

Technology Mix for the "Diego de Almagro Solar Technology District" in Chile

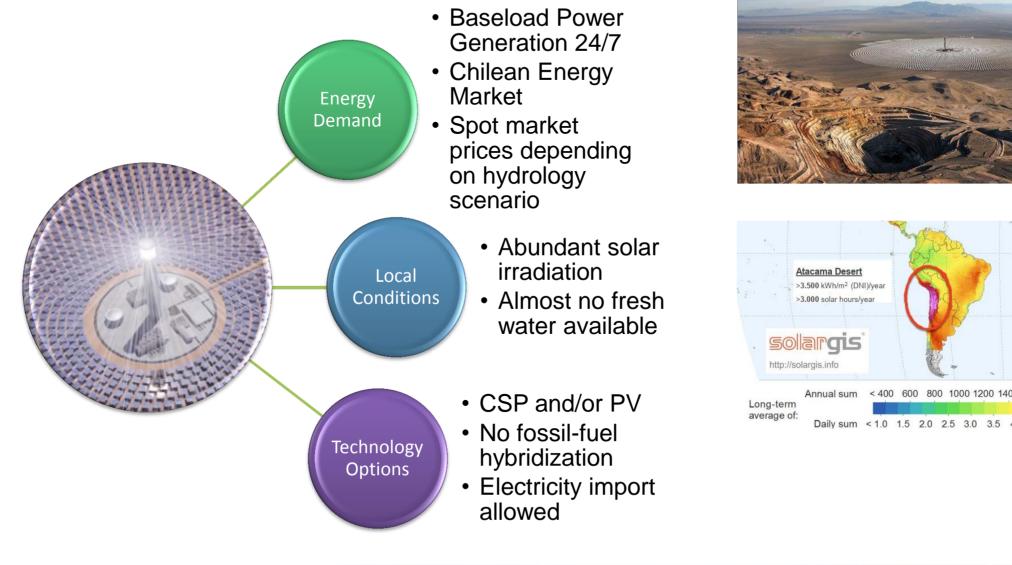
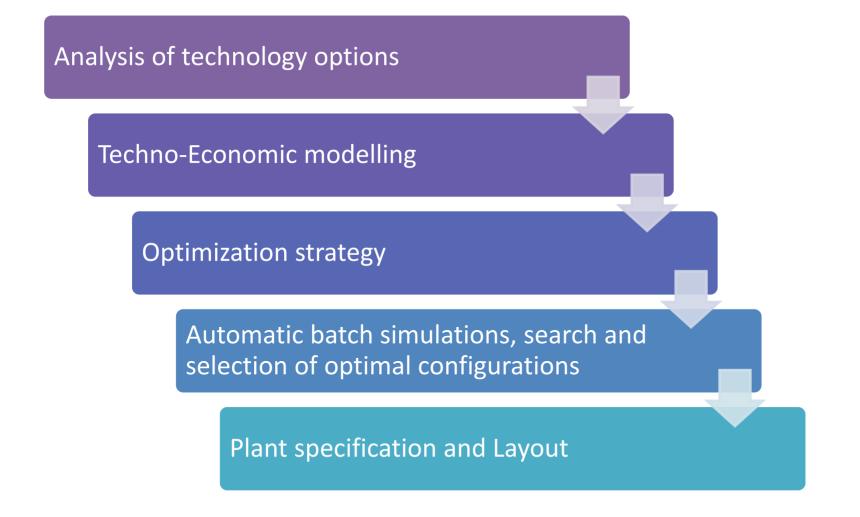
Daniel Benitez

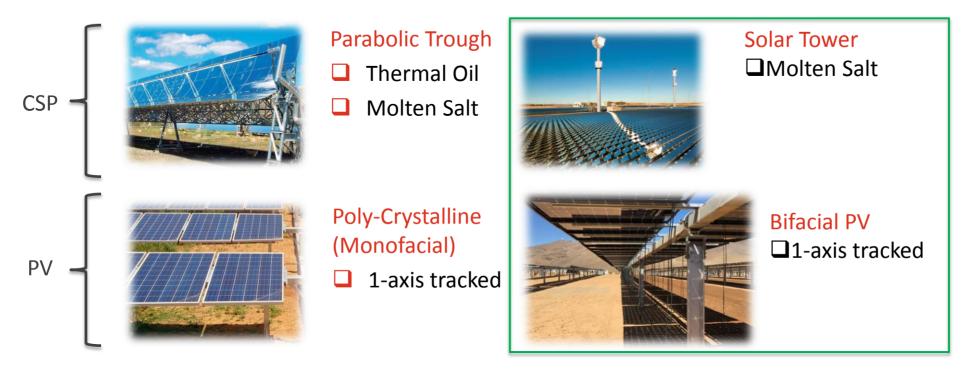
Manfred Engelhard, Felipe Gallardo, Alvaro Jesam, Radovan Kopecek and Massimo Moser

What is the "Diego de Almagro Solar Technology District"?

- It is a large-scale solar park initiated by the "Comité Solar" of the Chilean Goverment through CORFO
- The project is located at the southern region of the Atacama Desert, near the Diego de Almagro town.
- It includes the development, implementation and operation & maintenance of serveral power plants
- The installed capacity is estimated between 750 MWe and 1.0 GWe
- Being a solar <u>park</u>, it offers shared infrastructure such as:
 - Internal transmission lines
 - Transformer substation
 - High voltage transmission line to the Substation "Cumbres"
 - Connection to the main transmission system
 - O&M of the electrical infrastructure
- Current project status: on hold

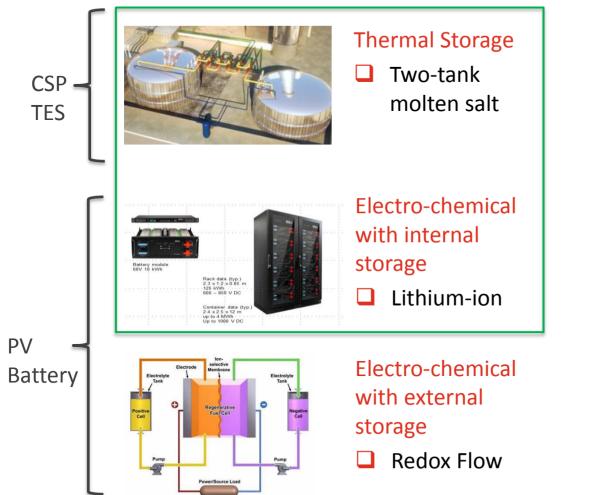
What is relevant about this study?


Image sources: <u>http://desafio2030.cl/2017/12/diego-de-almagro-la-ciudad-del-sol/</u> R. Mancilla, SolarPACES 2017, Solar Energy Program, CORFO

Structure of the Study

Energy Generation Technologies Evaluated


Technology Pre-Selection

PV Bifacial and Monofacial were compared, and due to lower LCOE (-11%), only Bifacial systems were selected for the technical simulation.

Energy Storage Technologies Evaluated

Storage Pre-Selection

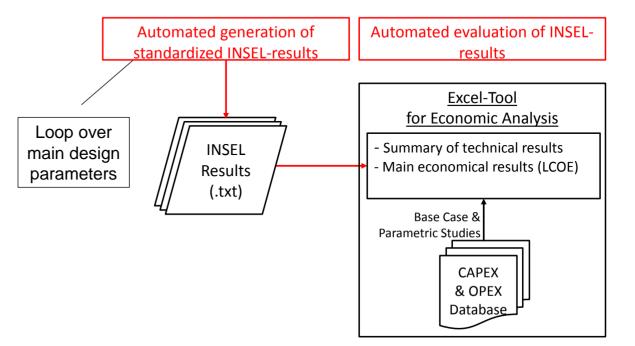
Methodology

Main Boundary Conditions for Optimization:

Two pillars:

- Attraction for private investment
- Quality of supply (24/7 secure supply)

\rightarrow Optimization towards minimum LCOE


- Water costs included in the LCOE calculation
- Difference in cost between electrical power imports and exports with hourly spot market prices

Methodology

\rightarrow Optimization towards minimum LCOE

Parametric variation ranges:

	Minimum	Maximum	Incremental Step
Solar Multiple [-]	1.0	2.5	0.25
TES capacity [h]	2.5	15.0	2.5
PV capacity [MWp]	0.0	152.0	12.7 / 25.7
Battery capacity [h]	0.0	0.5	0.5

Four cases were evaluated regarding the hydrology and client's import station:

	Hydrology Dry	Hydrology Wet
Import from Cumbres 500 S/E	Case 1	Case 3
Import from Pan de Azúcar 220 S/E	Case 2	Case 4

Number of runs: 756 parametric combinations * 4 cases = 3024

Export station fixed at Cumbres 500 S/E (located next to the Solar Park)

Levelized Cost of Electricity Calculation

$$LCOE_{with SM} = \frac{TLCC_{CSP} + TLCC_{PV} + ImE - ExR}{\sum_{n=1}^{N} \frac{API_n}{(1+d)^n}}$$

Typical LCOE equation:

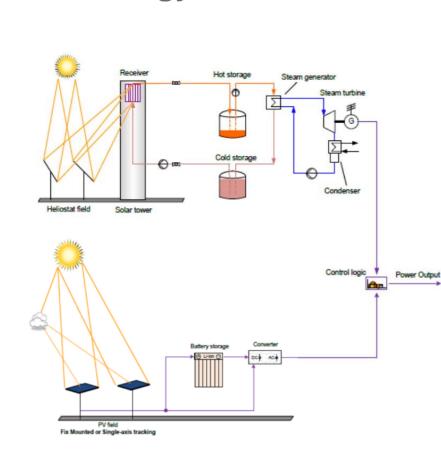
$$LCOE = \frac{TLCC_{CSP} + TLCC_{PV}}{\sum_{n=1}^{N} \frac{Q_{n,CSP} + Q_{n,PV}}{(1+d)^n}}$$

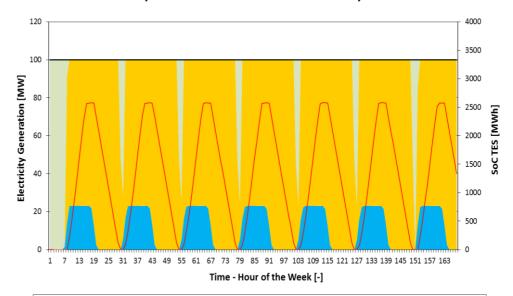
TLCC: total life-cycle cost ImE: import expenditures ExR: export revenues

API: annual power imports

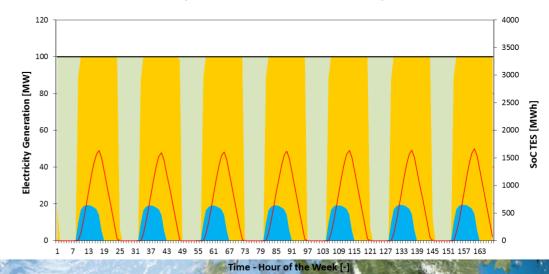
n: year

d: Discount Rate

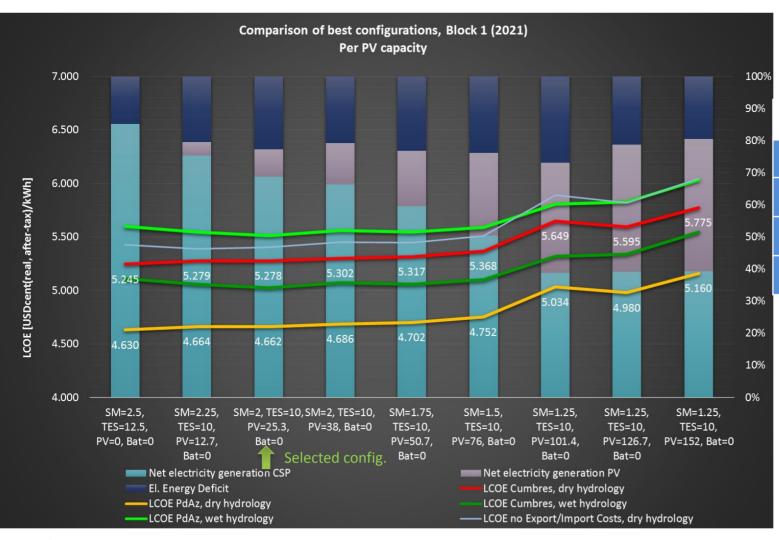

$$ExR = \sum_{n=1}^{N} \frac{\sum_{n=1}^{8760} MC_{h,n} * NEG_{h,n}}{(1+d)^n}; \ ImE = \sum_{n=1}^{N} \frac{MC_n * API}{(1+d)^n}$$


MC: marginal costs at the spot market h: hour NEG: net electricity generation

Operation Strategy

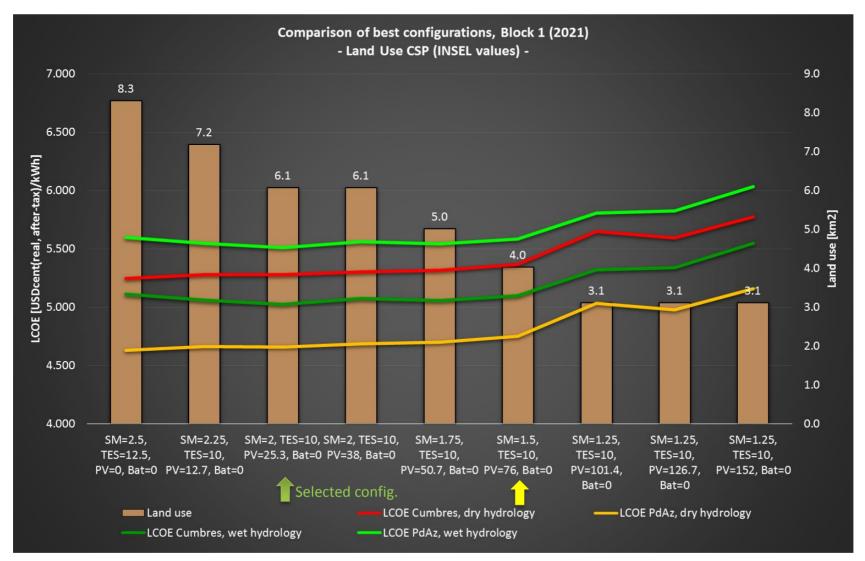

Electricity Generation Profiles - Summer - January 1st to 7th

Pel_PV after Battery MWel — Pel_CSP_net MWel — Power from Grid [MWel] — El_Demand MWel — Qsto MWh


Electricity Generation Profiles - Winter - July 1st to 7th

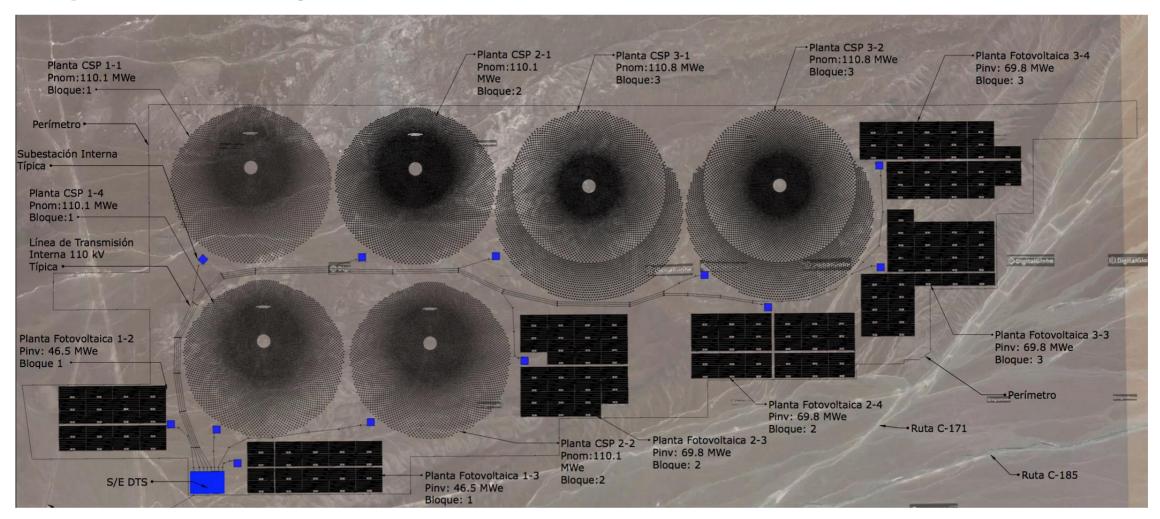
💶 Pel_PV after Battery MWel 📁 Pel_CSP_net MWel 📁 Power from Grid [MWel] —— El_Demand MWel —— Qsto MWh

Results



LCOE results. All unit in [USDcent/kWh]

	Case 1	Case 2	Case 3	Case 4
Total LCOE	5.28	4.66	5.03	5.51
Partial LCOE CSP	5.66			
Partial LCOE PV	3.36			
Grid deficit	4.83	1.98	3.75	6.00
			ology ry	Hydrology Wet
Import from Cumbres 500 S/E		00 Cas	se 1	Case 3
Import from Pan de Azúcar 220 S/E		ar Cas	se 2	Case 4



Results

Proposed Plant Layout

Proposed Plant Layout

Parámetros de	Unidad	Bloque 1 (2021)	Bloque 2 (2023)	Bloque 3 (2025)
Diseño	Unidad	Bioque I (2021)	Dioque 2 (2023)	Dioque 3 (2025)
Iteración		355	440	446
CSP				
Capacidad Nominai (bruta)	MWe	110.1	110.1	110.8
Capacidad Neta de Salida	MWe	100	100	100
Eficiencia Nominal Turbina	%	42.80%	42.80%	42.80%
Área Total Hellostatos	m²	851,114	851,114	992,079
Múltipio Solar	-	1.75	1.75	2
Capacidad TES	MWhth	2,571	3,214	3,235
Capacidad Receptor	MW _{th}	507.8	507.8	584.2
Altura Torre	m	220.8	220.8	229.8
Uso del Terreno CSP	km²	3.53	3.53	4.34
TES FLH	h	10	12.5	12.5
PV				
Capacidad Nominal (DC)	MWp	50.7	76	76
Capacidad Neta (AC)	MWe	46.5	69.8	69.8
Área Módulos	m²	245,597	368,395	368,395
Múltipio Solar	-	1.09	1.09	1.09
Uso del Terreno PV	km ²	1.1	1.65	1.65

DLR

Conclusions

- This study focused on searching the technologies that fit to the bounday conditions in Diego de Almagro
- It has been demonstrated, that different combinations of CSP and PV lead to similar results regarding LCOE
- The generation of dispatchable base load power supported with power from the grid is a feasible solution for Chile by combining CSP and PV
- Further specific conditions need to be considered such as water availability, available land shape, local costs, etc. to select the optimal configuration
- Many of the available simulation tools do not model an optimal hybridization of CSP and PV, e.g. considering the coverage of auxiliary electrical consumption of CSP with power from PV or the use of excess electricity as heat in the thermal storage system
- The experience shows that **the hybridization of CSP with PV is gaining importance**, therefore the tools to simulate them need to be improved

THANK YOU for your attention!

THANKS to my colleagues for their work and input

Eng. Daniel Benitez DLR Solar Research <u>daniel.benitez@dlr.de</u>

