TRATD Q028

FLIGHTDYNLIB: AN OBJECT-ORIENTED MODEL
COMPONENT LIBRARY FOR CONSTRUCTING
MULTI-DISCIPLINARY AIRCRAFT DYNAMICS MODELS

Gertjan Looye, Simon Hecker, Thiemo Kier, Christian Reschke

DLR — German Aerospace Center, Institute of Robotics and Mechatronics
1)-82234 Wessling, Germany
e-mail: Gertjan.Looye@DLR.de

Keywords: Object-oriented modelling, Modelica, Flight mechanics, Aeroelasticity, Model
integration, Simulation, inverse Models

Abstract. In this paper a model component library for developing multi-disciplinary air-
craft flight dynamics models is presented, named FlightDynLib. This library is based on
the object-oriented modelling language Modelica that has been designed for modelling of
large scale multi-physics systems. The flight dynamics library allows for graphical construc-
tion of complex rigid as well as flexible aircraft dynamics models and is fully compatible
with other available libraries for electronics, thermodynamics, control systems, etc.

Object-oriented modelling allows physical objects and phenomena to be implemented one-
to-one into software objects, since interconnections may be defined freely to directly rep-
resent the physical interactions (e.g. kinematic constraints, energy flows). Once a model
is finished, dedicated symbolic algorithms collect, sort, and solve all model equations ac-
cording to the selected inputs and outputs. From the solved equations efficient runtime
code for model simulation is generated. This procedure may be used to obtain regular as
well as inverse models, e.g. for trim computation or inversion-based control laws. Also
dedicated representations for use in design of flight control laws can be generated, like
symbolic parametric models for robustness analysis.

In the paper the structure of the flight dynamics library and an example model of a flexible
transport aircraft will be presented. The development of model components, construction
of a model, and generation of simulation code will be demonstrated. The efficiency of the
code results in short simulation times and allows for real-time applications.

I. Introduction

YNAMIC simulation plays an important role in the aircraft design and certification

process. Typical examples are development of flight control laws, flight loads analysis,
specification and testing of on-board systems, etc. Most involved engineering disciplines
develop models for their specific types of analysis. However, it has long since been recog-
nised that considerable performance gains may be achieved by exploiting inter-disciplinary
aspects. For this reason, discipline-specific models are more and more combined into inte-
grated aircraft dynamics models, allowing interactions to be analysed and addressed. For
cost reasons hardware rig testing and flight testing is more and more replaced with simu-
lation. For this accurate dynamic models are need, especially in order to reliably predict
the behaviour of the integrated aircraft (systems) in flight.

Model integration may be achieved at a tool level by direct communication between en-
gineering environments, or at a computer code level {c, Fortran). The latter is relatively
straight-forward, since models are either already implemented this way, or the applied engi-
neering tools offer export capability of such code. Also the translation of model components
from the one environment (modelling formalism) into the other is sometimes applied. On

1of 15

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany.



the other hand, general block diagram-based simulation tools (e.g. Matlab-Simulink) are
used in more and more disciplines, allowing direct integration of models in one and the
same simulation environment.

Tool- or code-based integration of simulation models are pragmatic approaches, but have
a number of drawbacks. Coupling of tools is unlikely to allow all disciplinary aspects to
be included. It may further be slower than necessary and may be costly because of licens-
ing. Code-based integration may require considerabie software-engineering skills, but more
importantly, it obscures the model structure and contents of model components. Conse-
quently, model components provided by the one discipline will remain a black-box to an
engineer in the other discipline. Although the graphical possibilities of block diagram-
oriented tools give considerable relief, being forced to formulate model components as
ordinary differential equations with specific inputs and outputs may still require consid-
erable effort to grasp the physics behind the model. The above will be illustrated on an
aeroelastic example in Section II.

It is for these reasons that in the last decades several research groups have started devel-
oping dedicated physical modelling languages and tools. The principal feature of these
languages is that the user is not forced to specity solved model (differential) equations and
not limited to causal interconnections between model components. Physical equations may
rather be entered in their textbook form, and interconnections may be bi-directional flows,
or simply constraints. This has two important advantages:

1. physical objects and phenomena and their interactions may be imnplemented as model
objects and model interactions respectively in a one-to-one fashion:

2. discipline-specific modelling paradigms can still be used, but based on a common
language base.

The physical languages are strongly supported by graphical tools. The second advantage
for example allows that an electronic circuit still looks as such, and that a control law may
still be implemented in the form of a block-diagram.

In 1996 several developers in the physical modelling field initiated the specification of a free
common language standard, named Modelica. To this end, the non-profit Modelica organ-
isation was founded (see http:// www.modelica.org). By now, the language has achieved
a high degree of maturity and several modelling tools ("Modelica compilers”) have become
available, featuring graphical modelling composition and extensive stmulation capabilities.
A wide range of libraries has been developed (e.g. multi-body systems, electronics, ther-
modynamics, block diagrams, power trains, hydraulics, pneumatics) that on the one hand
allow for composition of discipline-specific model components, while on the other hand
these components may be used along side in a single multi-disciplinary model. This allows
for development of large scale intuitively structured hierarchical models. Papers on several
complex examples may be downloaded from the Modelica home page.

Back in 1994 the DLR institute of Robotics and Mechatronics developed a first library
(based on one of the predecessor languages of Modelica) for modelling of aircraft flight dy-
namics.® Objective was to build a solid basis for constructing integrated dynamic aircraft
models, including flight dynamics, detailed on board system dynamics, structural dynam-
ics, etc. First applications were a generic transport and a fighter aircraft model®% and a
first flexible aircraft shortly thereafter.® Since then, the library has been expanded and ap-
plied to complex aircraft models that include system hydraulics and electronics.!* Recent
application examples are the thrust-vectored X-31A high-angle of attack experimental air-
craft and a real-time capable integrated flight dynamics and aeroelastic transport aircraft
model, including unsteady aerodynamics, structural dynamics, control systermn, etc.

This paper discusses the latest developments, features, and example applications of the

Flight Dynamics Library (FlightDynLib), with emphasis on flexible aircraft. In the follow-

ing section a simple aeroelastic example is discussed in order to explain the basic principles
20f 15

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany.



of physical or object-oriented modelling. Then the selection of a generic aircraft model
structure is discussed (Section III), based on which the flight dynamics library has been
organised {Section IV). In Section V the automatic generation of model code for model
simulation and analysis is discussed, followed by some example applications. Finally, a
summary is given in Section VIIL.

II. An aeroelastic example

CONSIDER the following generalised structural equation of motion:
Mij+ B+ Kn=Q (1)

where M, B, K are generalised mass, damping, and stiffness matrices, n are generalised
co-ordinates (mode shape multipliers), and () are generalised forces acting on the structure.

It is assumed that ¢} are aerodynamic forces:

Q = q[Aqgi} + Ay + Aon] {2)

where ¢ is the dynamic pressure, and A,, A;, Ap are aerodynamic mass, damping and
stiffness respectively. In order to make the above equations suitable for simulation, these
must be written in the form of an ordinary differential equation:

i = M~'[Q — B — Kn]
A block diagram of the combined equations is shown in Figure 1. The % blocks are in-

structural
+ eq. of motion

L L By
TlETEZ

algebraic loop

~—

aerodynamics ! E
model :

Figure 1. Implementation of the aeroelastic system using block diagram modelling

tegrators. The diagram retains the separation between the equations of motion and the
aerodynamic force equation, although formulation of the physical equations as a chain of
mput-output blocks is something most engineers have to get used to. The dependency of ¢
on 7} introduces an algebraic loop. Although such simple loops are nowadays easily solved
by most block-diagram simulation tools, in more complex cases a loop-breaking element
may have to be added (usually a one-time step delay), or the equations need to be solved
by hand:
i ==(M ~ GAs)"[(B — gA )i + (K — GAo)7]

Realizing this equation in a block diagram makes little sense, since structural and aerody-
namics are mixed.

Besides mannal derivation and coding {either via programming or by composing a block di-
agramy}, a third form of implementation is illustrated in Figure 2. The system is represented
Jofls

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany.



R—

: other components ...

|

Equation behind component: e S —— ~! Equation behind component;

Mﬁﬂ%ﬁTKn:Q_f/%iL : a % Q=AM+ AN+Aq
Redan-dety L &=
structure ' aerodynamics

n/Q

Figure 2. Implementation of the aeroelastic system using physical modelling

by two objects: one containing structural, the other containing aerodynamics equations.
The kinematics of these objects (i.e. n and derivatives) are constrained to be equal and
forces (@) are in equilibrium. This is represented by the interconnection between the two
objects. The variable 5 herein is handled as an "across” variable (i.e. set equal between
the components) and @ (separated by the ” /") is handled as a ”through” variable (ie.
summed up to zero between components). Note that addition of any other components

{e.g. a propulsion model) is very straightforward, since the very same interconnection
principle applies.

The implementation in Figure 2 illustrates the basic principle of physical modelling. The
contents of the blocks consist of the physical modelling equations, as well as declara-
tions of internal variables and parameters. F igure 3 illustrates the implementation of the
aerodynamic model equations in the physical modelling language Modelica, introduced in
Section I. Its graphical representation is captured in annotations, which have been left out
here. The full specification of the Modelica language, as well as numerous references may
be downloaded from http://www.modelica. org.

III. The basic structure of aircraft and environment models

HE objective of this section is to introduce and motivate the basic structure of an
aircraft model as may be composed from the Flight Dynamics Library. The structure
of this library will be discussed thereafter.

In constructing complex models the choice of hierarchy is crucial, since this largely deter-
mines how model components interact. For the Flight Dynamics Library a top-level model
structure as shown in Figure 4 has been adopted. It consist of one (or multiple) aircraft,
and environmental objects. The latter include an Earth, Atmosphere, Terrain, and Air-
port model. Note that the (in this case, single) aircraft model has no direct link with the
environment models, which physically makes sense. Using the so-called inner-outer model
feature of the Modelica language, these models represent field functions. For example, the
aircraft may request its surrounding atmospheric conditions from the atmosphere model,
based on its local inertial position. Any other aircraft {or e.g. sensor) object in the model
may do this as well. This is different from most block-oriented libraries, where an atmo-
spheric model is directly linked to, and thus occupied by, the one aircraft. The ability to
easily include multiple air vehicles is useful for applications nvolving mutual interactions,
like towed gliders, wake vortices, air-to-air refuelling, releasing missiles, etc.

The earth model in Figure 4 has the following functions:

L. Provide the inertial reference. To this end, an Earth-Centered Inertial (ECT) is used.
Its origin is attached to the Earth’s center of mass, its orientation is fixed with respect
to "fixed” reference stars.”

4 of 15

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany.



model aercdynamics

*/

/* Declarations:

constant SI.Length cref

10; /* Reference length, declared as Real,

with SI unit length (= meter) #/

parameter Integer nFlex
parameter SI.Velocity V

. any other variables

20 "Number of flexible modes”;
200 "Equivalent airspeed";

and parameters

/* Declare generalised co-ordinate vector and derivatives: */

Real etalnFlex] = MeanAxes.eta; /#
Real detal[nFlex] = der( eta); /*
Real ddeta[nFlex] = der{deta); /*

protected /+ Variables hidden for outer
Real AO[nFlex,nFlex]; /* Aercdynamic
Real Al[nFlex,nFlex]; /* Aerodynamic
Real A2[nFlex,nFlex]; /* Aerodynamic

initial equation /* Equations evaluated

"MeanAxes" is the connector =*/
deta is derivative of eta */
ddeta is derivative of deta =/

world: x/
"stiffness" */
L} damplng n * /

"mass" */

before simulation start: */

/* Load aerodynamic data from file %/
(A0,A1,A2) = GetAeroData(whichFile,whichCase,...);

equation /* The actual model eqguations:

/* Dynamic pressure */
gdyn = 1.226*V"2 / 2;

/* Model equation (in its "textbook"

*/

form): */

MeanAxes.Q = -qdyn*(A2x{cref/V)"2*ddeta + AlxcrefdV+deta + AQ*eta);

end aerodynamics;

Figure 3. Modelica code behind example aerodynamics block in Figure 2

2. Provide the geodetic reference. As indicated in Figure 4, to this end the World

Geodetic System 1984' (WGS-84) is used. The object implements an Earth-Centered
Earth-Fixed (ECEF) reference frame, which has the same origin as the ECL but
rotates with the earth. Position and attitude of the ECEF are available in a connector.
A set, of functions transform ECI and ECEF referenced position vectors into geodetic
longitude, latitude, and height co-ordinates (w.r.t. WGS-84 ellipsoid) and vice versa.
For a given longitude and latitude, another function provides the local undulation
of the so-called EGM96 {Earth Gravitational Model 1996} geoid with respect to the
WGS-84 ellipsoid, providing the Mean Sea Level (MSL) reference.

. Implement a model of the Earth’s gravitation. The gravitational model to be used
with W(GS-84 is the Earth Gravitational Model 1996 (EGMY96), provided in the
form of tables describing equi-potential surfaces a function of longitude and lati-
tude. Currently, a more simplified height and geocentric latitude-dependent (Ref.!?

- eqn.(1.4-16)} and a constant gravity model are available.

Double-clicking on the Earth object allows a number of parameters to be set, like whether
the Earth is rotating or in rest, initial day time, and the type of gravity model (approximate
EGM96. height independent, or constant). The features of the object may be overkill for

50f 15

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany.



. Flexible Aircraft
HealCAMFlex

g

 Atmoshere |

inngr}
soer I

W Aipont
JAR-AW
ECEF o

Figure 4. Top-level of model: aircraft and environment

many applications, but provides sufficient generality for use with high speed and high
altitude flight vehicles. Furthermore, the applied WGS-84 ensures compatibility with most
flight simulator vision systems, navigation system models, etc. Obviously, any parameter
set in the Earth and other environment models applies to all aircraft.

The second environmental object in Figure 4 is the atmosphere. Normally, the International
Standard Atmosphere (ISA) as a function of the height above MSL is used. Alternatively,
parameters for constant atmospheric conditions may be entered. The airmass is nominally
assumed to be in rest with respect to the ECEF, explaining why a connection with the
Earth ECEF-connector exists. However, the component also foresees implementation of
wind fields. Currently, wind components in northern: and eastern directions may be entered
at a reference altitude of 100 ft above the (local) earth surface. A simple earth boundary
layer model logarithmically reduces the wind velocity to zero on the ground.

To the right in Figure 4 a terrain model has been added. A component containing highly
detailed, or simple parameterised models of the Earth’s surface may be selected from the
library. Depicted here is a terrain model as used for automatic landing control law design
and certification, based on JAR-AWO specifications. The location, elevation, direction,
and slope of a runway may be specified, as well as slopes and steps in the terrain below
the approach path. A simple function call from e.g. an aircraft sensor then returns the
corresponding local terrain elevation above MST,, allowing for computation of for example
the radio altitude.

The airport block implements earth-fixed navigational equipment (e.s. VOR, DME, ILS
systems at specified locations). In the figure the ILS equipment of the one runway as
positioned in the JAR-AWO terrain model is included. Specific characteristics like glide
slope angle and antenna transmitter positions may be specified via parameters. Any other

model object may obtain its local glide slope and localiser deviation via a simple function
call.

The core of the model structure is of course the component that represents the actual
aircraft. The Flight Dynamics Library foresees the implementation of rigid just as well as

6 of 15

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany.




RealCAM

Engined !

RealCAM

-~ o
&F

=

Astuators

RealCAM

Figure 5. Structure of a flexible aircraft model

flexible ones. A typical model structure for a flexible transport aircraft is shown in Figure 5.
The specific example was originally used in the EU project REAL {Robust and Efficient
Autopilot control Laws design), as a benchmark model for automatic landing control laws
design. The model is called RealCAM (REAL Civil Aircraft Model), and has been further
extended in the frame of this work.

The backbone of the model depicted in Figure 5 are the Kinematics and Airframe blocks.
The first defines a ” North-East-Down” local vertical frame with its origin moving with a
fixed position in the aircraft, preferably the center of gravity. The object also defines a
body-fixed reference frame with its origin at the same location, but with a fixed attitude
w.r.t. the airframe (x-axis towards the nose, z-axis down). The attitudes and inertial posi-
tions of both reference systems are available in the two connectors (top: body, right: NED
reference frame). For the kinematics block various versions are available or in preparation,
like 6 Degrees of Freedom (DOF) with Euler angles and WGS-84 co-ordinates as states,
as well as versions with 3 DOT (longitudinal or lateral), Quaternion states, or earth-fixed
position states. The difference between a rigid and a flexible aircraft is, in fact, only in
the Airframe object. In case of a rigid airframe, it contains the standard Newton-Euler
force and moment equations with respect to a body reference system (attitude and position
in lower connector). Although the origin of this reference system is preferably the centre
of gravity (for compatibility with standard flight dynamics models), a fixed point in the
(undeformed) airframe may be more useful for referencing reasons. The local gravity ac-
celeration is obtained by a call to the Earth object (Figure 4). Note that the computation
of gravity depends on the method that is set in the Earth object. In case of a Rexi-
ble airframe, linear elastic equations of motion in modal form augment the Newton-Euler
equations.®1® The body axes system is hereby considered as a so-called mean reference
system. The momentary shape of the airframe is characterised by states in the form of
generalised co-ordinates. The underlying data (modal mass, damping, stiffness, and mode
shape matrices) are antomatically read from a specified file prior to simulation.

7o0fl15

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany.



Connection of the Airframe block to the Kinematics block (see Figure 5) makes that the
reference systems in both connectors merge, i.e. the airframe is moving freely with respect
to the inertial reference, with its kinematics described in the corresponding object.

The Airframe object has a second connector on top (see Figure). This connector may
contain a different reference frame with a constant offset, or may simply be identical to the
body frame (to be specified via an offset parameter). It is intended for interconnection of for
example external force model components, sensor models, etc. In case of a flexible airframe
also generalised co-ordinates are contained. Besides kinematic variables, each connector
also describes (generalised) forces and moments along the local reference systems axes,
declared as through variables (see Section I1).

The airframe equations of motion are primarily driven by aerodynamic and propulsion
forces and moments. These are computed in corresponding model components in Figure 5.
These components often need to be prepared for each aircraft type individually, since
application rules and data (sources) behind aerodynamics and propulsion models may
strongly differ. For this reason, a base class is available that already defines interfaces as
well as equations for computation of key variables like the angle of attack, side slip, true
airspeed, etc. Local wind velocities are hereby requested from the Atmosphere model in
Figure 4.

Besides the airframe, each component may be developed around its own local reference
frame. In case of aerodynamics, these may for example be the stability or wind axes.
Interconnection with the airframe follows via a transformation object (e.g. AeroRef in
Figure 5). This obhject has two connectors representing two reference systems. The offset
(position, orientation) in between may be specified via parameters that become visible and
can be edited by double-clicking on the object. The object also relates the forces and
moments that act along the connector reference systems. When connecting a model with
the Airframe object, the transformation object makes sure that the kinematics between
the local component and the airframe reference systems are correctly related, as well as
forces and moments are applied correctly.

The aircraft model in Figure 5 has two aerodynamics models (right hand side). The lower
one (" Aero” ) contains forces and moments as induced by the over-all motion of the aircraft
("rigid aerodynamics”), usually corrected for quasi-steady deformation of the airframe.
The underlying model may be based on complex application rules, table look-ups, etc.
The upper aerodynamics component computes unsteady (generalised) forces and moments
as induced by flexible deformation of the airframe. These are corrected by removing quasi-
steady effects, in this case, using the so-called residualised model method. ! The unsteady
aerodynamic data are read from a user-specified file at simulation start.

Note that the Aero component is connected to the lower Airframe connector via the AeroRef
object, whereby the latter describes the offset between the airframe body axes and the
aerodynamic reference system. The upper aerodynamics components is directly connected
with the upper Airframe connector, making use of generalised co-ordinates declared therein.

The engine models (top left) are connected to the airframe via & slightly different type
of transformation. Instead of an offset, the number of a structural grid point, where the
object is to be attached, may be specified. At simulation start the transformation object
requests the rows of the modal matrix that apply to the grid point from the Airframe object,
allowing it to continuously compute the kinematic relation and force balance between its
connectors as a function of the offset for the airframe reference and its local deformation.

The very same principle applies to the sensor models that are in the top-right corner of
Figure 5. A set of sensor types is available in the library. For example, accelerometers
compute local accelerations at their point of attachment (specified via grid point number
of offset) as a function of the inertial motion of the airframe, its position in the airframe
reference, as well as the local airframe deformation.

8 of 15

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany.

-



The ILS, GPS, and radio altimeter sensors obtain their values by making a function call
to the Airport, Earth, and Terrain environment models (Figure 4), passing on their mo-
mentary inertial position as an argument. In this way, for example multiple GPS sensor
objects may be included at various locations on the airframe. Each object can request its
very local co-ordinates from the Earth object.

As already discussed at the beginning of this section, mean winds are computed in the
atmosphere block at the top level of the model Figure 4. However, turbulence models are
usually described in aircraft body axes, whereby delays as gusts travel along the airframe
are taken into account. This is described in the LocalWind object (lower left, in this case
based on JAR-AWO specifications for autoland assessment). Random turbulence velocities
are obtained from dedicated filters (Dryden, Karman) that use white noise signals as inputs.
This noise is provided via an external connector.

On-board systems are included in the Actuators component. This component may describe
actuators and hydraulic / electric systems using simple transfer functions, as well as highly
detailed physical models, constructed from hydraulics and electrics libraries. The library
currently only provides the first variant, since detailed on-board system models are unique
for each type or family of aircraft and are usually provided by systems specialists.

Finally, the fat bar at the top of Figure 5 represents a so-called data bus. This bus includes
signals that one would typically find on avionics buses in the aircraft, like the readings of
all sensors, command signals to engine and control surface actuators, gear status, etc. For
this reason, the sensor, actuator, and engine models have been attached to the bus object,
The bus is also accessible {rom outside and allows direct connection to elements from the
Modelica block diagram library. This enables a control system composed using this library
to directly communicate with the aircraft data bus.

IV. The DLR Flight Dynamics Library

THE top-level structure of the Flight Dynamics Library (FlightDynLib) is depicted in
Figure 6. The "Modelica” branch in the depicted tree (top} contains the principal
standard libraries delivered with Modelica (e.g. for block diagrams, electronics, etc.). The
branches of the Flight Dynamics Library will be briefly described below:

¢ Aerodynamics contains example aerodynamics models for use in rigid and flexible
aircraft models, as well as base classes that allow the user to develop his own. Each
aircraft type or family namely tends to have its own application rules.

» Airframes contains rigid and flexible airframe model objects. The rigid ones may
have constant mass and inertia tensor (entered via parameters), or these may change
at a given rate (e.g. as a function of fuel consumption). The flexible airframe com-
ponents loads its mass, and modal data from an external file.

¢ Environment contains all environment-related models as described at, the beginning
of the previous section.

* Examples contains actual implementations of aircraft models, as for example de-
picted in Figure 4 and 5.

¢ Gear currently contains a highly simplified landing gear model for which basic prop-
erties may be set and which may be attached to the Airframe object in Figure 3.

Detailed models may be composed using among others the multi-body library by
specialists in the field.

e Interfaces contains all library-specific connector types, as well as the data bus that
was discussed at the end of the previous section.

9 of 15

International Forum on Aercelasticity and Structural Dynamics 2005, Munich, Germany.



¢ Kinematics contains the various types of models describing the kinematics of the
body reference system with respect to the local NED, as well as the inertial reference.
Versions with e.g. constrained degrees of freedom are available as well.

e Propulsion contains, as for the aerodynamics, example engine model implementa-
tions, as well as base classes that allow the user to implement his own.

* Systems mainly contains sensor models (accelerometers, ILS, GPS. etc.) with time
constants and noise if desired, and simple transfer function-based actuator models.

* Transformations contains transformations between reference systems,

¢ Types contains some internal variable type definitions to which the user may add
his own.

e Utilities contains miscellaneous functions e.g. for reading external data.

+4% Modelica Reference
# [ JModelica

i Unnamed

& ] FlightDynLib

“-“+““ ] Aerodynamics
5 [JAirframes

# 7] Environment
;;:-“Z@Exampfés SR
z;j:; ] Gear

1 [} Interfaces

“"%" [ JKinematics

- IModelBase
#[T] Fropulsion

# [ ] Systems

# [} Transformations
#{ | Types

% [ Utilities

Figure 6, Top-level structure of the Flight Dynamics Library

Within a dedicated Modelica modelling and simulation environment, like Dymola {Dynamic
Modelling Library, see http:/ /www.dynasim.se) aircraft models may be composed from
the library using drag and drop, see Figure 7. After copying a component into the model,
its parameters may be edited by double-clicking on the object. For example, in case of the
Flexible Airframe the number of modes to be considered may be altered, as well as the
way of handling remaining modes can be specified (e.g. truncation or residualisation).

V. Code generation for mode! application

Q- FTER model composition has finished, a model compiler sorts and solves all model
equations according to specified inputs and outputs into Ordinary Differential Equa-
10 of 15

International Forum on Aercelasticity and Structural Dynamics 2005, Munich, Germany.



~Drag & drop R — . e

Figure 7. Graphical aircraft model composition using drag and drop from the library

tions (ODE’s) or Differential Algebraic Equations (DAE’s), suitable for use in a simulation
environment. The modelling tool Dymola features, besides a graphical modelling environ-
ment and symbolic algorithms, extensive simulation and data analysis capabilities. How-
ever, the simulation may be used in other engineering environments and simulation tools
as well, like for example Matlab-Simulink.

A simple way of specifying model inputs and outputs is illustrated in Figure 8 Here a
so-called Avionics block has been connected to the bus connector of the aircraft (in this
case a rigid one). At the main model level, also input and output connectors have been
defined. The Avionics block injects pilot throttle and control surface input commands
(from Thrust, Controls connectors) into the data bus. Output variables of interest, in this
example case only body angular rates (p, ¢, r) are read from the bus and passed on to an
output connector (" pqrOut”).

Probably one of the most attractive features of Modelica, in combination with a model
compiler like Dymola, is the possibility to generate inverse models just as easily as normal
simulation models. Inverse models are extremely useful for fast and accurate trim com-
putation (e.g., for given steady state flight condition parameters, compute corresponding
control surface and throttle settings), as well as for automatic generation of control laws
that are based on inverse model equations, like Nonlinear Dynamic Inversion (NDI*). Ref.!2
describes various types of inverse model-based control laws and their automatic generation
from Modelica models. The basic principle is illustrated in Figure 9.

In the first place, the control inputs have been split into aileron, elevator and rudder
(AilEIRud), and other control surface deflections. The body angular rates are now defined
as inputs {input connector top right), and aileron, elevator and rudder are selected as
outputs. The OI and IO objects (available in the Utils branch in Figure 6) overcome
a protection in Modelica that forbids an external input resp. output connector to be
connected to a component output resp. input connector.

When trying to generate simulation code, the model compiler will now issue an error,
11 of 15

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Cermany.



of Ai%c;aft

CEMRIg |

S Theast
THViteNoiss
=T Contals

4 Arpar

« Coekpnt

& RealCAMRiSid
Bl

Figure 8. Specification of model inputs and outputs at the hierarchical top level

Higid Afroraft

Figure 9. Reversal of inputs and outputs for inverse model generation

12 of 15

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany.

o




since the dynamic transfer between the control surfaces and the body angular rates (with
not actuator dynamics) has a relative degree of 1 {this information is provided with the
error message). In order to generate a causal inverse model, the {in this case, first) time
derivative of the inputs need to be available. This may be done by adding a first order
filter, or as shown in Figure 9, an integrator (top right corner). This basically changes the
input into body angular accelerations, since the integrator output is connected with the
body angular rates via the Ol and Avionics components.

The model can now be translated. The inverse model may contain internal states and
compute environment variables as before. However, in case the model is to part of a controt
system, these states and environment variables should, as far as possible, be obtained from
sensor measurements instead. The first can be realised using a simple compiler command
{provided by Dymola), the latter is achieved by inserting environment model versions that,
on request of other components, directly pass on measured signals. This explains why the
environment models in Figure 9 have additional input connectors.

VI. Application examples

INCE its first version in 1994, the Flight Dynamics Library has been applied in several
projects at DLR, especially involving model development for design and evaluation of
flight control laws. A number of these applications will be briefly discussed in this section.

| Robust Dynamic E. Autopilot modes:,
,—1 inv.innerloop e — - IS tracking <+
I controller ;—— - flare / align .

| 3
| % Thrust

Sensors

Figure 10, Automatic landing using automatically generated Nonlinear Dynamic Inversion
coutrol laws

¢ In the frame of the GARTEUR action group on Robust Flight Control, a generic
military and civil aircraft model were implemented and simulation code was gener-
ated for use in two flight control law design challenges.%'* At the end of the project,
so-called Linear Fractional Parametric Uncertainty Models (LF-PUM’s) were auto-
matically generated to allow for a symbolic worst-case analysis of developed control
laws within the project, based on the structured singular value .8

e In the frame of the German project ”First shot approach in flight control laws design”

a complex model of a small transport aircraft was developed, including detailed engine
and actuation system models.

¢ In the frame of the EU-project REAL (Robust and Efficient Auto pilot control Laws
design) for the first time inverse model equations for a transport aircraft were au-
tomatically generated from the model implementation in Modelica. These inverse

13 of 15

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany.



equations were used as the core of an automatic landing system that was developed
in the frame of this project.!® The control laws were successfully flight tested on
DLR’s test bed ATTAS (Advanced Technologies Testing Aircraft System?) during
six automatic landings, see Figure 10.

e The same procedure for automatic generation of Nonlinear Dynamic Inversion control
laws was applied to the thrust-vectored experimental fighter aircraft X-31A, in order
to investigate reduced vertical tail configurations of this aircraft.'® The control laws
were exported from Dymola and implemented in the ground-based flight simulator
in Patuxent River, MD, USA, and successfully evaluated by five test pilots.

e The example as presented in Section III has been implemented in a Real-time mod-
elling environment with 3D visualisation of the aircraft, its environment, as well as
structural deformations, see Figure 11. The model was augmented with inversion-
based control laws as well as an automatic landing system and load alleviation control
laws.

Figure 11. 3D-stereo visualisation of aircraft flight and structural dynamics

VII. Summary

N this paper an overview of the Modelica-based DLR Flight Dynamics Library was

given. This library allows for intuitive construction of multi-disciplinary aircraft models,
including for example unsteady aeroelastic effects. The basic lay-out of aircraft models is
highly physically oriented, greatly enhancing model visibility. The library is compatible
with other Modelica libraries, allowing for development of true multi-domain models, based
on one and the same modelling platform.

The symbolic algorithms and code generation capabilities of the modelling environment
Dymola (a Modelica ”compiler” and simulator) allow for generation of forward and inverse
simulation models. The generated runtime model code may be used in various simulation
tools.

References
Tanon. Department of Defence World Geodetic System 1984 — Its Definition and Relationships with Local

Geodetic Systems, Third Edition, Amandment 1. Technical Report NIMA TR8350.2, National Imagery
14 of 15

International Forum on Aercelasticity and Structural Dynamics 2005, Munich, Germany.



and Mapping Agency, Bethesda, MD, January 2000.

2M. Bauschat, W. Ménnick, D. Willemsen, and G. Looye. Flight testing Robust Autoland Control Laws.
In Proceedings of the AIAA Guidance, Navigation and Control Conference 2001, Montreal C4, 2001,

3C.S. Buttrill, T.A. Zeiler, and P.D. Arbuckle. Nonlinear Simulation of a Flexible Aircraft in Maneuvering
Flight. In Proceedings of the AIAA Flight Simulation Technologies Conference, Monterey, CA, August 1987,
ATAA-R7T-2501.

4Dale Enns, Dan Bugajski, Russ Hendrick, and Gunter Stein. Dynamic Inversion: An Evolving Method-
ology for Flight Control Design. In AGARD Conference Proceedings 560: Aetive Control Technology:
Applications and Lessons Learned, pages 7-1 — 7-12, Turin, Italy, May 1994. NATO-AGARD.

®Flight Mechanics Action Group 08. Robust Flight Control Design Challenge Problem Formulation and
Manual: the High Incidence Research Model (HIRM). Technical Report TP-088-04, GARTEUR, April
1997. Version 3.

5Flight Mechanics Action Group 08. Robust Flight Control Design Challenge Problem Formulation and

Manual: the Research Civil Aircraft Model (RCAM). Technical Report TP-088-03, GARTEUR, April
1997. Version 3.

7G.H. Kaplan. The IAU Resolutions on Astronomical Constants, Time Scales, and the Fundamental
Reference Frame. Circular No. 163; United States Naval Observatory; Washington, DC. December 10,
1981.

8G. Looye, A. Varga, D. Moormann, and S. Bennani. Post-design stability robustness assessment of
the rcam controller design entries. Technical Report TP-088-35, GARTEUR, April 1997. available from
www.nlr.nl/hostedsites/ garteur.

®Gertjan Looye. Integrated Flight Mechanics and Aeroelastic Aircraft Modeling using Object-Oriented
Modeling Techniques. In Proceedings of the AIAA Modeling and Simulation T: echnologies Conference,
Portland, USA, August 1999. ATAA-99-4102.

18Gertjan Looye. Design of Robust Autopilot Control Laws with Nonlinear Dynamic Inversion. at —
Automatisierungstechnik, 49(12), 2001,

MGertjan Looye. Integration of Rigid and Aeroelastic Aireraft Models using the Residualised Model
Method. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamies (IFASD),
Munich, Germany, June 2005,

2Gertjan Loove, Michael Thiimmel, Matthias Kurze, Martin Otter, and Johann Bals. Nonlinear Inverse
Models for Control. In Proceedings of the third international Modelica conference, Hamburg, March 2005.
13 Jean-Frangois Magni, Samir Bennani, and Jan Terlouw (Eds). Robust Flight Control — A Design Chal-
lenge. Lecture Notes in Control and Information Sciences 294, Springer Verlag, London, 1997,

1D, Moormann, P.J. Mosterman, and G. Looye. Object-oriented computational model building of aircraft
flight dynamics and systems. Aerospace Science and Technology, 3(3), April 1999.

®Dieter Moormann. Physical modeling of controlled aircraft. In Proceedings of the CESA'96 IMACS
Multiconference on Computational Engineering in Systems Applications, pages 970-975, Lille-France, July
1996.

'SR. Steinhauser, G. Looye, and O. Brieger. Design and Evaluation of Control Laws for the X.31a with
Reduced Vertical Tail. In Proceedings of the ATAA Guidance and Control Conference, Providence, Rhode
Island, USA, August 2004.

1"Brian L. Stevens and Frank L. Lewis. Adrcraft Control and Simulation. Wiley-Interscience Publication.
John Wilev & Sons, Inc., New York, 2000,

¥ Martin R. Waszak and Dave K. Schmidt. Flight Dynamics of Aeroelastic Vehicles. Journal of Atreraft,
25{6):563-571, June 1988,

15 of 15

International Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany.




	01.tif
	02.tif
	03.tif
	04.tif
	05.tif
	06.tif
	07.tif
	08.tif
	09.tif
	10.tif
	11.tif
	12.tif
	13.tif
	14.tif
	15.tif

