

The Modelica Association 273 Modelica 2005, March 7-8, 2005

In Fig. 6 a Modelica model of the mixing unit is
shown. The constant input is the cooling tempera-
ture; the outputs are the concentration c and the tem-
perature T of the substance. This model contains just
the equations (10). Simulation results of this model
are shown in Fig. 7. As can be seen, the system is
unstable at this operating point

In Fig. 8 the inverse model of the mixing unit is con-
structed by connecting the input “c_des” via a filter
to the “c” output of the mixing unit, i.e., the concen-
tration c is treated as known input signal.

When this system is translated without the filter,
Dymola reports that the second derivative of c_des is
needed. In a second step, the filter is included with
order = 2 and Dymola translates without an error.
Afterwards, the inverse model is connected with the
plant model according to Fig. 2. The result is shown
in Fig. 9. In order to not have a jump in the cooling
temperature, a filter order of 3 instead of 2 is actually
used. The cut-off frequency of the filter is set to
1/300 Hz. It turns out that a simple P controller is

sufficient to stabilize the system. A controller gain of
20 is selected.
Simulation results are shown in Fig. 10 for a jump of
c_des = 0.492 to 0.237. The straight lines correspond
to the nominal case, where the plant and the inverse
plant model have the same parameters. The result is
a good control behavior. The dashed lines corre-
spond to the case where the parameters of the plant
are 50 % higher as the parameters of the inverse
plant model to check the robustness of the design
(only parameter ε was not changed because the re-
sult is very sensitive to it). As can be seen, the result
is still satisfactorily. For an actual design, it is useful
to perform a Monte Carlo simulation by varying all
model parameters and initial conditions of the plant
systematically in order to determine how robust the
control system is

Fig. 7. Simulation results of mixing unit for c(t0) =
0.237 mol/l, T(t0) = 323.9 K, T_c(t) = 308.5 K

Fig 8. Inverse model of mixing unit

Fig. 10. Simulation results of mixing unit of Fig. 8
Straight line: same model parameters for plant and

inverse plant model. Dashed line: model parameters
of plant are enlarged by 50 %

controller controller

Fig 9. Control system with nonlinear feedforward path for mixing unit

M. Thümmel, G. Looye, M. Kurze, M. Otter, J. Bals

The Modelica Association 274 Modelica 2005, March 7-8, 2005

5.2 Feedback linearization

The compensation control scheme and the feedback
linearization cannot be applied directly to the exam-
ple plant, since the concentration c is not measurable.
One possibility is to use model knowledge in combi-
nation with estimation (e.g. a Kalman filter), but this
is beyond the scope of this example. For this reason
it is assumed that the concentration is measurable. In
Modelica, design of feedback linearization and the
compensation controllers start in the same way. This
time two integrators are added, instead of an input
filter, see Fig. 11.

Fig 11. Inverse model of mixing unit for feedback lineari-

zation (compare with Fig. 8)
In the case of the compensation controller, the inver-
sion work is done. For feedback linearization, the
states in the inverse plant model must be replaced
with measured ones. This can be performed by set-
ting the flag

Advanced.TurnStatesIntoInputs = true
before translation to transform all states into inputs
in the generated code. This code can be incorporated
with the export feature of Dymola in another envi-
ronment, such as Simulink from Mathworks. Cur-
rently, it is not possible to import this transformed
system in Modelica again. Dynasim plans to support
this in the future. For the example, the differentiated
equations (11) are added manually to the model, and
c and the plant states (c,T) are selected as input
variables (in case of complex models this manual
derivation is not practical). The design is finished by
adding the feedback controller. In case of feedback
linearization, a usual choice is:

ckcckc des 21)(" −−=

whereby c is available from measurement and c is
computed or obtained from differentiation. By
choosing

2
1 2(2) , 2(2)k f k fπ π= = ,

with f = 1/300 Hz, exactly the same closed loop dy-
namics is obtained as with the input filter of second
order in section 5.1. Starting from the ideal response

1
2

2 1

1
()

k
r s s k s k

=
+ +

the feedback controller may also be shaped as:
2

2 1
2

2

1
() 1c

k sT s
r s s k s

= =
− +

Fig 13. Closed-loop and ideal step response of the mixing

reactor

Fig 12. Closed loop system of mixing reactor and feedback linearization controller

Nonlinear Inverse Models for Control

The Modelica Association 275 Modelica 2005, March 7-8, 2005

whereby in the numerator 2s has been added, since
the input of the inverse model is effectively the sec-
ond time derivative of cdes. Fig. 13 shows the re-
sponse of the closed loop system to the same com-
mand as in Fig. 10. The command input has been
smoothed with a first order filter (as in Fig. 8). The
over-all closed-loop system is depicted in Fig. 12.

6 Difficulties with Inverse Models

When constructing inverse models for industrial sys-
tems, it is often the case that the generated inverse
models do not work as expected. In this section, the
major reasons are discussed and it is explained how
to circumvent such problems.

6.1 Unstable inverse models

Usually, it is required that the inverse model is a sta-
ble system. For example, in the structure of Fig. 2,
the inverse model is in the feedforward path and if it
would not be stable, the overall system would be
unstable as well. For linear single-input/single-output
systems this situation is well known and can be eas-
ily analyzed. For example, take the following linear
plant model:

1

(2) (3)
sy u

s s
−=

− ⋅ +
 (16)

The inverse model together with a reference model is

(2) (3)
(1) (1)
s su y
s Ts

− ⋅ +=
− ⋅ +

 (17)

As can be seen, the inverse model is unstable, be-
cause the plant has an unstable zero. In other words,
for linear systems the plant must be a minimum
phase system in order that the inverse model is sta-
ble. For a general DAE no stability proof exists.
Therefore many simulations have to be performed
with the inverse DAE to check whether it is stable in
the desired operation region. For certain classes of
DAEs, it might be possible to prove that the inverse
model is stable. An alternative is to linearize the
plant model around several stationary operating
points and check whether the transmission zeros are
stable. Of course, none of these checks can guarantee
that the inverse DAE is stable for simulations or sta-
tionary points that have not been analyzed.
If the inverse plant is unstable, only approximate
inverse plant models can be used for the design. For
linear single-input/single-output systems this can be
achieved by removing unstable zeros before invert-

ing the plant. E.g., in the example above, the ap-
proximate inverse plant model would be:

 2

(2) (3)
(1)

s su y
Ts

− ⋅ +=
+

 (18)

For a non-linear plant, one might choose other out-
puts of the plant as inputs to the inverse model, since
this might change the stability behavior of the in-
verse plant, see for example [20]. Alternatively, the
plant might be modified before inversion. These ad-
vices are demonstrated by the crane example in Fig.
14.

The crane consists of a horizontally moving crab and
a rope on which the load is attached. For simplicity,
the load is modeled as a mass point. The crab is
driven by the external force “f”. The horizontal posi-
tion of the crab “s1” and its derivative “v1” are
measured. The goal is to move the load to a specified
horizontal position “s2”.
For a non-linear disturbance observer, the inverse
model from s1 to f is needed, since s1 is measured.
The system is first linearized around the stationary
position where the rope hangs vertically down (ϕ =
0). The transfer function from f to s1 has 2 conjugate
complex zeros on the imaginary axis, signaling an
undamped oscillation of the inverse model. This can
be improved by including linear damping (= d ϕ⋅)
in the revolute joint for the inverse plant used in the
controller. If the damping constant d is large enough,
the two zeros on the imaginary axis are moved to the
negative real axis. The disturbance observer is able
to force the plant (that does have low damping) mov-
ing in such a way as if there would be high damping.
The major goal is to position the load, i.e., to control
the horizontal position “s2” of the load. Therefore,
the feedforward control should use the inverse model
from s2 to f. The transfer function from f to s2 of the
linearized model has no zeros and a relative degree
of 4. Constructing the inverse model from the non-
linear plant model requires, however, a filter of order
2 instead of 4 as suggested by the linearized model.
Simulating the inverse model results in a division by
zero if 0ϕ = ° or 180ϕ = ° . To summarize, the
structure of the inverse model equations is different

f

s1

s2

ϕ

Fig 14. Crane consisting of horizontal moving

crab and a load on a rope

M. Thümmel, G. Looye, M. Kurze, M. Otter, J. Bals

The Modelica Association 276 Modelica 2005, March 7-8, 2005

at these two points and at 0ϕ ≠ ° and 180ϕ ≠ ° (the
DAE index is 5 for 0ϕ = ° and 180ϕ = ° and the
DAE index is 3 otherwise). Since the division by
zero occurs when computing ϕ , the plant model
should be changed to compute ϕ in a different way.
This can be accomplished by taking the inertia of the
load into consideration (previously it was neglected).
With a non-zero inertia, the transfer function from f
to s2 of the linearized plant has 2 conjugate complex
zeros on the imaginary axis and a relative degree of
2. Again, by introducing damping in the revolute
joint, these two zeros are moved to the negative real
axis. Note, that the inverse model is very insensitive
with respect to the newly introduced load inertia.
To summarize, for the crane example the inverse
plant models from s1 to f and from s2 to f can be
constructed by inverting a modified plant that has a
load inertia and additionally damping in the revolute
joint. A simpler alternative is also available: Before
inversion, the angle φ is fixed to 0° and therefore s1
= s2, and the plant to be inverted is described by the
equations (mcrab is the mass of the crab and mload is
the mass of the load):
 crab load 1()m m s f+ ⋅ = (19)

which can be easily inverted. This example demon-
strates that it might be necessary to slightly modify
the original plant model in order that the inverse
model of the plant can be used in a controller.

6.2 Equations that cannot be inverted

A plant may have equations that cannot be inverted.
Examples are time delays, backlash, friction, hys-
teresis. This can be fixed by approximating the prob-
lematic elements in such a way that the resulting
equation leads to a unique inverse.

A typical example is shown in Fig. 15. The original
backlash characteristic y1 = f1(u) is not invertible

because for y1 = 0, there are an infinite number of
solutions (u = -1 ... +1). In Fig. 15 an approximation
y2 = f2(u) is shown that is strict monotonic and
therefore the inverse function has a unique solution.
It might also occur that tables have to be inverted.
Formally, a table in one dimension is defined as a
function y = f(u). Inversion of this function means to
solve a non-linear equation. This can be often quite
easily avoided by providing already the inverse tabu-
lated values u = g(y) in the plant before inverting the
plant model. The advantage is that the solution is
faster and more robust. This problem was, e.g., en-
countered in [21], where control surface effective-
ness of a military jet tended to have a local maxi-
mum as a function of the deflection. This was solved
by adapting tables and internal limitations of control
commands.
The inverse plant model may have also other singu-
larities at particular operating points or regions that
prevent an inversion, e.g., due to divisions by zero,
singular linear or singular non-linear systems. The
reason is that the corresponding inverse model has
no or infinitely many solutions in particular points or
in particular regions of the state space. Again, one
remedy is to change the plant model before the in-
version, e.g., by neglecting dynamic elements or by
approximating components with functions that are
less problematic to invert.

6.3 Actuator limits

Every control system is inherently limited by con-
straints in the actuator or other parts of the plant and
therefore the question arises how to cope with these
restrictions. When inverting a plant model, such con-
straints have to be removed before the inversion.
Otherwise no unique solution of the inverse exists
anymore, because there are infinitely many solutions
when an actuator is in one of its limits. As a result,
usually only the trivial action is possible to add ap-
propriate limiters to the outputs of inverse models.
This will only help for short-time violations of the
constraints because the control system is effectively
switched off when the actuators are in their limits.
The most effective way to cope with actuator con-
straints in any control system is to adapt the desired
control signals, such as yc,d(t) in Fig. 2. In the most
general case this means to solve a trajectory optimi-
zation problem, i.e., to determine actuator signals
u(t) such that the plant outputs yc(t) have a desired
behavior, e.g., reach the desired position in minimum
time or with minimum energy, without violating the
plant constraints. The result is used as yc,d(t). A typi-
cal example can be found in [8]. Note, if the plant is

-2.5 0.0 2.5
-3

-2

-1

0

1

2

3

u
Fig. 15. Backlash (y1) and approximate

backlash (y2)

y1

y2

Nonlinear Inverse Models for Control

The Modelica Association 277 Modelica 2005, March 7-8, 2005

unstable and the inverse plant model is stable, it
might be considerably simpler to solve the trajectory
optimization problem with the inverse plant instead
with the plant model. Usually, trajectory optimiza-
tion problems are difficult to solve and therefore
highly simplified plant models are used.
Take for example the crane model from section 6.1.
The basic requirement is to move the crab from posi-
tion s1=a to s1=b in a short time. The plant model is
simplified by fixing the angle to 0ϕ = ° resulting in
equation (19). Based on (19), the actuator limit

maxf f≤ can be directly transformed into a limit of
the acceleration:

 ()1 max ,/ crab load maxs f m m≤ + (20)

Together with limits on the maximum speed, due to
the maximum speed of the motor, 1 1,maxs s≤ , and
the requirement to move in minimum time from a to
b it is straightforward to construct the analytic solu-
tion of the desired movement s1,d(t). This solution is,
e.g., available via the block Modelica.Blocks.-
Sources.KinematicPTP. Note, the plant model used
for the trajectory optimization problem and for the
inverse plant model in the feedforward path accord-
ing to Fig. 2 are identical here. In such a case, the
feedforward controller can be removed and can be
replaced by the result of the trajectory optimization:

1,ds and 1, , 1,()d crab load max df m m s= + ⋅ . For the tra-
jectory optimization problem an fmax should be used
that is, say, 10 % - 20 % smaller as the actual limit in
order to provide some margin for the feedback con-
troller.
If the desired control variables yc,d(t) are not known
in advance but generated online, e.g., by an operator,
online optimization techniques have to be used: The
operator request is reduced such that the plant con-
straints are fulfilled in the next sample time instant.
A well known measure in flight control is the so-
called daisy-chain. In case a control input saturates, a
secondary, redundant control input is brought in that
provides the remaining required control power. In
[21] for example, lateral deflection of the thrust vec-
tor is used to yaw the aircraft in case the rudder satu-
rates.

6.4 Real-time implementation

If inverse plant models are part of the controller, lin-
ear and non-linear systems of equations as well as
non-linear differential equations might have to be
solved in every sampling interval of the controller.
The techniques developed for hardware-in-the-loop

simulations can be also applied for such an applica-
tion. The methods described in [6] are available in
Dymola [5] with the Dymola real-time option and
can be applied by selecting the appropriate options
when translating the inverse model (Simulation /
Setup / Realtime / Inline integration method). Only
fixed step integrators can be used for a real-time ap-
plication. Via simulations, the appropriate step size
of the integrator has to be determined.

6.5 Robustness

As already mentioned in section 5, the use of inverse
model equations gives rise to robustness issues, since
any mismatch between the inverted model equations
and the actual plant will leave part of the nonlineari-
ties and couplings uncompensated. The usual ap-
proach is to provide robustness to model uncertainty
via the (linear) feedback controller (Fig. 2,3,4) or the
filter (Fig. 5). This can be done by application of a
robust control synthesis technique [2], or by robust
parameter tuning in a classical structure, e.g. using
multi-model techniques and enforcing sufficient sta-
bility margins [13].
Tolerances on parameters in the model also appear in
the inverse model equations. In [13] it has been
shown that these parameters may be very effectively
used as additional tuning parameters in multi-
objective optimization. The result is a model that is
basically inverted at a location in the parameter
space that provides the highest level of robustness.

7 Summary

Several control structures have been discussed that
are based on non-linear inverse plant models. These
structures are attractive since it is possible to cope
directly with operating point dependencies. The dif-
ficult part to construct an inverse model can be per-
formed automatically even for complex systems: The
plant is modeled with Modelica, inputs and outputs
are exchanged and a Modelica simulation environ-
ment, such as Dymola, generates automatically the
appropriate C code for the inverse plant model, in-
cluding real-time integration algorithms. The gener-
ated code can be easily embedded into Simulink
from Mathworks using the corresponding Dymola
export option. Via Mathworks Realtime-Workshop,
the code can be finally downloaded to different tar-
get processors.
The presented controller structures can be used in all
types of areas such as control of robots, vehicles,
aircrafts, satellites, ships, motors, air conditioning

M. Thümmel, G. Looye, M. Kurze, M. Otter, J. Bals

The Modelica Association 278 Modelica 2005, March 7-8, 2005

systems. The most important requirement is that an
appropriate plant model is available. Then, the in-
verse modeling approach is in principle fully auto-
matic, although the practical application is usually
more difficult. The essential issues have been dis-
cussed in section 6 and also possible remedies

References

[1] Ackermann J., Blue P., Bünte T., Güvenc L.,
Kaesbauer D., Kordt M., Muhler M., and Odenthal D.
(2002): Robust Control: The Parameter Space
Approach. Springer-Verlag.

[2] Adams, R.J., Banda, S. Robust Flight Control
Design Using Dynamic Inversion and Structured
Singular Value Synthesis. IEEE Transactions on
Control Systems Technology, 1(2):80-92, June 1993.

[3] Bauschat, M., Mönnich, W., Willemsen, D., and
Looye, G. Flight testing Robust Autoland Control
Laws. In Proceedings of the AIAA Guidance,
Navigation and Control Conference, Montreal CA,
2001.

[4] Duda H., Bouwer G., Bauschat J.M., Hahn K.-U.
(1997): A Model Following Control Approach. In
“Robust Flight Control: A Design Challenge” by J.-F.
Magni, S. Bennani and J. Terlouw (editors), Springer
Verlag, pp. 116 – 124.

[5] Dynasim (1994): Dymola – Users Manual
(http://www.dynasim.com)

[6] Elmqvist H., Mattsson S.E., Olsson H. (2002): New
Methods for Hardware-in-the-Loop Simulation of
Stiff Models. 2nd International Modelica Conference,
March 18-19, DLR Oberpfaffenhofen, Germany, pp.
59-64. Download: http://www.Modelica.org/-
Conference2002/papers.shtml.

[7] Enns, D., Bugajski, D., Hendrick, R., and Stein, G..
Dynamic Inversion: An Evolving Methodology for
Flight Control Design. In AGARD Conference
Proceedings 560: Active Control Technology:
Applications and Lessons Learned, pages 7-1 – 7-12,
Turin, Italy, May 1994.

[8] Franke R., Rode M., and Krüger K. (2003): On-line
Optimization of Drum Boiler Startup. 3rd Int.
Modelica Conference, Linköping, Nov. 3-4, pp. 287 –
296. Download: http://www.Modelica.org/-
Conference2003/papers.shtml.

[9] Föllinger O. (1998): Nichtlineare Regelungen I,
Oldenbourg Verlag, 8. Auflage.

[10] Föllinger O. (1994): Regelungstechnik. Hüthig
Verlag, 8. Auflage.

[11] Isidori A. (1995): Nonlinear Control Systems. 3rd
Edition, Springer Verlag.

[12] Kreisselmeier G. (1999): Struktur mit zwei
Freiheitsgraden. Automatisierungstechnik at 6, pages
266-269.

[13] Looye G. (2001): Design of Robust Autopilot
Control Laws with Nonlinear Dynamic Inversion.
Automatisierungstechnik at 49-12, p. 523-531.

[14] Ohnishi K. (1987): A new servo method in
mechatronics. Trans. Japanese Society of Electrical
Engineering, vol 107-D, pp. 83-86.

[15] Pantelides C.C. (1988): The consistent initialization
of differential-algebraic systems. SIAM Journal of
Scientific and Statistical Computing, pp. 213-231.

[16] Mattsson S.E., Söderlind G. (1993): Index reduction
in differential-algebraic equations using dummy
derivatives. SIAM Journal of Scientific and
Statistical Computing, pp. 677-692.

[17] Mugica F., Cellier F.E. (1994): Automated synthesis
of a fuzzy controller for cargo ship steering by
means of qualitative simulation. Proceedings of the
European Simulation MultiConference (ESM'94),
Barcelona, Spain, pp. 523-528,

[18] Otter M., Cellier F.E. (1996): Software for Modeling
and Simulating Control Systems. The Control
Handbook, by W.S. Levine (editor), CRC Press, pp.
415 – 428.

[19] Slotine, J.E, Li, W. Applied Nonlinear Control.
Prentice Hall, Englewood Cliffs, N.J., 1991.

[20] Snell, A. Decoupling of Nonminimum Phase Plants
and Application to Flight Control, AIAA-2002-
4760 AIAA Guidance, Navigation, and Control
Conference and Exhibit, Monterey, California, 2002.

[21] Steinhauser R., Looye G., Brieger O. (2004): Design
and Evaluation of a Dynamic Inversion Control
Law for X-31A. Proc. 6th ONERA-DLR Aerospace
Symposium, Berlin, June 22-23, pp. 25-33.

[22] Thümmel M., Otter M., Bals J. (2001): Control of
Robots with Elastic Joints based on Automatic
Generation of Inverse Dynamics Models. IEEE/RSJ
Conference on Intelligent Robots and Systems, Oct.
29- Nov. 3rd, Hawaii, U.S.A.

[23] Umeno T., Hori Y. (1991): Robust speed control of
dc servomotors using modern two degrees-of-
freedom controller design. IEEE Trans. Ind.
Electron, 38-5, pp. 363-368.

Nonlinear Inverse Models for Control

The Modelica Association 279 Modelica 2005, March 7-8, 2005

