Resilience – a prerequisite for autonomous shipping?

ISIS-MTE Session: Autonomous Ship Technologies

C. P. Wrede
Dr. E. Engler
Dr. D. Göge
Background

Efficient Operation and Utilization of Shipping

- Transportation of goods
- Fishing
- Mobility and tourism
- Raw material extraction
- Maintenance of traffic routes
- Protection of maritime environment
- Facilitation of energy supply
- Public authority activities
Simplified functional ship model
Efficient and safe operation during ship’s life-cycle: during voyages and at transshipment points

Cost-efficient performance of shipping (to meet functionality & performance)

Protection of life, goods, and environment (to ensure safety and security)

Power Supply
- Power Generation
- Power Distribution
- Automatic Power Supply Systems

Navigation
- Situation Awareness
- Voyage and Route Planning
- Maneuvering, Monitoring & Control

Propulsion and Gears
- Propulsion
- Gear
- Main Engine Remote Control

Communication
- Internal/external Exchange of Nautical Data
- AIS, VDES,...

Cargo Operation
- Cargo Loading/uploading
- Cargo Monitoring

DLR.de • Chart 3 • International Symposium INFORMATION ON SHIPS 2018 • Berlin
Simplified functional ship model
Efficient and safe operation during ship’s life-cycle: during voyages and at transshipment points

Cost-efficient performance of shipping (to meet functionality & performance)

- **Cargo Operation**
 - Cargo Loading/Unloading
 - Cargo Monitoring

- **Power Supply**
 - Power Generation
 - Power Distribution
 - Automatic Power Supply Systems

- **Navigation**
 - Situation Awareness
 - Voyage and Route Planning
 - Maneuvering, Monitoring & Control

- **Safety and Security Management**

- **Propulsion and Gears**
 - Propulsion
 - Gear
 - Main Engine Remote Control

- **Communication**
 - Internal/external exchange of Nautical Data
 - AIS, VDES,....

Protection of life, goods, and environment (to ensure safety and security)
Voyage

Examples of internal/external information demand and support by services for ship navigation

Navigational situation awareness for safe/efficient ship navigation

State of ship e.g. manoeuvrability

ENCs

Traffic situation assessment (Radar/AIS)

Current sea weather and weather forecast

PNT<<10m PNT<10m PNT<100m PNT<10m PNT<<10m

loading

undocking

departure from port

navigation in coastal areas

navigating in coastal areas

evasive manoeuvre

navigation in coastal areas

entry into port

docking

unloading

Port A

Port B

GNSS augmentation services

GNSS services

GNSS augmentation services

ENC services

Weather services

ENC services

pilotage and VTS

ship-to-ship coordination

pilotage and VTS

port facility services A

coordination with port facility services B

port facility services B

GMDSS and SAR services

Nautical services and information exchange
Automation vs. Autonomy
Harmonization of terms

Automatization
• The process of making an action of a higher animal reflexive (English).
• Processes of a system are performed and controlled by machines (German: Mechanisierung vs. Automatisierung)

Automation
• Act or process of converting the controlling of a machine or device to a more automatic system, such as computer or electronic controls.

Autonomy
• Self-government as freedom to act or function independently (as far as possible in relation to needed information)
• The capacity of a system to make a decision about its actions without the involvement of another system or operator.

Variety of definitions under discussion to describe the level of autonomy for ships (MSC 99/5/6)

<table>
<thead>
<tr>
<th>Bureau Veritas</th>
<th>operation</th>
<th>decision</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) human operated</td>
<td>automated or manual</td>
<td>all done by human</td>
<td>all done by human</td>
</tr>
<tr>
<td>2) human directed</td>
<td>automated</td>
<td>supported, but done by human</td>
<td>all done by human</td>
</tr>
<tr>
<td>3) human delegated</td>
<td>automated</td>
<td>must be confirmed by human</td>
<td>must be confirmed by human</td>
</tr>
<tr>
<td>4) human supervised</td>
<td>automated</td>
<td>human will be informed</td>
<td>automated</td>
</tr>
<tr>
<td>5) fully autonomous</td>
<td>automated</td>
<td>human is informed in case of emergency</td>
<td>automated</td>
</tr>
</tbody>
</table>
Automation vs. Autonomy
Harmonization of terms

Automatization
- The process of making an action of a higher animal reflexive (English).
- Processes of a system are performed and controlled by machines (German: Mechanisierung vs. Automatisierung)

Automation
- Act or process of converting the controlling of a machine or device to a more automatic system, such as computer or electronic controls.

Autonomy
- Self-government as freedom to act or function independently (as far as possible in relation to needed information)
- The capacity of a system to make a decision about its actions without the involvement of another system or operator.

Variety of definitions under discussion to describe the level of autonomy for ships (MSC 99/5/6)

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Decision support</td>
</tr>
<tr>
<td>2</td>
<td>Automatic bridge</td>
</tr>
<tr>
<td>3</td>
<td>Remote control</td>
</tr>
<tr>
<td>4</td>
<td>Automatic ship</td>
</tr>
<tr>
<td>5</td>
<td>Constrained autonomous</td>
</tr>
<tr>
<td>6</td>
<td>Fully autonomous</td>
</tr>
</tbody>
</table>
Autonomous Shipping
Try to structure and generalize the definitions

System of Systems „Shipping“

System „Ship“

Crew

Technical ship systems

Automation

m, a, s, e → d → c

p, c

s, e → d

i partially possible

System „Communication“

Technical service systems

Service operator

System „Shore-side services“

Automation

m, a, s, e → d → c

p, c

s, e → d

i partially possible

Set of main functions and tasks to operate a ship as transport carrier

functions/tasks have to be performed (p)

controlled (c)

status of used components and data have to be monitored (m)

analysed (a)

conditions and threat situation have to be surveyed (s)

evaluated (e)

Set of means for decision making (d) and intervention (i)

from decision support to remote controlling

i partially possible

from remote controlled to autonomous operation

i on request
Autonomous Shipping
Challenges and thesis

Full-autonomous ship operation requires that all shipside systems and processes including information exchange and coordination with stakeholders and parties are fully automated.

Challenges in this context are e.g.:
- provision of reliable connectivity and communication as required
- protection of the cyber space needed for automated operation
- intelligent situation awareness systems to automate decision making and system controlling
- fully automated ship operation (operation of system-of-systems including adjustment to changes)
- fully automated health and safety management (adaptive maintenance, repair, restoration, recover)

IMO considers the technology needed for Maritime Autonomous Surface Ships (MASS) as available.
- in minimum, it has to be proved

Thesis:
- intelligent situation awareness has to cover more than navigational and nautical aspects of ship operation.
- every situation awareness has to take into account the integrity of data and the trustworthiness of information.
- 100% reliability is really impossible, therefore resilience becomes to a design and operation criteria of ships
System-of-System View

Automatization and Autonomization

- Weather
- Visibility
- Temperature
- Traffic volume
- Legal restrictions
- Crime
- Wear & tear

Restrictions

- Propulsion
- Vessel integrity
- Sensors
- Communication

Integrity monitoring

- Proceed as planned
- Abort and idle
- Return to last WP
- Proceed slowly
- Alert SOB
- Initiate contingencies
Operational Aspects towards fully autonomous vessels
Aspects and consequences

Operational aspects

• No ship can be operated autonomously for an infinite time.
• No ship can operate autonomously under all conditions.
• A safe operation requires the adjustment of ship’s operation mode (used level of autonomy) to changing conditions.
• The adjustment has to be based on monitoring/surveying of ship’s state and surrounding conditions taking into account the specific operational capabilities.

The operational concept

• has to be tailored to
 – the expected duration of a voyage
 – the variety of expected conditions while underway
• should take into account
 – the intended operational area and associated restrictions and requirements
 – the proactive and reactive behavior on disturbances, interruptions as well as emerging threats and occurred attacks
Operational Concept – Case I
On-board crew for human intervention

Principles:
• Autonomous operation whenever it is evaluated
 – as safe (within system boundaries)
 – and efficient (financially reasonable and tolerable)
• Human takeover of operation and decision making whenever
 – a lack/loss of system capability is identified
 – or it is legally required

Challenge:
• reliable and comprehensive situation awareness
• unambiguous specification of system boundaries
• just-in-time detection of lacks/losses of capability for autonomous operation by system itself or by human
• clear intervention procedures

Disadvantages
Accommodation (wheelhouse) is required for on-board crew.
Operational Concept – Case II
On-shore/on-board crew for human intervention

Principles: see case I and
- full-autonomous monitoring, evaluation and reporting of ship status for on-shore intervention
- human takeover
 - of decision making & intervention by remote control
 - of operation takes time to bring crew on board of ships

Challenge: see case I
- reliable, resilient, and powerful communication
- extended fall-back procedures in times of lack/loss of information provision and exchange
- New business case for on-board intervention crew
- Shore operation centre adds a new legal dimension
- ELSA in relation to shared responsibilities

Disadvantages: see case I
- feasibility of boarding depends on weather
- shore personnel and communication costs
Operational Concept – Case III
full-autonomous operation of ship

Principles:
- see case II
- human intervention only on request of autonomous system
- human intervention and remote control are primary means of emergency management

Challenge:
- see case II
- empowerment of ship for self-assessment of changes in situation, status, and conditions
- self-detection of emergency cases in relation to system boundaries and abilities
- self-initiation of situation-related intervention means
- ELSA for mixed traffic

Disadvantages: see case II
- costs for the provision of extended service portfolio to maintain autonomous-operated ships
- high-functional reliability of systems and interactions
Resilience
Definitions

International Maritime Organisation (IMO MSC1./Circ.1575)
Resilience is the ability of a system to detect and compensate external and internal disturbances, malfunction and breakdowns in parts of the system. This should be achieved **without loss of functionalities and preferably without degradation of their performance.**

European Commission
Resilience is the “ability of an individual, a household, a community, a country or a region to withstand, to adapt, and to quickly recover from stresses and shocks”

United Nations Office for Disaster Risk Reduction
Resilience is “the ability of a system, community or society exposed to hazards to resist, absorb, accommodate to and recover from the effects of a hazard in a timely and efficient manner, including through the preservation and restoration of its essential basic structures and functions”
Resilience
A life-cycle consideration

Resilience stands for
• maintenance of functionality and performance
• adjustment to changing conditions
• minimizing of negative impacts on life, goods, and environment

Resilience is
• a design target (normal operation of system under specified conditions)
• an operational challenge (monitoring/surveying to establish situation awareness and to detect emerging threats)
• the capability to react and adjust to internal and external changes (proactive and reactive safety and risk management)
Resilience
A life-cycle consideration

Resilience stands for
• maintenance of functionality and performance
• adjustment to changing conditions
• minimizing of negative impacts on life, goods, and environment

Resilience is
• a design target (normal operation of system under specified conditions)
• an operational challenge (monitoring/surveying to establish situation awareness and to detect emerging threats)
• the capability to react and adjust to internal and external changes (proactive and reactive safety and risk management)
Resilience Engineering – relevance to autonomous shipping

Starting point:
• Replacement of a key function from a System-of-System perspective
• No existing data
• Balance between safety, reliability and efficiency for a specific purpose

Approach:
• Identify relevant conditions (technological, environmental, operational, legal)
• Determine how functionality and performance are affected by varying condition parameters
• Analyze the relevance of these functionality and performance variations for the ability to operate a vessel
• Assess the ability to detect condition, performance and functionality changes and the reliability of this ability to derive information about the resilience level of the vessel
Resilience Engineering application example

- **Swarm Concept I (lead vessel)**

 Principles:
 - Autonomous operation limited to
 - Navigational tasks
 - Situational awareness contribution
 - Human operation required for
 - Passage planning
 - Remote control/Monitoring
 - Technical troubleshooting
 - Repair/Towage
 - Communication

 Benefits:
 - Remote connection limited to short distances
 - Trade specific scalability
 - Technical fault restoration ability allows reduced reliability design
 - Redundancy within swarm on higher system level
 - Lower cyber vulnerability due to avoidance of long distance remote access
Resilience Engineering application example

- **Swarm Concept II**

Principles:
- Fully autonomous operation
- Capability to self organise
 - Data validation
 - Redundancy / backup
- Lessons learned from previous concept remain valid

Benefits:
- Redundancy of many functions is achieved in the swarm
- External sensors can be combined for better information quality
- Problems of accessibility in remote areas can be avoided by utilising swarm support capabilities (towage)
Conclusions

• Hybrid solutions with the potential to operate under different levels of autonomy are desirable
• Capability to sustain time periods with reduced functionality without causing harm to environment, cargo or asset will be required
• Navigation is not the key problem to be solved to enable autonomous vessel operations but the integration of the vessels in the maritime environment and operational context
• Removal of the human element causes operational and legal consequences which require new understanding of the vessel as a system within a system-of-systems
• Resilient vessel operation will allow for a smooth integration of autonomous vessels in the maritime domain
• An autonomous vessel will be seaworthy, if its resilience level is measurable and appropriate for the ordinary perils of the intended voyage
• Resilience consideration at the design phase will ensure a vessel’s suitability for its purpose and allow for a safe and efficient utilization
Thanks for your attention!