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Abstract: In systems with switching actuators persistent motions of different nature may 
occur, such as limit cycles, quasi-periodic and chaotic motions. In this contribution the 
nature of persistent motions in an attitude control system with switching actuators subject 
to switching restrictions are examined as a function of controller parameters. Bifurcation 
diagrams are used to describe observations. In the light of the bifurcation diagrams, 
control issues and earlier results obtained with the describing function method are 
assessed from a more general perspective. Copyright © 2005 IFAC 
 
Keywords: Limit cycles; Chaotic behaviour; Switching functions; Attitude control; 
Nonlinear control systems. 

 
 
 
 

 
1. INTRODUCTION 

 
Throughout the last decades, attitude control systems 
with switching actuators have been used in satellite 
and launching systems (Mendel, 1970; Won, 1999; 
Oliveira and Kienitz, 2000; Avanzini, 2001). In the 
attitude stabilization phase, such systems typically 
have been operated in limit cycle conditions. As 
shown by Oliveira and Kienitz (2000), non-
conventional analysis / design problems arise when 
actuators are subject to switching-time restrictions. 
Certain conditions ensure that limit cycles exist. 
When these conditions do not hold, system motion 
may not be of limit cycle type.  
 
During recent research on the issue of robust limit 
cycle control, it was observed that persistent motions 
of different nature may occur, such as quasi-periodic 
and chaotic motions. In this contribution the nature 
of persistent motions in an attitude control system 
with switching actuators subject to switching 
restrictions are examined as a function of controller 
parameters. Bifurcation diagrams are used to 
describe observations. Bifurcation diagrams are 

produced with data collected from extensive system 
simulation. Simulations were performed using a 
master-slave two PC hardware setup. In the light of 
the bifurcation diagrams, earlier results obtained with 
the describing function method are assessed in a 
more general perspective. 
 
This contribution is structured as follows: in section 
2 a problem description is given; section 3 is devoted 
to delay modelling; section 4 describes simulation 
strategies used; results are presented in section 5 and 
conclusions are found in section 6. 
 
 

2. PROBLEM DESCRIPTION 
 
The problem description given here is akin to that 
given by Oliveira and Kienitz (2000). Consider a 
simple rigid body (e.g. satellite or rocket in the upper 
atmosphere) whose attitude φ is to be controlled 
using sets of small thrusters, which are switching 
actuators with switching time restrictions. A 
simplified representation of the system is shown in 
Fig. 1. 



     

Fig. 1: Rigid body with set of thrusters. 
 
Body inertia of 1500 Nm2 is given. The small 
thruster actuators do have delays and switching-time 
restrictions. Their characteristics are: 
 
• Total maximum moment: 308 Nm 
• Delays (when switching on): 

o delay until 10% of thrust: 10 – 30 [ms] 
o delay until 90% of thrust: 20 – 50 [ms] 

• Delays (when switching off): 
o delay until 90% of thrust: 9 – 16 [ms] 
o delay until 10% of thrust: 15-50 [ms] 

• Switching-time restrictions: 
o duration of pulses (ton_min): > 100 [ms] 
o rest between successive pulses of the same 

motor: > 50 [ms] 
o rest between switching-off of one motor 

pair and switching-on of the other pair 
(toff_min): > 500 [ms] 

 
The typical requirement for the controlled system is 
that initial conditions and attitude perturbations shall 
asymptotically die away into a „well behaved” limit 
cycle. For the purpose of achieving appropriate 
performance, a tachometric feedback law and a first 
order compensator C(s) are added to the loop, 
resulting in the controlled system represented in Fig. 
2.  
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Fig. 2: Block diagram of the controlled system 
 
The transfer function of the first order compensator 
is 
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The goal in this contribution is to describe 
simulation-based investigations of the controlled 
systems behavior as a function of the controller 
parameters p and z and draw appropriate conclusions 
from the point of view of Control Engineering. A 
priori knowledge on this system is that, as long as the 
controller parameters satisfy the (approximate) limit 
cycle condition given by Oliveira and Kienitz (2000), 
limit cycle behavior is expected. If the condition is 
not satisfied, other types of persistent motion are 
expected. The limit cycle condition states that 
 

2
Ttt min_offmin_on ≤+ , 

 
where T is the limit cycle period determined via a 
describing function approach from the intersection of 
the linear subsystem’s Nyquist plot and the plot of     
-1/N(ω, A), with N(ω, A) being the non-linearity’s 
describing function and ω = 2π/T. 
 
Simulation-based investigations will be consolidated 
in the form of bifurcation diagrams, as explained in 
section 4. 
 
 

3. COMMENTS ON THE ACTUATOR MODEL 
 
For simulation purposes, a second order transfer 
function will be used to model the actuator delay 
given in section 2. Thus the “actuator” block of Fig. 
2 can be decomposed into a series structure with two 
sub blocks: the first one containing switching 
actuators and the second one containing linear 
second order dynamics which models the delays. In 
practice, actuator delays may vary during the 
operation of the system. Their value may depend on 
several parameters. Thus the model is affected by 
uncertainty. Such uncertainty will not be considered 
here. The overall actuator model used for simulation 
is depicted in Fig. 3. 
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Fig. 3: Block diagram of the actuator model 
 
 

4 – SIMULATION 
 
The system of Fig. 2 (with the details in Fig. 3) was 
simulated using Matlab / Simulink and the xPC 
Target Tool (The MathWorks Inc., 2004) running on 
a master-slave two PC setup to achieve useful 
simulation performance. The switching logic was 
implemented as an S-function written in C. The 
controller was programmed in Simulink in such a 
way that controller parameters could be changed on 
the fly (i.e. in simulation time without 
recompilation). This demanded controller 
implementation using elementary Simulink 
functions, more specifically: summations, integrators 
and scalar gains. Thus the controller was 
implemented as follows: 
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Although the xPC Target Tool is generally used for 
real-time simulation, it can also be used for „fastest 
possible” simulation. This was the option in our case. 
 
The system was simulated on the slave PC for 1500 
combinations of p and z. (Variations in K were not 
considered, because this parameter does not 
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influence qualitative dynamic behavior.) The 
integration algorithm used was the implementation of 
a Runge-Kutta 4th-order method. The integration 
step chosen was 2 [ms]. Typical computation times 
are given on Table 1 for simulation of the same setup 
under Simulink/Windows and with xPC Target on 
the slave PC.  
 

Table 1 – Comparison of simulators. 

K = 1; z = -2.44; p = -11.1 
 Simulink xPC Target 

Simulated time =70 [s] 
Execution time 3.605 [s] 0.851 [s] 
Maximum error 9.5*10-16 [rad] 

Simulated time =180 [s] 
Execution time 11.326 [s] 1.773 [s] 
Maximum error 3.3*10-15 [rad] 

 
K = 2; z= -3; p = -20 

 Simulink xPC Target 
Simulated time =70 [s] 

Execution time 3.505 [s] 0.801 [s] 
Maximum error 1.9*10-15 [rad] 

Simulated time =180 [s] 
Execution time 11.166 [s] 1.712 [s] 
Maximum error 1.66*10-14 [rad] 

 
K =2; z = -30; p = -40 

 Simulink xPC Target 
Simulated time =70 [s] 

Execution time 3.505 [s] 0.782 [s] 
Maximum error 8.1*10-16 [rad] 

Simulated time =180 [s] 
Execution time 10.595 [s] 1.712 [s] 
Maximum error 9.1*10-16 [rad] 

 
Table 1 illustrates the advantage of the chosen 
simulation setup when compared to a Windows-only 
simulation. The line “maximum error” gives the 
maximum difference between both solutions (via 
Simulink and via xPC Target). The error is 
approximately equal to the available precision in 
xPC Target. Thus simulation using xPC Target was 
accepted for all subsequent analysis purposes. 
 
Data were transferred from the slave to the master 
PC at the end of every simulation run with a 
decimation of 20, i.e. only every twentieth sample 
was transferred. 
 
 

5 – RESULTS 
 
Simulation results were consolidated into two types 
of bifurcation diagrams: diagrams of local maxima 
(Avanzini, 2001) and spectral bifurcation diagrams 
(Orrell and Smith, 2003). Both types of diagrams 
were prepared from the same data. 
 
System behavior was simulated on the slave PC from 
0 – 200 [s] for over 5600 combinations of p and z, 
with an integration step of 2 [ms]. Samples were sent 
to the master PC at every 40 [ms]. The spectral 

diagram demanded the computation of the fast 
Fourier transform (FFT), which was done on the 
master PC. From the available 5000 data points from 
every simulation, only the last 4096 were taken for 
fast FFT-computation. Thus initial transients were 
not considered. 
 
A large amount of 2D diagrams was plotted. Two 
representative local maxima diagrams are given in 
Fig. 4 for p = -3 ; -10 ≤ z < 0 and p = -9 ; -10 ≤ z < 0. 
The spectral bifurcation diagrams for the same 
parameter values are shown in Fig. 5. It is seen that 
both types of diagrams allow for similar conclusions 
regarding bifurcation. For p = -3 ; -10 ≤ z ≤ -4.2 there 
is a limit cycle, while for higher values of z chaotic 
motion is present. For p = -9 there is chaotic motion 
in most of the considered range of z, except for two 
windows, slightly above and slightly below 5, where 
there is periodic motion. A similar analysis is 
possible using 2D diagrams throughout the range of 
parameters under consideration. 
 
Switching attitude control systems have so far been 
operated in limit cycle mode. In such operation 
mode, initial conditions and attitude perturbations 
shall asymptotically die away into a “well behaved” 
limit cycle. This “good behavior“ of the limit cycle is 
usually defined in terms of an upper bound for 
attitude rate and maximum allowable attitude 
deviation. An approximate condition for the 
existence of limit cycles was derived by Oliveira and 
Kienitz (2000) for plants of the class considered in 
this article. If the condition is not satisfied, some 
other type of persistent motion is expected. With the 
help of the aforementioned condition, one 
approximate frontier for limit cycle behavior can be 
obtained. This frontier is indicated in black in Fig. 6.  
 
The expression for the approximate bifurcation 
frontier is determined as follows. From Oliveira and 
Kienitz (2000) it is known that, in the scope of a 
describing function method setup, the maximum 
possible limit cycle frequency ω for the system in 
Fig. 2 is given by: 

)/( min_min_ offon tt += πω   (1) 

A describing function for the switching actuators in 
Fig. 3 was derived by Oliveira and Kienitz (2000). 
As explained in that reference, this describing 
function can be decomposed into a (pure) time-delay-
type phase shift and real valued function of limit-
cycle frequency and amplitude. Define Mg(ω) as the 
phase margin at frequency ω of the linear subsystem 
in Figs. 2 and 3 including the aforementioned time 
delay, but excluding the controller. Within the 
approximation of the describing function method, 
limit cycle oscillation will occur with frequency ω, if 
the phase contribution of the compensator at that 
frequency equals Mg . The phase contribution of the 
compensator is determined from its frequency 
response 
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Fig. 4a: Diagram of maxima for p = -3.          Fig. 4b: Diagram of maxima for p =-9. 
 
 

 
Fig. 5a: Spectral bifurcation diagrams for p = -3.         Fig. 5b: Spectral bifurcation diagrams for p =-9. 
 
 

Fig. 6a: Three dimensional amplitude diagram.         Fig. 6b: Projection of amplitude diagram on p × z. 
 
 
 
and is thus given by 
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One approximate limit cycle frontier derived from a 
describing function approach is then defined by: 
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with ω given by (1). Expression (2) defines the curve 
in the plane p × z that is plotted in black in Fig. 6. 
 
Although limit cycle amplitude and frequency 
usually have been predicted with small acceptable 
errors using the describing function method, the 
black line in Fig. 6 is not a good approximation of 
the bifurcation frontier determined through 
simulation, given by the darkest region of the plot. 
 



     

6 – CONCLUSIONS 
 
It was shown that a variety of motions is possible in 
an attitude control system with switching actuators. 
From the point of view of control engineering it is 
interesting to know if quasi-periodic or chaotic 
persistent motions allow for smaller amplitudes than 
the “best possible” limit cycle. An inspection of 
Figure 6 leads to the conclusion that, in the case of 
the system considered herein, “best possible” 
behavior is attained in limit cycles near to the main 
bifurcation border. However, from an inspection of 
Figs. 4 and 5 it is seen that for combined frequency 
and amplitude specifications certain periodic 
windows away from the main bifurcation border may 
present interesting features for control. Further work 
will concentrate on this topic, as well as on the 
robustness of controlled systems that operate in such 
periodic windows or present chaotic motion. 
 
The bifurcation border predicted via the describing 
function method and indicated as black solid line in 
Fig 6b is not a very good border approximation. 
Initial inquiries into the use of the (exact) Tsypkin 
method (Cook, 1986; Gelb and Velde, 1968) for the 
purpose of predicting bifurcation borders shows this 
to be a promising approach and additional work is 
being done on this issue. 
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