
Received: 21 December 2017 | Revised: 11 July 2018 | Accepted: 13 June 2018

DOI: 10.1002/rob.21812

R EGU LAR AR T I C L E

Distributed stereo vision‐based 6D localization and mapping
for multi‐robot teams

Martin J. Schuster1 | Korbinian Schmid2 | Christoph Brand1 | Michael Beetz3

1Department of Perception and Cognition,

Robotics and Mechatronics Center (RMC),

German Aerospace Center (DLR), Weßling,

Germany

2Roboception GmbH, München, Germany

3Institute for Artificial Intelligence and Center

for Computing Technologies (TZI), Faculty of

Computer Science, University Bremen,

Bremen, Germany

Correspondence

Martin J. Schuster, Department of Perception

and Cognition, Robotics and Mechatronics

Center (RMC), German Aerospace Center

(DLR), Münchener Str. 20, 82234 Weßling,

Germany.

Email: martin.schuster@dlr.de

Funding information

Helmholtz‐Gemeinschaft, Grant/Award

Numbers: HA‐304, ZT‐0033; FP7 Information

and Communication Technologies

Abstract

Joint simultaneous localization and mapping (SLAM) constitutes the basis for

cooperative action in multi‐robot teams. We designed a stereo vision‐based 6D

SLAM system combining local and global methods to benefit from their particular

advantages: (1) Decoupled local reference filters on each robot for real‐time, long‐
term stable state estimation required for stabilization, control and fast obstacle

avoidance; (2) Online graph optimization with a novel graph topology and intra‐ as
well as inter‐robot loop closures through an improved submap matching method to

provide global multi‐robot pose and map estimates; (3) Distribution of the processing

of high‐frequency and high‐bandwidth measurements enabling the exchange of

aggregated and thus compacted map data. As a result, we gain robustness with

respect to communication losses between robots. We evaluated our improved map

matcher on simulated and real‐world datasets and present our full system in five real‐
world multi‐robot experiments in areas of up 3,000m2 (bounding box), including

visual robot detections and submap matches as loop‐closure constraints. Further, we

demonstrate its application to autonomous multi‐robot exploration in a challenging

rough‐terrain environment at a Moon‐analogue site located on a volcano.

K E YWORD S

graph SLAM, map matching, mobile robots, multi‐robot, navigation filter

1 | INTRODUCTION

The exploration of moons and foreign planets is an important

current and future application for mobile robots as their surfaces

are difficult to reach and hard to access for humans. The application

of huge and complex robot systems such as Curiosity, landed on

Mars in 2012, creates many single points of failure for a mission. As

a consequence, these rovers have to move very slowly and carefully

to avoid getting stuck, as the Mars rover Spirit did in 2009

(Wolchover, 2011). The future deployment of teams of multiple

robots can avoid these single points of failure by gaining robustness

through redundancy and, in addition, can improve efficiency

through parallelization. The robots have to travel through

previously unknown unstructured rough terrain, operating in areas

where external methods for localization like global navigation

satellite systems (GNSS) are not available or expensive to set up.

Communication links to the robots are limited and heavily delayed,

featuring for example 8–40min round trip time between Earth and

Mars. Furthermore, communication between the robots cannot be

guaranteed at all times, in particular at scientifically interesting

places such as craters, canyons, or caves. As teleoperation there-

fore becomes inefficient or infeasible, robot autonomy is a key

aspect for future planetary exploration missions. Any coordinated

(semi‐)autonomous operation in such challenging environments

requires up‐to‐date localization estimates for all robots in a team as

well as a joint map to operate on.

© 2018 The Authors. Journal of Field Robotics Published by Wiley Periodicals, Inc.

J Field Robotics. 2018;1–28. wileyonlinelibrary.com/journal/rob | 1

- -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

http://orcid.org/0000-0002-6983-3719
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frob.21812&domain=pdf&date_stamp=2018-10-17

To tackle these challenges, we designed a framework for 6D local

and global simultaneous localization and mapping (SLAM) for

heterogeneous multi‐robot teams. We therein combine keyframe‐
based local reference filters (Schmid, Ruess, & Burschka, 2014b) and

multi‐robot graph SLAM with incremental optimization (Schuster,

Brand, Hirschmüller, Suppa, & Beetz, 2015). A decoupled integration

of these local and global methods allows us to benefit from their

particular advantages: Local reference filters on each robot provide

real‐time, long‐term stable state estimates that are required for

stabilization, control and fast obstacle avoidance, whereas online

graph optimization provides global multi‐robot pose and map

estimates needed for cooperative planning. Furthermore, it enables

a distributed integration of high‐frequency and high‐bandwidth

measurements and allows each robot to independently estimate its

own pose and map on‐board and online at all times. We thereby can

distribute significant parts of the computational workload, avoid

single points of failure and gain robustness with respect to

interrupted communication and failure of individual robots. A novel

SLAM graph topology, which we first introduced in Schuster et al.

(2015), allows a better integration of the filter results according to

their estimated uncertainty and independence assumptions, leading

to more accurate estimates.

We equip all of our robots with stereo cameras as space‐
qualifiable vision sensors and employ semi‐global matching (SGM;

Hirschmüller, 2008) to compute dense 3D data under varying light

conditions. On each robot, we aggregate the 3D data along the

trajectories estimated by our local reference filters into local

submaps of limited size and uncertainty. We then apply online graph

SLAM to create and optimize a dense joint 3D map as well as to

compute 6D pose estimates for all participating robots. In Figure 1,

we present a joint 3D probabilistic voxel‐grid map created by two

lightweight rover units (LRU; Schuster et al., 2017) and give an

impression of our multi‐robot experimental setup. We exchange 3D

data between robots only in the aggregated format of submaps to

reduce bandwidth requirements and distribute the computational

workload. Sensor data association for loop‐closure generation is

particularly challenging for stereo vision‐based systems due to the

typically narrow angle of view of their cameras compared to laser

scanners. The integration of multiple measurements into local

submaps with limited drift allows us to tackle this challenge: In

Brand, Schuster, Hirschmüller, and Suppa (2015), we first presented a

novel approach to select and match submaps, thereby computing an

estimate for their relative transformation as well as for its

uncertainty. For global pose and map optimization, we integrate

marker‐based visual robot detections as well as these submap

matches as intra‐ and inter‐robot loop‐closure constraints into our

SLAM graph.

In this study, we combine and summarize methods first presented

in conference papers on

• Local reference filters for long‐term stable real‐time state

estimation (Schmid et al., 2014b)

• Multi‐robot graph SLAM for global joint localization and mapping

(Schuster et al., 2015)

• Submap matching for loop‐closure generation (Brand et al., 2015)

and describe central aspects in more detail. In addition, we present

novel contributions going beyond the three conference papers:

• Improved map matching method to maximize the number of loop

closures: We leverage the properties of our local reference filter to

separate observable and unobservable system states and can

thereby reduce the dimensionality of the matching problem from

6D to 4D. We evaluated it in 40 simulated and 13 real experiments

and achieved an average increase in the number of map matches

of 40%.

• Evaluation of our full localization and mapping system in five novel

multi‐robot experiments and discussion of the resources required

by its individual components. Compared to our previous work

(Schuster et al., 2015), the experiments feature different robots

and larger areas of up to 57m × 53m.

• Demonstration of the application of our localization and mapping

system to autonomous multi‐robot exploration in a novel experi-

ment, during which our two LRU rovers mapped an area of approx.

650m2 in a rough‐terrain outdoor environment at a Moon‐
analogue site on the volcano Mt. Etna.

We start with a survey of related work in Section 2 and give an

overview over our modular system architecture in Section 3. We

summarize our local reference filter for real‐time vision‐based

F IGURE 1 Left: Multi‐robot 3D probabilistic voxel‐grid map (height‐colored, resolution: 10 cm, grid size: 5 m) and SLAM graph with pose

covariance ellipsoids, created by our two lightweight rover units LRU1 (blue) and LRU2 (red). We provide a more detailed description in
Section 7.3 and Figure 10. Right: Experimental setup with our two rovers

2 | SCHUSTER ET AL.

inertial navigation in Section 4. In the subsequent Section 5, we

introduce our 3D mapping system, describing its individual compo-

nents from submap creation to our novel 4D map matching in the

respective subsections. In Section 6, we present in detail our

incremental graph SLAM with its multi‐robot graph topology to

connect local reference filter estimates. Afterwards, in Section 7, we

discuss both the evaluation of our novel 4D map matching method as

well as five extended multi‐robot experiments. In the subsequent

Section 8, we present an application of our system to multi‐robot
autonomous exploration in a novel experiment at a Moon‐analogue
site and discuss the lessons learned in this challenging environment.

In the final Section 9, we summarize our contributions on distributed

6D multi‐robot localization and mapping and provide an outlook on

topics for future work.

2 | RELATED WORK

Within the large body of related work on SLAM, three fundamental

techniques can be identified: Kalman Filter‐based methods such as

Extended Kalman Filters (EKF), Rao‐Blackwellized particle filters

(RBPF), and graph optimization. Recent overviews on the challenges

and approaches for SLAM systems in general and for multi‐robot
SLAM in particular are given by Cadena et al. (2016) and Saeedi,

Trentini, Seto and Li (2016), respectively.

We employ an EKF in our keyframe‐based local reference inertial

navigation filter (LR‐VINS) to guarantee bounded computation times

for local state estimation, making it suitable for real‐time applications

such as control. EKF‐based vision‐aided inertial navigation systems

(VINS) exist in different coupling configurations: Weiss (2012)

demonstrated a loosely coupled system, fusing poses from a

keyframe‐based mono‐SLAM with IMU measurements. Tightly

coupled systems as the MSCKF (Mourikis & Roumeliotis, 2007)

directly include feature measurements into an EKF. In the work by

Hesch, Kottas, Bowman, and Roumeliotis (2014), consistency of the

MSCKF is further improved by modifications of the propagation and

measurement matrices according to nonobservability properties. To

remove initial conditions for VINS systems and to reduce the effect

of nonlinearities in the estimation process, Forster, Carlone, Dellaert

and Scaramuzza (2017) and Lupton and Sukkarieh (2012) use IMU

data preintegration. We will further discuss these works in the

context of our LR‐VINS in Section 4.

For the global optimization problem, we regard the technique of

EKFs as less suited. As EKF SLAM models landmark‐based maps as

multivariate Gaussians, they typically imply a computational effort

that grows quadratically with the number of landmarks (Durrant‐
Whyte & Bailey, 2006). While RBPFs (Grisetti, Stachniss, & Burgard,

2007) have been widely used for LIDAR‐based planar localization and

mapping, they are unsuitable for multi‐robot 6D SLAM as the

required number of particles grows exponentially with the size of the

state space (Quang, Musso, & Le Gland, 2010). Graph SLAM

started out with batch optimization methods (Kümmerle, Grisetti,

Strasdat, Konolige, & Burgard, 2011) for offline least‐squares error

minimization. Incremental approaches like iSAM2 (Kaess et al., 2012)

enabled its application for online robot localization and mapping.

Robot and landmark poses are modeled as nodes in a graph that

reflects their, typically sparse, dependencies. They are connected via

measurement constraints, represented as edges weighted according

to their respective Gaussian uncertainty estimates. The worst‐case
computational effort on loop closures typically grows with the

number of measurements and thus with traveled distance, a

challenge that can be approached by constraining the optimization

to local regions (Mei, Sibley, Cummins, Newman, & Reid, 2011) or

removing nodes through marginalization (Williams et al., 2014). For

6D multi‐robot joint localization and mapping, we consider graph

SLAM to be the most promising technique. It allows a straightforward

integration of inter‐robot measurement constraints between intra‐
robot subgraphs while keeping the computational complexity

manageable (Ahmad, Tipaldi, Lima, & Burgard, 2013).

While graph optimization constitutes the back‐end of a SLAM

system, the front‐end is concerned with data association. It can, for

example, be approached by using image features as identifiable

landmarks (Endres et al., 2012), by matching visual keyframes

(Leishman, McLain, & Beard, 2013) or through the registration of

depth data (Newcombe et al., 2011). In this study, we employ visual

detections of other robots as well as submap matching to generate

loop‐closure constraints. The creation of submaps is a technique to

locally aggregate sensor data into maps of limited size (Reid &

Bräunl, 2011; Vidal‐Calleja, Berger, Sola, & Lacroix, 2011; Williams,

Dissanayake, & Durrant‐Whyte, 2002). Their origins can be

attached as nodes to the slam graph, the graph optimization

thereby affecting their relative transformations. This leads to a

sparse graph, while allowing us to keep more information through

aggregation into submaps than in keyframe‐based mapping

approaches (Leishman et al., 2013; Mohanarajah, Usenko, Singh,

D’Andrea, & Waibel, 2015), which apply sparse temporal sampling

on high‐bandwidth sensor data.

Submap matching for multi‐robot systems has been proposed by

Williams et al. (2002) to match sparse feature‐based local maps

against a global model. In dense mapping, submaps typically are

matched against each other as a global model becomes computa-

tionally challenging to handle. Forster, Pizzoli, and Scaramuzza

(2013) and Reid and Bräunl (2011) successfully used submap

matching using a brute‐force correlation search on 2D and 2.5D

elevation maps, respectively. This, however, requires the computa-

tional resources of a GPU even when limiting the search space to a

discretization of 3 or 2 , respectively. Nagatani et al. (2011) use an

iterative closest point (ICP) algorithm to match LIDAR‐based 2.5D

maps created by multiple robots. Similar to our approach, they match

submaps of limited size, restrict the matching to neighboring

submaps and use the resulting transformations as constraints for

graph optimization. For 3D mapping, Labbé and Michaud (2014) and

Mohanarajah et al. (2015) employ graph SLAM with SURF features

for loop‐closure generation. Such image‐based features, however, are

not robust to changes in viewpoint and illumination and thereby

not well suited for heterogeneous multi‐robot teams (Forster

SCHUSTER ET AL. | 3

et al., 2013). On 3D geometry, ICP algorithms have been shown to

work well for frame‐to‐frame registration (Newcombe et al., 2011;

Nüchter, Lingemann, Hertzberg & Surmann, 2007). They can be used

for map matching when a close initial estimate is available (Mendes,

Koch, & Lacroix, 2016), for example, through known relative start

positions in a multi‐robot scenario (Michael et al., 2012). As ICP

optimization easily becomes trapped in local minima, it is less suitable

as a first step for long‐range global loop‐closure detection, in

particular on noisy stereo data. It, however, can improve precision

as a refinement step if provided with a good initial alignment. For

this, 3D feature descriptors (Alexandre, 2012; Li & Guskov, 2005;

Tombari, Salti, & DiStefano, 2011) have become popular to find

correspondences between point clouds, a central challenge being the

selection and description of robust geometric features (Yousif, Bab‐
Hadiashar, & Hoseinnezhad, 2014). The estimation of initial inter‐
robot pose constraints is approached by Dong, Nelson, Indelman,

Michael, and Dellaert (2015) for 2D LIDAR maps by clustering a large

number of transformation hypotheses from scan matches. While this

could complement our visual robot detections, the computational

effort to generate transformation hypotheses would be significantly

higher for 3D maps. In addition, our aggregation into submaps leads

to a lower number of potential hypotheses, which might not be

sufficient for a clustering‐based method.

We integrate filter and graph SLAM methods to fulfill both local

real‐time requirements as well as to compute global multi‐robot
estimates. While Leishman et al. (2013) and Mohanarajah et al.

(2015) also combine keyframe‐based approaches with a pose graph

for global localization, in contrast to our work, they explicitly

represent all RGBD keyframes as nodes in their graph. We decouple

the graph from such low‐level states and trigger the creation of local

reference frames as new graph nodes from our higher‐level mapping

modules. Thereby, we keep the size of the graph independent from

the number of keyframes, which typically is orders of magnitude

larger than the number of submaps required in our system. Williams

et al. (2014) combine filter and graph SLAM by splitting a graph

containing all measurements into a real‐time filter part for the most

recent data and a slower smoother part for past states, both running

in parallel. While they are able to recover the solution of full batch

optimization, they require a tight coupling between filter and

smoother, working on the same types of sensor data and exchanging

state information in both directions. In contrast, we propose to

process sensor information at different levels of abstraction. By

solely adding aggregated pose information to the graph, we keep it

small for fast global optimization. In addition, we do not feed back

loop‐closure results into our filter, allowing it to generate smooth

estimates required for stabilization and control of highly dynamic

systems.

We considered several existing 3D multi‐robot graph SLAM

approaches, however, each of them has its own limitations, either

restricting the enforcement of loop closures (Vidal‐Calleja et al.,

2011), assuming unlimited communication (Kim et al., 2010) or

having been evaluated in simulation under simplifying assumptions

(Cunningham, Indelman, & Dellaert, 2013). The latter two connect

pose graphs created by multiple robots through frame‐of‐reference
constraints represented as nodes in the graph. Cunningham et al.

(2013) and Lázaro, Paz, Piniés, Castellanos, and Grisetti (2013)

exchange condensed graphs between robots, the latter explicitly

removing double‐counted information by introducing antifactors.

Double‐counting cannot occur in our proposed system as each

robot adds all estimates and measurements to their own graph only

once. We do not expect significant benefits from an exchange of

optimized partial graphs as our combination of local reference

filters with a submapping approach leads to a small joint graph in

the first place.

3 | MULTI ‐ROBOT LOCALIZATION
AND MAPPING ARCHITECTURE

We present an overview of our software architecture in Figure 2. It

shows in detail our localization and mapping layer and indicates its

connections to the robots’ sensors and lower‐level perception as well

as to the robot control and higher‐level planning components. To

establish the data flow between our components, we employ three

different middlewares, the first two being developed at our institute:

Links and nodes to satisfy the real‐time communication requirements

for control, SensorNet to distribute high‐bandwidth vision data over

shared memory as well as the popular robot operating system (ROS)

to connect high‐level components, including our mapping pipeline. As

sensors, we use cameras as well as an inertial measurement unit

(IMU). On our ground‐based robots, we additionally include wheel

odometry measurements to improve the accuracy of the filter output,

as indicated in Figure 2. We expect these three sensor modalities to

be available on real planetary rovers, see for example the self‐
localization architecture proposed by Souvannavong, Lemaréchal,

Rastel, and Maurette (2010) for the ExoMars rover, which is planned

to be launched in 2020. Within our perception layer, we employ

semi‐global matching (SGM; Hirschmüller, 2008) on an FPGA for

dense stereo reconstruction and use this to compute keyframe‐based
visual odometry (Hirschmüller, Innocent, & Garibaldi, 2002). In

addition, we perform marker‐based visual detections of other robots

and estimate their 6D poses (Olson, 2011). For both visual odometry

and robot detections, we estimate the uncertainty and pass it to the

subsequent filter and SLAM.

Our focus is on the localization and mapping layer, which contains

three major modules: First, we fuse IMU and visual odometry

estimates in a local reference filter (Schmid et al., 2014b) for real‐
time robust local state estimation, which we discuss in detail in

Section 4. Second, on our ground‐based rovers that operate in rough

terrain, we compute a stereo‐error adaptive local obstacle and

terrain classification directly on depth images (Brand, Schuster,

Hirschmüller, & Suppa, 2014). Performing this step early on allows a

consideration of the association between original camera viewpoints

and depth data, which is lost when aggregating it into maps later on.

The results can be used for fast obstacle avoidance and local path

planning on local 2.5D cost maps. Third, our 6D multi‐robot SLAM

4 | SCHUSTER ET AL.

framework contains components to create submaps by integrating

depth data along the trajectories given by our local pose estimates,

for incremental online SLAM graph optimization, as well as for the

generation of loop‐closure constraints. For relocalization in areas

previously visited by the same and by other robots, we designed a

method to match local, partial maps based on the 3D geometry of the

environment. We present the individual components in detail in

Sections 5 and 6.

As introduced in Schuster et al. (2015), the localization and

mapping modules are executed on board all robots within a multi‐
robot team in a distributed fashion. This ensures the online

availability of up‐to‐date pose and map estimates on each robot at

all times, increasing robustness in particular in light of communica-

tion losses within the robot team. As we do not assume any initial

knowledge about the starting positions of the robots, we do not

introduce any shared global coordinate frame. Each robot computes

its own maximum likelihood estimate for the poses of every robot in

its team, given all measurement data available to it. Further, each

robot adds the submaps created by the other robots to its own model

of the environment as soon as connections between the robots can

be made in the SLAM graph. The modularity of the localization and

mapping system gives us the option to run only some of its

components on resource‐constrained systems like micro aerial

vehicles (MAVs). In case the creation of a 3D map might not be

feasible due to the sensor setup or limited computational power,

such robots can still run the filter for local and the graph optimization

for global pose estimation. By exchanging measurement data like

robot detections and filter estimates, they can both contribute to and

benefit from the joint localization with other robots in a hetero-

geneous team.

We illustrate exemplary applications of the local and global

estimates from our localization and mapping components in the

planning and control layer depicted in Figure 2. The local state

estimates from our local reference filter constitute valuable input for

robot control. By satisfying real‐time properties and allowing high

output frequencies, they are also suitable for stabilization of highly

dynamic systems like multicopters (Schmid, Lutz, Tomić, Mair, &

Hirschmüller, 2014a). We keep these system‐critical components

decoupled from our higher‐level modules and thus do not feed any

estimates from global optimization back into the filter. Combining its

estimates with depth data from stereo vision allows us to realize local

path planning with fast obstacle avoidance. Our multi‐robot SLAM

system runs at a slower rate than the filter, providing online estimates

suitable for global path and exploration planning. In addition, in a

multi‐robot setup, the availability of a joint map and pose estimates for

all robots supplies the foundation for coordinated cooperative action.

4 | LOCAL REFERENCE FILTER

The local reference filter is a loosely coupled vision‐aided inertial

navigation system (LR‐VINS) fusing delta poses from a stereo

odometry system with high‐frequency data from an IMU. On our

ground‐based rovers, we additionally integrate high‐frequency
measurements of the wheel encoders in form of velocity measure-

ments. The LR‐VINS estimates 6D position and orientation, linear

F IGURE 2 Multi‐robot navigation and mapping architecture [Color figure can be viewed at wileyonlinelibrary.com]

SCHUSTER ET AL. | 5

velocities as well as sensor biases for the accelerometers and

gyroscopes employing an Extended Kalman Filter (EKF). The EKF

allows to meet hard real‐time constraints imposed by control

systems. It has been shown that position (x , y , z) and heading angle

(yaw) are unobservable within a VINS, that is, their errors and the

corresponding estimated uncertainties of unobservable modes rise

unbounded (Weiss, 2012). This property is challenging for EKF‐based
VINS: It leads to inconsistencies in global estimation and can, further,

cause numerical issues in long‐term operation. Inconsistencies rise

with the unobservable yaw error (Bailey, Nieto, Guivant, Stevens, &

Nebot, 2006) and, further, due to spurious observability caused by

changing linearization points (Li & Mourikis, 2013).

These findings motivated us to split state estimation by

observability: observable modes are estimated within the filter,

where convergence to their real values can be expected. In contrast,

unobservable modes are only locally estimated within the filter but

furthermore globally optimized in the SLAM graph (see Section 6).

The local reference filter (Schmid et al., 2014b) was shown to enable

consistent, long‐term stable, real‐time state estimation for unobser-

vable systems. The approach defines a local state reference

consisting at least of the unobservable system states. We periodically

switch the reference of the filter into such a local reference frame,

that is, we change its reference system, transforming all states and

their corresponding covariances. In a VINS, by definition, the

uncertainties of position and yaw of the reference frame drop to

zero, all other uncertainties are reduced relative to the new

reference. Relative measurements (as for example a delta pose) in

a global frame can be turned into absolute measurements in a local

frame, rendering the estimation locally observable. Thereby, the

globally unbounded uncertainty for unobservable system modes

becomes locally bounded. In this way, the consistency of the filter is

improved. The global state is then computed within the graph

optimization process, which can improve global consistency through

relinearization. Even though the effect of inconsistency in the EKF

was shown to be drastically reduced by the LR‐VINS, spurious

observability can still occur if the local reference is not measurable at

all times. The findings of Hesch et al. (2014) to remove spurious

observability could also be applied to the LR‐VINS to further improve

its consistency, if necessary.

In our localization and mapping framework, we define the local

reference as the origin of a submap. The switch is actively triggered by

the mapping system, as described in Section 5.1.2. For a better

understanding of our framework, we summarize the general principles

of the vision‐based keyframe INS (Schmid, Ruess, Suppa, & Burschka,

2012) and the local reference‐VINS (LR‐VINS) algorithm (Schmid et al.,

2014b) in the following.

4.1 | Vision‐based keyframe inertial navigation

In our VINS, we (double) integrate high frequency acceleration and

gyroscope measurements of the IMU within the strap down

algorithm resulting in the direct system state x . Within the EKF,

we estimate the indirect state δ , representing the errors of the direct

state. Both states are defined as follows:

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
δ σ

δ
δ
δ
δ
δ

= =

ω ω

x

p
v
q
b
b

p
v

b
b

,
a a

16 15    (1)

The direct state includes, in corresponding order, the IMU position,

velocity and orientation quaternion relative to the current local

navigation frame as well as the IMU accelerometer and gyroscope

biases in the IMU frame. The indirect state corresponds to the direct

state errors, with attitude errors being minimally parameterized as a

three‐dimensional orientation vector. We apply the standard INS

error propagation equations within the EKF prediction step to

calculate error uncertainties. The use of the IMU data preintegration

model (Forster et al., 2017; Lupton & Sukkarieh, 2012) could improve

linearity of the propagation process and eliminate initial state

conditions. Nevertheless, besides vision, we also include high‐
frequency wheel odometry as velocity measurements, which would

complicate preintegration between camera frames. However, we

consider the integration of the model as a topic for future work.

Our visual odometry algorithm (Hirschmüller et al., 2002)

provides a relative transformation measurement from a keyframe

in the past to the last captured image with the according

measurement noise. We realize a locally drift‐free estimation by re‐
referencing a keyframe from the past. In total, we keep a history of

=n 5 keyframes to improve robustness. To represent the keyframes

in our local reference filter, we augment the system (error) state by

the IMU (error) pose at the exact capture time of each camera image.

Referencing the corresponding augmented states, we process the

delta pose measurements and compensate for measurement delays

introduced by the vision pipeline. On our systems, the delay is

approx. 250ms. Thus the delay‐compensated state estimate can be

directly used for control.

4.2 | State augmentation, marginalization,
and reference switching

The processing of delta pose measurements requires state cloning

and marginalization. Both processing steps, as well as the switching

of the filter into a new local reference frame, can be included into the

prediction equation of a Kalman Filter. State augmentation is the

general form of state cloning and can be written by introducing a

state augmentation function g that builds the new state vector ̄xk at

time step k consisting of the current state xk and the newly

augmented state xaug (in our case a 6D pose). For simplicity we derive

the state and covariance transformations in direct state representa-

tion. The corresponding transformations for the indirect state can be

calculated analogously:

⎛
⎝⎜

⎞
⎠⎟̄ = =x

x
x g x z(,)k

k
k kaug (2)

6 | SCHUSTER ET AL.

where zk is a sensor measurement disturbed by additive white

Gaussian noise with covariance Rk . The filter covariance ̄Pk for the

new state vector is calculated using the Jacobian of g , evaluated at

the current state estimate x̂k:

∣ ∣ ∣ ∣̄ = +

= +

̄
=

̄
=

̄
=

̄
=() () () ()P p R

A P A T R T

k
x
x x x

x
x x x

x
z x x

x
z x xk

T
k

T

k k k
T

k k k
T

∂

∂ ˆ
∂

∂ ˆ
∂

∂ ˆ
∂

∂ ˆ
k

k k k
k

k k k
k

k k k
k

k k k (3)

where we define Ak as the augmentation matrix and Tk as the noise

transformation matrix. For stochastic cloning (Roumeliotis & Burdick,

2002), the augmentation matrix has exactly one 1 per row and the

noise transformation matrix vanishes.

We can apply a regular Kalman filter prediction step to the

augmented state, which results for the covariance prediction in:

̄ = Φ Φ + ++P A P A G Q G T R T()k k k k k
T

k
T

k k k
T

k k k
T

1 (4)

where the augmented system matrix Φk is an identity matrix of

corresponding size with the original system matrix in the upper left

corner. The augmented noise propagation matrix Gk is a zero matrix

of corresponding size with the original noise propagation matrix in

the top rows. Qk corresponds to the covariance of the system noise.

Analog to Equation (2), we can define a transformation function f

that transforms the system states at time step +k 1 (including all

augmentations) into the new reference frame defined by the

augmented state and, at the same time, removes the augmented

reference state from the filter:

̄ ̄ = ̄+ +x f x()k k1 1 (5)

With Sk being the Jacobian of f evaluated at the current state estimate

̄ +x̂k 1, we calculate the transformed state covariance ̄ ̄ +Pk 1 as follows:

∣=

̄̄ = ̄ = Φ Φ + +

̄̄
̄ ̄ = ̄̄

+ +

+
+ + +S

P S P S S A P A S S G Q G T R T S()

k
x
x x x

k k k k
T

k k k k k
T

k
T

k
T

k k k k
T

k k k
T

k
T

∂

∂

1 1

k

k k k
1

1 1 1

(6)

Equation (6) can be rewritten as:

̄ ̄ = Φ̃ Φ̃ + ̃ ̃ ̃+P P G Q Gk k k k
T

k k k
T

1 (7)

with Φ̃k as the modified system matrix, Q̃k as a combination of Qk and

Rk , and G̃k as the corresponding noise propagation matrix. In this

form, Equation (7) has exactly the form of a Kalman Filter prediction

step, except for the potentially non‐quadratic shape of Φ̃k .

We exploit the square root UD filter for our implementation: The

covariance matrix is kept in decomposed form as =P UDUT with U as

unit upper triangular matrix and D as diagonal matrix. This

decomposition guarantees the symmetry and positive definiteness

properties of the covariance matrix and improves numerical stability.

While state augmentation and marginalization is trivial in direct

covariance representation, it is not directly obvious in UDUT

representation. Considering for example marginalization, rows of U

are removed, destroying the quadratic form of U . Nevertheless, the

size of D is still quadratic. The triangularization process for

covariance propagation in square root UD form restores the

quadratic shape of U and the corresponding quadratic shape of D.

Therefore, it is convenient to formulate covariance manipulations as

propagation.

4.3 | Reference switching for VINS

Reference switching can be formulated by defining the function f of

Equation (5) as an ordinary frame transformation. In the following,

we use subscripts for vectors to indicate their frame and superscripts

to indicate the frame they are expressed in. The new reference frame

+Nx 1 is defined by an arbitrary augmented pose with a position +
PN

N
x
x

1

expressed in the current frame Nx and its corresponding quaternion

+qN
N

1x
x . With these frame definitions, we introduce an example state x

consisting of our IMU state and one single augmented pose defining a

new frame with index +Nx 1. All other state variables are expressed in

the current local frame Nx or in the IMU body frame B, respectively.

Omitting the time index k , the direct and its corresponding indirect

state are given by:

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

δ

σ

σ

δ

δ

δ

δ
δ

δ

δ

= =

ω ω

+

+

+

+

x

p

v

q

b

b

p

q

p

v

b

b

p

,

B
N

B
N

B
N

a
B

B

N
N

N
N

B
N

B
N

B
N

a
B

B

N
N

N
N

1

1

1

1

x

x

x

x
x

x
x

x

x

x

x
x

x
x

(8)

For simplicity, we split the definition of the transformation function f

into transformations for positions, orientations, and velocities of an

arbitrary frame m as well as for the IMU biases:

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

=

= −

=

=

=

+ +
+

+ +

+ +
f x

P C P p

Q q Q

v C v

b b

()

()

for all IMU biases

m
N

N
N

m
N

N
N

m
N

N
N

m
N

m
N

N
N

m
N

B B

x
x
x x

x
x

x
x
x x

x
x
x x

1 1
1

1 1

1 1

(9)

The matrix +ĈN
N

x
x 1 rotates a vector from frame Nx to +Nx 1 and is

calculated from +QN
N

x
x 1. A frame switch does not change the reference

frame of the estimated IMU biases, the corresponding transforma-

tion part in f is therefore the identity transform. Our direct state

vector can be transformed using Equation (9).

For the transformation of the covariances of the indirect state,

we use the relation between true value, estimated value and error as

δ= −y y yˆ for vectors and as ⌊ ⌋σδ= −C I C() ˆ
m
N

m
N

m
N

x x x for rotations,

where I is the 3 × 3 identity matrix and ⌊ ⌋… the skew operator of a

3 × 1 vector. Our direct state vector holds quaternions corresponding

to a transformation Ĉm
Nx (vector transformation from arbitrary frame

m to frame Nx), whereas we need the inverse transformation for state

switching: ⌊ ⌋σδ= +C C Iˆ ()N
m m N

N mx x
x . With these error definitions,

SCHUSTER ET AL. | 7

small‐angle assumptions and Equation (9), we find the linearized

transformations for the indirect states as:

⎢⎣ ⎥⎦

⌊ ⌋

σ

σ σ σ

σ

δ δ δ δ

δ δ δ

δ δ δ

δ δ

= − + −

= −

= +

=

+

+ +
+ + +

+
+

+ +
+

()
()
()

P C p P p p

C

v C v v

b b

ˆ ˆ ˆ

ˆ

ˆ ˆ

for all IMU biases

m
N

N
N

m
N

N
N

m
N

N
N

N
N

m
N

N
N

m
N

N
N

m
N

N
N

m
N

m
N

N
N

B B

1

x
x
x x

x
x x

x
x

x
x

x
x
x x

x
x

x
x
x x x

x
x

1 1

1 1 1

1
1

1 1

1

(10)

We analyze the effect of state switching for a covariance prediction

given in Equation (6) for time step k . Let us assume for simplicity and

without loss of generality an identity prediction matrix Φk , an identity

augmentation matrix Ak and the state defined in Equation (8). We

find the pure switching matrix ′Sk (without marginalization of the

reference state) from Equation (10) by linearization around δ using

the current estimate x̂ of our state vector:

The elements in the rows corresponding to the state defining frame

+Nx 1 cancel out. As during propagation the covariance matrix is

multiplied from the left by Sk and from the right by Sk
T , zero rows will

cancel out all correlations of the corresponding state. Therefore, the

covariance matrix will be rank deficient. By defining Sk as ′Sk without

its zero rows, the switching state is marginalized out during the

switching operation.

After the transformation of the covariance matrix, we can apply

Equation (9) on the direct state. By definition, +
+pN

N
x
x

1
1 is zero and +

+qN
N

x
x

1
1

represents the identity rotation. For simplicity, we analyzed a full frame

switch (including the entire orientation). As roll and pitch angles are

observable, in our implementation, we do a partial frame switch for

position and yaw only, keeping the navigation frame horizontally aligned

to the gravity vector. This is realized by manipulating the rotation matrix
+CN

N 1
x
x to include only yaw components. Please consider that for the

implementation of a full state switch, including roll and pitch, the gravity

vector has to be included into the state, similar to the work of Lupton and

Sukkarieh (2012).

5 | 3D MAPPING AND MAP MATCHING

In this section, we describe our approach to create local and global

3D maps from stereo data and present our method to match these

local maps to generate intra‐ and inter‐robot loop‐closure
constraints for our multi‐robot graph SLAM discussed in detail in

Section 6.

5.1 | Map creation and composition

To create global 3D maps, we first create local submaps and then

compose them, globally optimized, into a joint map. A submap is

defined by a local reference frame, that is, the pose of its origin, and

associated 3D data structures. It is important to note that for each

new submap, we trigger a frame switch in our local reference filter.

Thus, the origin of each submap by definition coincides with a

respective local reference frame in the filter. We then add the

submap origins to our SLAM graph for global optimization.

5.1.1 | Submap generation

To create 3D submaps, we aggregate depth data and obstacle

classification results along the trajectories estimated by our local

reference filter. Each submap has two application‐dependent 3D

representations: First, we create a 3D point cloud at a resolution of

5 cm, with color information and a binary obstacle classification for each

point. The latter results from an earlier step in our mapping pipeline and

is computed anyway for local obstacle avoidance by a stereo error‐
adaptive terrain classification algorithm (Brand et al., 2014). We use the

point cloud representation for map visualization and map matching, see

Section 5.2. Second, we integrate the depth data into a probabilistic

voxel space representation. For this, we employ the freely available

open‐source OctoMap library (Hornung, Wurm, Bennewitz, Stachniss, &

Burgard, 2013) and create octrees with a resolution of 10 cm as a trade‐
off between computational load and required precision. We currently

use the resulting joint maps for autonomous exploration based on

expected information gain and plan to employ them for whole‐body
path planning in future work. Both applications require an explicit

distinction between occupied, free and unknown space, which is not

available in simple point cloud representations.

5.1.2 | Submap partitioning

We aggregate the dense 3D data into submaps assuming that our

filter estimates on each robot are locally sufficiently accurate. To

satisfy this assumption, we create a new submap once the filter’s

estimated uncertainty grows above map resolution. Applying a

threshold of 0.1 m on the standard deviation of the robot’s position,

we not only ensure a limited drift within each submap but, by

triggering a frame switch, also a limited accumulated error in the

8 | SCHUSTER ET AL.

local reference filter. In addition, we employ an empirically

determined threshold of 3.5 m accumulated driven distance, restrict-

ing the size of the individual submaps to limit their memory and

processing time requirements during exchange and matching. As the

localization error within a submap thus is limited, we perform global

corrections only between the submaps of one or multiple robots. This

approach allows us to reduce the high‐bandwidth 3D data by

aggregating it locally into submaps and exchange only this

aggregated data between robots in a multi‐robot system, thus saving

memory and bandwidth compared to keyframe‐based approaches (e.

g. see Leishman et al., 2013; Mohanarajah et al., 2015) that keep and

potentially exchange the full 3D information at a higher sam-

pling rate.

5.1.3 | Global map composition

To generate joint global maps, we merge the information of all of

our submaps based on the latest graph SLAM estimates for their

respective origins. This can be done either periodically for

visualization or on demand for path and exploration planning. As

the computational effort of this merging step grows with the

number of submaps, we cache the combined map, except for the

currently active one and thus frequently changing submap, and

invalidate this cache only on significant changes of the respective

estimated submap origins, that is, after new loop closures. For

future work we plan to limit the exchange of submaps as well as

their composition into a global map to an application‐dependent
area of interest, as for example proposed by Koch and Lacroix

(2016). In addition, we plan to merge submaps after successful

matching, similar to Mohanarajah et al. (2015), and to remove

deprecated submaps when the same area has been exhaustively

mapped again more recently.

5.2 | Submap matching

We perform a pairwise matching of the 3D structure of submaps to

compute relative transformations accompanied by uncertainty esti-

mates between their origins and thus generate intra‐ as well as inter‐
robot loop‐closure constraints. As input data, our submap matching

process receives the submaps from all robots in a multi‐robot team as

well the latest pose and uncertainty estimates of their origins from the

graph SLAM component of the robot on which it is running.

In this study, we improved and extended our map matching

concepts, which we first presented in Brand et al. (2015) and applied

to multi‐robot systems in Schuster et al. (2015). As an extension of

our previous work, we improved our matching method with the goal

of maximizing the resulting number of loop‐closure constraints while

maintaining their level of accuracy. Our submap matching works on

aggregated stereo depth data from noisy sensors with limited field of

view and thus can generate only small numbers loop‐closure
hypotheses compared to, for example, image‐feature based systems.

While our matcher is designed to minimize the number of erroneous

data associations, they nonetheless are impossible to rule out. Thus,

increasing the total number of loop‐closure constraints is important

for the graph SLAM to be able to filter such false positives as outliers,

or, at least, compensate for their influence to increase the robustness

of global estimation. To achieve this, we exploit the properties of

partial frame switches in our local reference filters to reduce the

dimensionality of the matching problem. As described in Section 4,

we switch the local frame of reference in the filter only with respect

to the unobservable states x , y , z and yaw . Thus, we can define the

origins of all submaps to be aligned to the observable gravity vector,

that is, for all of them =roll 0 and =pitch 0. This does neither

restrict the content of submaps, being able to represent arbitrary 3D

geometries, nor the applicability of our system to aerial robots, as

each robot’s observable states, including its roll and pitch angles, are

F IGURE 3 Submap matcher architecture with two threads for parallel execution of pairing and matching (numbers 1‐4 indicate typical order
of main data flow) [Color figure can be viewed at wileyonlinelibrary.com]

SCHUSTER ET AL. | 9

continuously estimated within the filter. We, however, are able to

reduce the number of dimensions of the map matching optimization

from six to four by solely estimating a relative transformation for the

four remaining, unobservable degrees of freedom. Constraining the

matcher’s optimization steps early on to valid hypotheses with

respect to roll and pitch leads to an increased number of valid

matches, as we discuss in the following (Sections 5.2.4 and 5.2.5) and

demonstrate in our experimental evaluation (Section 7.2).

In Figure 3, we present the architecture of our submap matching

module. It runs two parallel threads, one to filter the input data and

generate pairs of potentially matching submaps and another to perform

the matching itself. As the processing of different pairs of submaps is

independent from each other, it would be easy to further parallelize this

process for multi‐ and many‐core architectures. We implemented a

similar type of parallelization across machines by executing matcher

processes on multiple robots in parallel. They share their results to

avoid duplicate work as well as double‐counting of successful matches.

We base the pairwise matching between submaps on their point

clouds and follow a two‐step approach: First, we compute potential

initial alignments through 3D feature matching on obstacle points

and select the best model. Second, we perform an ICP step on the full

point cloud for refinement and match uncertainty estimation. In

Figure 4, we show a submap match, depicting the keypoints and

correspondences used during initial alignment as well as the final

transformation after refinement. We will explain the individual steps

of pairing and matching in the following subsections.

5.2.1 | Keypoint selection and submap suitability
check

To compute 3D features, we select distinctive keypoints based on

our precomputed obstacle classification in the point clouds. We

employ a 3D voxel grid filter with a bin size of 0.1 m on them to

reduce the computational effort of the subsequent steps. As we

argue in Brand et al. (2014) and Brand et al. (2015), arrangements of

obstacles represent informative and unambiguous geometrical

features in both indoor and outdoor environments, with the

exception of very self‐similar man‐made structures. To distinguish

these valuable arrangements of obstacles from simple structures like

straight walls or ambiguous ones like single stones, we check the

distribution of obstacle points within each submap. Therefore, we fit

a 3D line model to the keypoints using random sample consensus

(RANSAC) and check that at least 10 keypoints are further away

from it than an empirically determined threshold of 0.5 m. We

thereby replace the heuristic based on bounding boxes in the xy‐
plane described in Brand et al. (2015) with a more general approach.

In addition, as a first step, we filter out submaps if their point

cloud contains less than 1,000 points or less than 100 obstacle

points. These suitability checks allow us to dismiss uninformative or

ambiguous submaps before even including them into the matching

process. As the keypoints for each submap are independent of all

other submaps, we compute them just once and store them together

with the submap data.

5.2.2 | Match pair generation and prioritization

In the submap pairing thread, we select potentially matching pairs of

submaps. As for n submaps there are
−
n

n
!

2(2) !
pairwise combinations,

for large n it would be infeasible to try to match all of them. In

addition, a preselection of potential matches allows us to reduce the

number of false positives by performing sanity checks against the

current SLAM estimates early on.

Our central criterion to determine if two submaps si and sj can

match is based on the overlap of their axis‐aligned xy‐bounding
boxes, given the most recent graph optimization estimates for

the poses of their origins. We limit these bounding boxes to include

only points classified as obstacles, as these later define the keypoints

for geometric feature matching. overlapt denotes the amount of

overlap of the two bounding boxes in the respective dimension

t x y{ , } . When computing a value ′overlapx y, for the potentially

overlapping two‐dimensional area of the submaps, we account for

the uncertainties in the submap poses as follows:

⋅ σ= + Δ′overlap overlap t x y2 for { , }t t t  (12)

⋅=′ ′ ′overlap overlap overlapx y x y, (13)

F IGURE 4 Visualization of the initial alignment (Section 5.2.4) and refinement (Section 5.2.5) steps of a match between submaps created by
LRU1 (left, blue) and LRU2 (right, red) during our multi‐robot experiment #2 described in Section 7.3. The larger points indicate keypoints

located on obstacles (in this case large artificial rocks, similar to those in Figure 7b) that have been used to compute correspondences for the
initial alignment. a, Filtered correspondences used for initial alignment between the two submaps. b, Transformation after refinement [Color
figure can be viewed at wileyonlinelibrary.com]

10 | SCHUSTER ET AL.

Thereby σΔ t denotes the relative positional uncertainty between

the poses of two submap origins in terms of standard deviations in

the respective dimension t x y z{ , , } . It can be obtained from the

SLAM graph by expressing the uncertainty of one of the two

submap origins in the pose of the other. While we plan to

implement this in the future, we used a rough approximation for

σΔ t in the experiments presented in this study: ∣ ∣σΔ Σ − Σ≈ s s
t t t t t, ,

i j

with Σs
t t,

i and Σs
t t,

j referring to the variances in the dimension

t x y z{ , , } of the poses of the origins of si and sj as estimated by

our graph SLAM. Although this heuristic is fast and easy to

compute, we are aware that it fails in certain cases of well‐
connected and multi‐robot graphs. The resulting approximation

errors, however, can in the worst case lead to an over‐filtering of

potential matches.

We require >′overlap 2 mx y,
2 in order for a pair of submaps to

be added to the match queue, and in addition exclude successive

submaps from the same robot r , that is, si
r and +si

r
1. Furthermore,

we filter out pairs for which the estimated pose uncertainty is

below the precision of the matcher. We approximate the latter by

the stereo error, which grows quadratically with the distance Δd

to the cameras and is significantly large for our camera setups

(Brand et al., 2014). It can be estimated as
⋅

= Δe e 2z p
d

f b

2
and is

0.12 m at a maximum view distance of 4 m for our robots’ stereo

camera setup with focal length =f 1, 080 px, baseline =b 0.09 m

and a pixel error of =e 0.5 pxp . We then compare it to the

approximated mean translational standard deviation by checking

the following constraint:

σ σ σΔ + Δ + Δ
< e

3
x y z

z (14)

We add all selected pairs of submaps to a priority working queue,

prioritizing them to try the most promising pairs first. We thus rank

them according to:

⋅α σ σ σ= + Δ + Δ + Δ′score overlap() ()x y x y z, (15)

The score consists of two parts, the first being a heuristic for the

expected probability to match and the second for the expected

impact of the match on global optimization. In our multi‐robot
experiments, we weighed them with an empirically determined

α = 0.125 to make a trade‐off between the two criteria.

5.2.3 | Feature generation

As the first step of the submap matching process, we retrieve the

top element of the submap pair priority queue. We compute 3D

features for the keypoints of both submaps and store them for use

in later match attempts. Thus, we can avoid unnecessary

computation in case a submap is never included in a match

attempt. To characterize geometric features in the environment,

we chose CSHOT feature descriptors (Tombari et al., 2011) as they

exhibit a good tradeoff between performance and computational

complexity (Alexandre, 2012). Based on SHOT descriptors

(Tombari, Salti, & DiStefano, 2010), they characterize the 3D

information of the local spatial neighborhood through unique

signatures of histograms of orientations with respect to local 3D

reference frames. They are rotational invariant and robust to noise

and clutter. The CSHOT extension additionally includes color

texture information, our robots are, however, only equipped with

black&white cameras. It is a topic for future work to analyze its

benefits, in particular for heterogeneous multi‐robot systems

involving different camera setups.

5.2.4 | Initial alignment: Keypoint matching

We compute correspondences between the keypoints in both

submaps by comparing their CSHOT descriptors. For each feature

in one submap, we select the three most similar features from the

other submap and vice versa, filtering duplicates and pairs of feature

descriptors that do not pass a similarity threshold of 0.5 in their

range of valid values from [0, 1]. As we only consider a small number

of best matches, our algorithm is not very sensitive to the similarity

threshold, which we selected as a conservative choice from the

interval of [0.4, 0.8] that we empirically determined to yield good

results. Although we employ KDTrees to speed up this high‐
dimensional search, it remains one of the computationally most

expensive steps in our pipeline.

We then cluster the correspondences into match transformations

through Hough3D voting (Tombari & Di Stefano, 2010), which allows

multiple hypotheses to be found and has been shown to be effective

for stereo setups providing noisy 3D data. Due to the asymmetry

introduced by its separation of translation and rotation, we compute

the Hough3D voting two times, from si to sj and vice versa to obtain

more hypotheses and make them independent of the order of

submaps. Basically, each correspondence votes for a translation

hypothesis in the 3D Hough space. After this clustering step, a

RANSAC registration method is used on each cluster to determine

the most likely transformation, including a 3D orientation, associated

with it. Compared to a closed‐form singular value decomposition

(SVD; Umeyama, 1991), RANSAC is more robust to large outliers that

are to be expected to occur due to noise and potential symmetries in

the submaps’ point cloud data.

As mentioned before, the roll and pitch angles of the coordinate

frames of both submap origins are zero. As both angles are well

observable in our local reference filter, we expect the size of their

estimation errors to be negligible, in particular compared to the

accuracy of the map matching that is limited by the noise and

resolution of our stereo‐based point cloud data. We thus do not need

to take their uncertainty estimates into account for the map

matching pipeline and can limit the RANSAC optimization to x y z, ,

and the yaw angle. For this, we adapted the Hough3D implementa-

tion from the open source point cloud library (PCL) 1.7.2 (Rusu &

Cousins, 2011), in particular replacing its RANSAC step that uses a

SVD to compute transformation samples from three points in each

RANSAC iteration. Instead we randomly select two points pi
0 and pi

1

from the cluster of each of the two submaps i {0, 1} . We then use

SCHUSTER ET AL. | 11

the direction of the gravity vector z as an additional constraint to

define a transformation between the two pairs of points, thereby

enforcing = =roll pitch 0:

⎫

⎬

⎪⎪⎪

⎭

⎪⎪⎪

∕

=
̄ = +

Δ = − ̄ − − ̄

Δ = Δ − Δ

= Δ Δ ×

′

′ ′

()
() ()

()
[() ()]

z

p p p

p p p p p

p p p z z

C p p z z

i

(0, 0, 1)

2

, ,

for {0, 1}

i i

i i i

i i i

i i
T

i
T T T

i
0 1

1
i

0
i

⋅ ⋅

 (16)

We normalize the points by subtracting their mean ̄pi and compute

the vector Δpi between them. We then adapt it to Δ ′pi such that it is

orthogonal to z . The cross product of Δ ′pi and z gives us a third

orthonormal vector, defining the rotation matrix Ci . With this, we

compute the transformation hypothesis between the submaps with

rotation matrix C and translation t as:

⋅=C C C()T0 1 (17)

⋅= ̄ − ̄t p C p0 1 (18)

As the next step, we filter out all hypotheses that exceed the σΔ2

error bounds of the approximated uncertainty between both

submaps in any dimension. In addition, for each submap, we check

the distribution of keypoints for each hypothesis separately by

fitting a line model, similar to the submap suitability check

described in Section 5.2.1. We thereby dismiss matches based on

features that are not well distributed and thus might be ambiguous

with respect to one or more degrees of freedom. From the

remaining hypotheses, we select the one with the largest number

of correspondences for the subsequent refinement step.

5.2.5 | Refinement: ICP optimization

As the final step, we perform an ICP optimization on the 3D point

clouds of the two submaps. As this optimization method can be

sensitive to local minima (Mendes et al., 2016), it requires a close‐

enough initial alignment, which we gain from the previous steps. For

the ICP, we employ the full point cloud as it has a higher resolution

than the keypoints and includes non‐obstacle parts of the map like

traversable terrain that can give valuable information, in particular

with respect to an alignment of the ground planes. While such areas

lack robust 3D features for matching, they work well for an ICP.

We also restrict the refinement step to 4D by removing the roll and

pitch angles from the ICP optimization problem. Similar to our adapted

Hough3D voting, the early incorporation of prior knowledge to reduce

the dimensionality of the optimization directs the optimizer toward the

correct solution. The alternative, full 6D steps as used in our previous

work (Brand et al., 2015), runs the risk of first converging to implausible

solutions that afterwards get eliminated in post processing by applying

restrictions that have been unknown to the RANSAC and ICP algorithms

themselves. We demonstrate in our experimental evaluation in Section

7.2 that our 4D matching thus yields a larger number of map matches,

that is, loop closures, after applying the same plausibility checks to filter

potentially erroneous data associations.

As a final step after the ICP, we once again check whether the

resulting transformation is within the approximated σΔ2 error

bounds of the latest SLAM estimates. To weigh the map match

constraints against each other and against other estimates, our

graph‐based global optimization requires an uncertainty measure for

the map match transformations. We approximate this based on the

root‐mean‐square error (RMSE) in point‐to‐point differences com-

puted during the ICP in the final alignment step. In Figure 5, we

present a sketch showing the integration of a match of two

overlapping submaps into the SLAM graph.

6 | INCREMENTAL MULTI ‐ROBOT
GRAPH SLAM

In this section, we introduce our multi‐robot SLAM graph topology

for the decoupled integration of local reference filter estimates.

While we first presented this graph topology in our conference paper

F IGURE 5 Schematic of SLAM graph

with submap origins and bounding boxes.
The overlapping highlighted rectangles
represent submaps that match, resulting in

a loop‐closure constraint that is added to
the graph [Color figure can be viewed at
wileyonlinelibrary.com]

12 | SCHUSTER ET AL.

Schuster et al. (2015), in this study we provide a more detailed

description and extended discussion of its properties.

We employ a factor graph (Kschischang, Frey, & Loeliger, 2001)

to formulate the SLAM problem in a graphical model, following the

formalization used by Kaess et al. (2012). A factor graph is a bipartite

graph � �= ΘG (, ,) with factor nodes �fi  , variable nodes θ Θi 
and edges �ei j,  representing dependencies as undirected connec-

tions between nodes of the two different types. Such a graph defines

the factorization of a function over the variable nodes Θ = Θf f() ∏ ()i i i

with Θi denoting the set of variables adjacent to the factor fi . In our

SLAM context, the variable nodes θi represent the 6D poses of

interest (robot poses, submap origins, landmarks). The factors fi

represent constraints given through measurements or “virtual

measurements,” that is, estimates from other modules like our local

reference filter. In general, factors fi can connect an arbitrary number

of variable nodes θi . In this study, we only refer to binary

measurement factors, except for a single unary prior factor per

graph.

The goal of graph optimization is to find an assignment of

variables Θ* that maximizes this function, that is, Θ = ΘΘf* arg max ().

Under the assumption of zero‐mean Gaussian noise, this maximiza-

tion problem can be formulated as a nonlinear least‐squares
minimization on the differences between the measurement functions

hi and the actual measurements zi . We use ∣∣ ∣∣ ≜ ΣΣ
−e e ei i

T
i i

2 1
i as a

notation for the squared Mahalanobis distance, with Σi denoting the

measurement noise covariance matrices:

∣∣ ∣∣− Θ = Θ −Θ Θ Σ∑f h zarg min (log ()) arg min
1

2
()

i

i i i
2

i (19)

Graph SLAM systems can be structured into two parts, a front‐end
and a back‐end. While the back‐end deals with the optimization

problem, that is, the aforementioned minimization of a nonlinear

quadratic error function, the front‐end is concerned with the

construction of the graph. This includes solving the data association

problem as well as asserting dependencies between variable nodes

by deciding on a graph topology (Grisetti, Kümmerle, Stachniss, &

Burgard, 2011). In the following, we will characterize the measure-

ment constraints relevant for our SLAM system, present our

contributions to the multi‐robot SLAM graph construction and

describe the optimization back‐end.

6.1 | SLAM front‐end: Multi‐robot graph topology

We consider a setup with R robots and the following six‐dimensional

variable nodes in the SLAM graph:

• Robot poses x{ }i
r : xi

r represents the ith pose of the robot

… −r R{0, , 1} . We sample the robot poses sparsely by only

adding them to the graph if they are connected to another robot’s

pose or a landmark via a measurement edge (see below).

• Submap poses s{ }i
r : si

r represents the pose of the origin of the ith

submap of the robot … −r R{0, , 1} .

• Landmark poses l{ }i (optional): li represents the pose of the ith

globally identifiable (robot‐independent) landmark.

Each of them represents a 6D pose with Gaussian uncertainty. On

each robot ri that runs a graph optimization module, its first submap

pose s r
0

i is connected to an unary prior factor that defines its map

origin, which we arbitrarily chose to be located at zero. We decided

against an explicit representation of visual odometry keyframes in

the SLAM graph as a design tradeoff to ensure a limited growth rate

of the graph’s size while allowing our local reference filter to

internally use arbitrary techniques to integrate such high‐frequency
measurements. This allows for fast optimization steps on loop

closures in the graph. We can always compute an online pose

estimate pi
r for each robot r with respect to the map origin at the

latest filter time step ti
r by combining the output of our local

reference filter and graph SLAM. This simply means chaining the pose

of the respective latest submap origin s j
r (time of submap creation: tj

r),

as estimated through graph optimization, with the robot’s latest filter

estimate vi
r:

⊕= < +p s v t t twith ≤i
r

j
r

i
r

j
r

i
r

j
r

1 (20)

6.1.1 | Intra‐ and inter‐robot measurements

We represent three different types of measurements as factor nodes

in our SLAM graph:

• Robot detections d{ }i : di represents the transformation between

the poses of two different robots r0 and r1. These can be

determined by visually detecting r0 from r1 (or vice versa) and

estimating its 6D pose. In our experiments, we attached planar

visual AprilTag markers (Olson, 2011) to the robots in our multi‐
robot team and detect these in the other robots’ camera images,

utilizing an open source detector implementation (Kaess, 2013).

The quality of pose estimates for planar markers highly varies, in

particular depending on view distance and view angle, leading to

pose ambiguities (Schweighofer & Pinz, 2006). We therefore

perform a worst‐case error approximation depending on

distance, view angle and camera parameters, which we base on

simulations of detections and detection errors as well as their

propagation to 6D transformations. This allows us to avoid

overconfidence in measurements that could later on degrade the

results of graph optimization. To add di as well as its adjacent

nodes xi
r0 and x j

r1 to the graph, we require the pose estimates

from the filters of both robots at the point in time =t ti j of the

detection. Each robot therefore holds a buffer, implemented as a

hashmap for constant time lookup, with its filter estimates to

recover this information in case of communication delays or

interruptions. The memory requirements of this buffer are

negligible compared to the dense 3D data.

• Landmark observations o{ }i
r : oi

r represents the transformation

between a robot r and a static, globally identifiable landmark. In

some of the experiments on the evaluation of our novel graph

structure presented in Schuster et al. (2015), we defined and

SCHUSTER ET AL. | 13

observed such landmarks with the help of AprilTag markers,

similar to the robot detections described above. As such landmarks

are typically not available in natural environments, we instead aim

to exploit the geometric structure of the environment to generate

loop closures through map matching. We thus did not utilize any

static landmarks in the experiments presented here. However, for

planetary exploration, it is reasonable to use static structures, such

as a stationary lander (Wedler et al., 2017), as landmarks to

improve localization and provide transformations between multi-

ple robots.

• Submap matches c{ }i : ci represents the transformation between the

origins of two submaps, which is the result of our submap matching

process, described in detail in Section 5.2. This can lead to intra‐ as
well as inter‐robot loop closures.

In addition, we integrate the estimates of our local reference

filters, thereby connecting robot and submap poses. All these

measured and estimated transformations are added to the graph

as binary factors representing six‐dimensional constraints that

connect exactly two nodes each. They all are accompanied by a

Gaussian uncertainty estimate. It would be straightforward to add

further types of measurements: Global position information from

GNSS or the matching of aerial images (Kümmerle et al., 2011)

could, for example, be represented by additional unary factors.

While we are able to restrict the submap matching itself to 4D, the

graph SLAM still needs to work on 6D poses, as some types of

observations like landmark or robot detections are measured in

6D. Furthermore, we intentionally do not introduce hard con-

straints on the roll and pitch angles of the submap origins but

integrate them with the, typically low, variance estimated by our

local reference filter. This allows the graph optimization to

compensate for errors in this estimation with respect to other

types of measurements. In the following sections, we will discuss

and compare the two different graph topologies that we outlined

in Figure 6.

6.1.2 | Graph with sequential odometry
measurements

The graph topology typically found in SLAM literature sequentially

connects robot poses through odometry‐like measurements ui
r

between xi
r and +xi

r
1, as pictured in Figure 6a. The set of submap

origins is thereby a subset of the set of robot poses: ⊆s x{ } { }i
r

j
r . This

graph topology builds on the assumption that the incremental robot

ego motion estimates are independent from each other and from any

prior states. For most pure odometry measurements like wheel

odometry, simple visual odometry without keyframes in 2D images or

3D data through sequential scan‐matching, this assumption constitu-

tes a reasonable approximation. Dependencies to prior estimates exist

only indirectly through the robot’s environment, for example, by

repeatedly observing parts of the same scene in case of visual

odometry, and are thus hard to quantify. In contrast, this assumption is

violated when integrating estimates of a keyframe‐based visual

odometry and filter, as we do in our local reference filter (see Section

4). The filter estimates can depend on each other through filter‐
internal states like the augmentations made on keyframes. In our

previous work (Brand et al., 2015), we ignored these dependencies by

approximating sequential odometry measurements through the

computation of delta poses from subsequent filter estimates of the

robots’ poses: ⊖= +u x xi
r

i
r

i
r

1 and ⋯Σ = Σ − Σ −
+

Imax(, 10)u x x 6
10

i
r

i
r

i
r

1
as

an approximation of their Gaussian measurement uncertainty. We

thereby enforce the resulting covariance matrices Σui
r to be non‐

negative and above an, experimentally determined, threshold to

ensure numerical stability during graph optimization. This rough

approximation, however, neglects the aforementioned state

F IGURE 6 Comparison of SLAM graph topologies with robot detections di, submap matches ci and landmarks observations oi
r as inter‐robot

measurements. In the experiments presented here, we did not use any artificial static global landmarks. (a), Graph topology for sequential

odometry measurements with submap origins at robot poses. (b), Novel graph topology with submap origins si
r (local reference frames)

separated from robot poses xi
r

14 | SCHUSTER ET AL.

dependencies. In the following, we therefore introduce an adaption of

the graph topology that allows a more suitable integration of local

reference filter estimates.

6.1.3 | Graph with local reference filter estimates

In Figure 6b, we sketched our novel graph topology, as first proposed in

Schuster et al. (2015), in which we replace the aforementioned

approximation of sequential odometry measurements ui
r with two types

of estimates that are directly computed by our local reference filter:

• Frame switch transformations w{ }i
r : wi

r represents the transformation

between the poses of two consecutive submap origins si
r and +si

r
1. It

refers to a switch of the frame of reference in our local reference filter.

• Robot pose estimates v{ }i
r : vi

r represents the transformation

between a submap origin s j
r and a robot pose xk

r that is estimated

by the filter with respect to the local reference frame anchored in s j
r .

The local reference frames and hence the 6D submap origins si
r are

aligned with respect to gravity, as discussed in Section 4. Thus, with

this graph topology, they can be dissimilar from the robot poses xi
r

with respect to the roll and pitch angles, as we indicated in Figure 6b

by drawing them separated. Compared to the graph topology for

sequential odometry measurements, presented in the previous

section, the direct integration of the estimates computed by the

local reference filter allows a better representation of the underlying

probabilistic structure. Within a local reference frame (= submap),

we thus do not introduce any additional independence assumptions.

Furthermore, pose estimates and delayed measurements for each

robot can be added at any point in time without requiring additional

methods to remove constraints from the graph or to avoid double‐
counting of information, such as antifactors (Cunningham et al.,

2013). Our graph topology thus allows a straightforward inclusion of

delayed measurements like those received from other robots in case

of delayed or interrupted communication.

Integrating the frame switch transformations wi
r into the graph, we

assume independence between the subsequent submap origins si
r and

+si
r

1. This is an approximation, as during frame switches, several filter‐
internal states (e.g., velocities, IMU biases and visual odometry

keyframes) are transferred across submaps. Correlations between

submaps could be explicitly considered in the graph optimization by,

for example, creating conditionally independent local maps as described

by Piniés and Tardós (2008). This, however, would require additional

nodes to be added to the graph that represent all common states

between submaps. These nodes thus would expose filter‐internal and
robot‐specific states, such as velocities, IMU biases and visual odometry

keyframe augmentations, to the graph SLAM. In the design of our

system, we instead focus on an explicit decoupling of the local filter and

global graph optimization components in favor of a modular multi‐robot
system architecture. Based on observability considerations, we define

the interface between filter and graph on and between all robots at a

pure pose level. Therefore, in our approach, the internal states of each

individual robot are not exposed and do not need to be transferred to

other robots. A change in sensing modalities on one system thus does

not require any changes at the SLAM graph level on any of the robots.

This is particularly important in heterogeneous multi‐robot setups, in

which different robots integrate different types of high‐frequency sensor
measurements in their local filters. The design decisions are a tradeoff

between modularity, computational efficiency and the integration of all

available information in a smoothing process. Our explicit decoupling of

filter and graph SLAM thereby gives us greater design freedom for both

subsystems compared to tightly coupled solutions such as, for example,

concurrent filtering and smoothing (Williams et al., 2014).

6.2 | SLAM back‐end: Incremental optimization

The computational cost of batch graph optimization grows with the

size of the graph and is therefore not suitable for online global

optimization. We thus decided to utilize the incremental iSAM2

optimizer (Kaess et al., 2012), which is available as open source

software within the GTSAM 3.2.1 library (Dellaert, 2015). The key

idea of iSAM2 for efficient incremental optimization is the conversion

of the factor graph to a Bayes net and further to a Bayes tree. This

data structure allows to add new variables and factors while keeping

subtrees that are not affected by local loop closures unchanged. In

our system, it thus allows for fast average optimization steps on the

addition of new measurements and filter estimates, while slower,

computationally more demanding optimization steps are limited to

the infrequent occurrences of large loop closures.

Overconfident, erroneous loop‐closure constraints can corrupt the

entire graph optimization result. Robust SLAM back‐ends mitigate this

risk, for example by applying a dynamic scaling to the respective

measurement covariances to reduce the influence of outliers (Agarwal,

Tipaldi, Spinello, Stachniss, & Burgard, 2013; Latif, Cadena, & Neira,

2014). We replace the quadratic error term in Equation (19) with a

robust error function for the integration of our landmark and robot

detections as well as submap match estimates. In particular, we employ

the GTSAM implementation of M‐Estimators and chose the Cauchy

error function, as it is suitable to suppress outliers with large errors

(Lee, Fraundorfer, & Pollefeys, 2013). The optimization problem can

thus be formulated as an iterative reweighted least‐squares minimiza-

tion with the weights in the kth iteration being computed as

=
+ ‖ Θ − ‖−

Σ
w

h z
c

c ()
k

i i
k

i

2

2 1 2
i

(21)

where the value of the constant c determines the range of the

Mahalanobis distances to be still considered as inliers. This error

function allows us to gain robustness by mitigating the influence of

large outliers that can originate from incorrect data associations as

well as measurement or estimation errors.

7 | EXPERIMENTAL EVALUATION

In the following, we present and discuss novel experiments. First, in

Section 7.2, we evaluate the impact of our novel 4D map matching

SCHUSTER ET AL. | 15

optimizations introduced in this study on a total of 53 single‐robot
datasets. Second, in Section 7.3, we demonstrate the applicability of

our full SLAM system in five new experiments, four of them featuring

a significantly larger scenario than in Schuster et al. (2015). Third, in

Section 8, we present an application of our localization and mapping

system in a novel multi‐robot autonomous exploration experiment

conducted in the rough‐terrain environment of a Moon‐analogue test

site located on a volcano.

In our previous publications, we already evaluated several

aspects of our localization and mapping system. For a better

overview, we give a short summary of previous experimental

evaluations:

• Filter consistency and stability: In Schmid et al. (2014b), we

demonstrated the consistency and long‐term stability of our local

reference filter. For this evaluation, we used a quadcopter as a

robot that poses additional challenges due to its inherent

instability compared to our rover systems discussed here. We

evaluated a simulated 24 h quadrotor flight and showed in real

quadcopter experiments the applicability of the local reference

filter for the control of highly dynamic systems with limited

computational resources.

• Accuracy of SLAM pipeline with map matching: We compared

our stereo vision‐based 6D SLAM system with submap matching

to a particle filter‐based 3D localization in Brand et al. (2015)

and could show an improved 2D localization accuracy of at least

27% in indoor and outdoor scenarios, in addition to estimating

three additional degrees of freedom. A comparison of our full

SLAM system, as a distributed and suboptimal data fusion

method, to full batch optimization, however, remains a topic for

future work.

• Impact of SLAM graph topology and heterogeneous multi‐robot
SLAM: In Schuster et al. (2015), we evaluated the impact of our

novel SLAM graph topology on the overall localization accuracy

and demonstrated an improvement of 15% on three different

datasets compared to a SLAM graph with sequential odometry

graph topology as used previously in Brand et al. (2015). In

addition, we presented multi‐robot experiments with a team of

two rovers with heterogeneous camera systems — one was

equipped with small‐angle lens cameras (f = 5 mm) and the

other one with wide‐angle lenses (f = 1.28 mm). Our joint

localization and mapping gives an improvement over single‐
robot SLAM of 32%.

• Applications in Moon‐like environment and for single‐robot
autonomous exploration: In Schuster et al. (2017), we present

our success at the SpaceBotCamp 2015 national robotics

challenge, at which we demonstrated our mapping system in a

Moon‐like environment. During the mission, the robot fully

autonomously navigated and mapped its surroundings based on

predefined waypoints, located therein three known objects and

assembled them. In Lehner, Schuster, Bodenmüller, and Kriegel

(2017), we applied our global probabilistic voxel‐grid maps for

information gain‐based autonomous single‐robot exploration.

7.1 | Robot hardware setup

For our novel experiments, we deployed two of our lightweight rover

units (LRUs). Each of these small rough‐terrain rover prototypes weighs

approx. 40 kg, has four individually powered and steered wheels and can

operate up to approx. 1.5 h before changing or recharging their two

208Wh Li‐ion batteries. They are equipped with a pair of Guppy PRO

F‐125B cameras (∕ ′′1 3 chip size, resolution: ×1,292 964, =f 5 mm) on a

pan/tilt camera mast and an Xsens MTi‐10 IMU in the body. We employ

an on‐board Spartan 6 LX75 FPGA for dense stereo matching

(1,024×508px at 14Hz), all other computation is performed on an

Intel quadcore CPU. For a more detailed description of the LRU’s

hardware and software architecture, see Schuster et al. (2017).

7.2 | Comparison of 4D and 6D map matching

In this section, we present an evaluation of our novel 4D map

matching algorithm, comparing it to a 6D matching step used in our

previous work (Brand et al., 2015).

7.2.1 | Experimental setup

We evaluate our algorithm in two series of single‐robot experiments

in simulated as well as real‐world environments, featuring two

different scenarios. In both, the LRU used the 3D voxel‐grid maps

generated by our mapping pipeline to autonomously explore a

previously unknown area based on a maximization of information

gain and map quality (Lehner et al., 2017).

• High‐fidelity simulation of the LRU in rough terrain: We employ

the RoverSimulationToolkit (Hellerer, Schuster, & Lichtenheldt,

2016), a multibody physics simulation and high‐fidelity visualiza-

tion featuring virtual sensors like IMUs, color and depth cameras

to simulate a model of our lightweight rover unit (LRU). We based

our simulated environment on a rough‐terrain 3D model of the

publicly available 2013 SpaceBotCup challenge arena (Holz &

Behnke, 2014; Schadler, Stückler, & Behnke, 2014), featuring a

deep ridge, a steep ramp as well as several large rocks.

• Real LRU indoor experiments: The experiments with one of our

real LRUs have been conducted in an exploration scenario in our

lab, featuring large artificial rocks as obstacles for rover navigation.

Ground truth pose data for the LRU was recorded through a

ceiling‐mounted Vicon tracking system with 14 cameras, covering

the complete experimental area of approx. 11m × 6.5 m.

Our datasets consist of 40 experiments in the simulated

environment and 13 experiments with our real LRU, exploring an

area of on average approx. 197m2 and 72m2 in each of them,

respectively. In Figure 7, we give an impression of both experimental

setups. While the lab experiments are important to test our

algorithm under real conditions, in particular with respect to the

sensors’ error characteristics, a high‐fidelity simulation allows to

conduct a larger number of experiments with perfect ground truth

16 | SCHUSTER ET AL.

data being available in larger environments. The localization and

mapping components, as depicted in Figure 2, are equal to the real

setup and we used the same parameters for map creation and

matching in both scenarios.

7.2.2 | Results and discussion

In this evaluation, we compare three different variants of the map

matching algorithm, demonstrating the impact of both the 4D initial

alignment (see Section 5.2.4) and 4D refinement step (see Section

5.2.5) with respect to the resulting number of loop closures. As the

baseline, we use a 6D initial alignment and 6D refinement (6D + 6D),

similar to our previous work (Brand et al., 2015), with an outlier

threshold on roll and pitch of ∘10 for the initial alignment step and ∘1

after the refinement. First, we replace only the initial alignment with

our novel 4D method, leading to the combination 4D initial alignment

and 6D refinement (4D + 6D). This allows a separate evaluation of

the impact of our changes on the two processing steps. The third

variant is our proposed method, using both a 4D initial alignment and

4D refinement (4D + 4D). We excluded the combination of a 6D

initial alignment and 4D refinement (6D + 4D) as its initial alignment

errors in roll and pitch could never be corrected by a 4D refinement.

In Figure 8, we present the number of matches as well as the

distribution of errors of the estimated transformation compared to

ground truth on both the simulated and the real‐world experiments. As

we enforce roll and pitch to be zero or smaller than ∘1 for the 4D and 6D

cases respectively, we only consider 3D translation and the error in yaw

in our comparison. The number of matches greatly depends on the

scenario as the opportunities to generate map matches depend on the

environment as well as on the robot’s trajectory. We thus only average

over the number of matches for similar datasets. It is lower for the real‐
world experiments due to their smaller size and shorter robot trajectories

compared to the simulated ones. In both scenarios, Figure 8 shows a rise

in the number of matches for each of the 4D matching steps. The benefit

of our novel method stems from this increased number of loop‐closure
constraints for the graph SLAM. It can improve the robustness of global

graph optimization, in particular when the number of loop closures in a

scenario is small, as it is for all of our experiments. The influence of

individual erroneous data associations can be mitigated by a large

number of correct matches, or even eliminated by robust estimation

methods in case they contradict the majority of measurements and other

estimates (Agarwal et al., 2013).

The majority of match error values shown in Figure 8 are in

the range of the expected matcher accuracy, which is limited by

noisy and imprecise stereo vision‐based input data, see Section

5.2.2. The distributions of match errors are similar for all three

variants of the algorithm, which is to be expected as we apply

similar outlier filters during the matching process. This means

F IGURE 8 Average number of submap matches per data set and distribution of 3D translation and yaw angle errors per match with
respect to ground truth (line: median, box: from lower to upper quartile, whiskers: 10th to 90th percentile of values, as individual large outliers

will be filtered by robust estimators during graph optimization, see Section 6.2). a, Results for our 40 rough‐terrain simulator experiments.
b, Results for our 13 real‐world lab experiments

F IGURE 7 Impressions from exploration experiments. a, Screenshot from LRU simulator and point‐cloud map. b, Photo from real‐world
experiment and voxel‐grid map

SCHUSTER ET AL. | 17

that the increased number of matches of the novel 4D method

comes at no cost in accuracy compared to the 6D method. As they

also have a comparable computational complexity, the 4D

matching is to be preferred.

The superiority of the 4D approach can be explained as follows: In

our novel 4D matching, we solely generate 4D hypothesis that, by

definition, satisfy our constraints on roll and pitch. In contrast, during 6D

matching, full 6D hypotheses are computed and then filtered with

respect to these constraints. Both, the RANSAC computed for each

Hough3D bin during initial alignment, as well as the ICP during

refinement, generate a single best hypothesis each. Using 4D

constraints at this stage thus forces the optimization to find a solution

satisfying them, instead of running the risk of generating a single,

unconstrained 6D solution that fits better to the respective cost

function but will be removed when filtering implausible hypotheses

during post processing.

7.3 | Collaborative localization and mapping

To demonstrate our full system for collaborative multi‐robot localization
and mapping, we performed five extended multi‐robot experiments with

two LRU robots in our lab building. Featuring different robot trajectories

of up to 200m and 171m in areas of up to 57m×53m, they surpasses

our previously published experiments (Schuster et al., 2015) and

demonstrate the applicability on different robot systems.

7.3.1 | Experimental setup

The scenarios for our five experiments feature our mobile robotics

lab as well as adjacent labs, hallways and outdoor areas:

• Experiment #1: Mobile robotics lab with three artificial large

stones, featuring the aforementioned tracking system for ground

truth.

• Experiment #2: Mobile robotics lab (lower right part in the map) as

start and finishing point for both rovers. They drove one large loop

each, passing through the adjacent lab, the entrance area as well as

long hallways (see Figure 10 for details).

• Experiment #3: Setup similar to #2, with slightly different robot

trajectories, in particular within the mobile robotics lab.

• Experiment #4: Similar to #2 and #3, but with LRU2 driving two

loops through the central lab.

• Experiment #5: Mobile robotics lab with adjacent labs and two

loops of LRU2 leaving and entering the building, thereby including

indoor as well as outdoor areas.

In Figure 9, we present the 3Dmaps generated by our SLAM system for

all five experiments. In addition, in Figure 10, we provide a sketch of our

experimental setup and exemplarily selected Experiment #2 to show a

more detailed map in a visual comparison to an architect’s plan.

We used our aforementioned tracking system to acquire (partial)

ground truth for the robot poses within the area of the mobile robotics

lab. In all five experiments, we did not use any artificial static landmarks in

the environment. The intra‐ and inter‐robot loop‐closure constraints thus

solely stem from robot detections and submap matches. In contrast to

our aforementioned autonomous exploration experiments, in this setting

we rarely moved the robots’ pan/tilt unit and did not use it to perform full

scans of the area. We therefore increased the threshold to generate new

submaps (see Section 5.1.2) to 7m of maximum driven distance and 0.2m

uncertainty to allow them to be large enough to contain sufficiently

discriminative features for map matching even when the rovers only look

straight ahead. We also adapted the map matcher parameters accord-

ingly. As the two robots drive through each other’s field of view, we

exclude their oriented 3D bounding boxes from visual odometry and 3D

mapping according to the 6D pose estimates computed by our SLAM

framework. While for this evaluation, we manually controlled both

robots, in Section 8 we present an additional experiment with a

preliminary extension of our exploration algorithm for multi‐robot teams.

7.3.2 | Results and discussion

In the following, we present and discuss the results of our five multi‐
robot experiments, with an exemplary more detailed analysis of

Experiment #2. In Figure 9, we show the resulting 3D maps for all

experiments and present a sketch of our experimental setup in the

right part of Figure 10. Next to it, we give a top‐down view on the

map of Experiment #2, which visually aligns well with the floor plan

of the building, exhibiting only small deviations that are to be

expected for a stereo vision‐based setup. In Figure 1, we give an

impression of the respective multi‐robot 3D voxel grid map created

by our mapping system. In all experiments, the robots had no prior

knowledge about their relative positions, but could detect each other

in the lab and at hallway corners. In addition, they were able to

compute intra‐ and inter‐robot map matches in the lab as well as on

the hallways that have been traveled by both of them. The building

constitutes a challenging environment for stereo vision with low‐
texture areas, reflective glass surfaces and regular patterns that lead

to visual odometry and depth estimation errors, which can be

observed as noise in our maps. For example, in the loop driven by

LRU1 (blue) in the left part of the maps of Experiments #2, #3, and

#4, the point clouds are more sparse than in the rest of the scenarios.

The cause have been difficulties with stereo matching due to an

untextured floor in this area, which also heavily impacted the

performance of visual odometry. Our local reference filter, however,

was able to compensate for this with wheel odometry and IMU

measurements, and the graph SLAM then corrected a large amount

of the remaining errors. It is important to note that our map

representations do not contain any assumptions about a structured

environment, that is, no biases toward even floors or straight walls.

In Figure 11, we present plots of the 3D trajectory errors over

time for both robots in all five multi‐robot experiments. All values

refer to the estimates available to the robots at the respective

points in time. The plots are limited to the periods of time during

which ground truth measurements from our tracking system are

available, that is, while the rovers were driving inside the mobile

robotics lab. We compare the values of our multi‐robot SLAM

system with the local filter estimates. Jumps in the SLAM curves

18 | SCHUSTER ET AL.

i-

F IGURE 10 Details on multi‐robot experiment #2 with two rovers, LRU1 (blue) and LRU2 (red): Sketch of experimental setup and top‐down
view of final SLAM graph and 3D point cloud map with manually aligned floor plan. Ellipsoids show the submap origins and are scaled
to two times their respective positional standard deviation estimates. Red and blue edges represent filter estimates of the respective robots,

yellow edges submap matches and orange edges robot detections. See Table 2 for trajectory and graph statistics

F IGURE 9 Top‐down views on the 3D point cloud maps (resolution 0.05m) created for our five multi‐robot experiments with LRU1
(blue) and LRU2 (red), overlayed on grids with 1m2 cell size to indicate their scale. See Figure 10 for details on the experimental setup and an
overlay of a floor plan for Experiment #2. a, Experiment #1. b, Experiment #2. c, Experiment #3. d, Experiment #4. e, Experiment #5

SCHUSTER ET AL. | 19

F IGURE 11 Maps (left column) and 3D trajectory errors for LRU1 (middle column) and LRU2 (right column) in our five multi-robot

experiments. Gaps in the graph are due to a lack of ground truth for the respective areas, jumps in the error values for the SLAM estimate
indicate loop closures. a, Map (Exp. #1). b, 3D position error (LRU1, Exp. #1). c, 3D position error (LRU2, Exp. #1). d, Map (Exp. #2). e, 3D position
error (LRU1, Exp. #2). f, 3D position error (LRU2, Exp. #2). g, Map (Exp. #3). h, 3D position error (LRU1, Exp. #3). i, 3D position error (LRU2, Exp.

#3). j, Map (Exp. #4). k, 3D position error (LRU1, Exp. #4). l, 3D position error (LRU2, Exp. #4). m, Map (Exp. #5). n, 3D position error (LRU1, Exp.
#5). o, 3D position error (LRU2, Exp. #5) [Color figure can be viewed at wileyonlinelibrary.com]

20 | SCHUSTER ET AL.

ndicate the impact of loop closures. For most fractions of the

trajectories, the positional error after global multi‐robot optimiza-

tion is significantly lower than using only the local filter. In Table 1,

we present additional statistics on the SLAM graphs and trajec-

tories for the five experiments. With our combination of filter and

graph optimization to separate high‐ and low‐frequency measure-

ments and estimates, we are able to keep the graph small and

sparse, with a maximum total of 179 nodes and 250 factors for our

multi‐robot joint graph for total robot trajectory lengths of up to

416 m. This allows for fast online optimization on each robot, as we

discuss in Section 7.3.3 when analyzing the computational resources

required by our components.

In our experiments, we observed a lower average number of single‐
robot loop closures compared to the single‐robot autonomous explora-

tion experiments that have been conducted in a similar environment

inside our mobile robotics lab (see Section 7.2 and Figure 8). We attribute

this mainly to two different causes. First, in all five multi‐robot
experiments, many loop‐closure opportunities arise at the end of the

experiment, when both rovers return to a previously visited area inside

the mobile robotics lab. As described in Section 5.2, our map matcher

runs in the background, processing a working queue of potential match

candidates whenever free computational resources are available. We,

however, ended all experiments shortly after the rovers arrived at their

final position and did not wait for the matcher to finish its then nonempty

queue. This particular limitation in our experimental setup leads to a

lower numbers of loop closures than would have been possible to

compute by our matcher in the respective environments. Second, in all

five experiments, we did not move the pan/tilt unit of LRU1 at all and

only rarely used that of LRU2. The rovers’ thus limited fields of view lead

to submaps that contain less information and thus are harder to match

than those created during our single‐robot exploration experiments,

during which LRU regularly performed ∘360 camera scans.

In Experiment #3, an erroneous map match at a hallway crossing

leads to distortions of the map and pose estimates. It was caused by

an incorrect data association between two submaps of LRU2. To a

large degree, the error could be compensated by a number of later

loop closures. The final map, visualized in Figure 9c, only exhibits a

small offset at the crossing with a slight tilt of the upper part of the

map, and the average pose errors recorded within our tracking area

are even below those for Experiment #2. This highlights the

TABLE 1 Comparison of trajectory and graph statistics (number of nodes and factors) for the five multi‐robot experiments presented in
Figure 11. The mean and maximum error values refer to those parts of the trajectories for which ground truth was available.

Exp. #1 Exp. #2 Exp. #3 Exp. #4 Exp. #5

LRU1 LRU2 LRU1 LRU2 LRU1 LRU2 LRU1 LRU2 LRU1 LRU2

Number of robot poses xi
r 15 15 26 26 35 35 58 58 31 31

Number of submaps si
r 8 8 29 24 32 30 32 31 17 19

Number

of map

per robot 2 3 2 1 4 4 0 3 4 5

Matches ci inter‐robot 0 9 6 5 1

Number of robot

detections di

17 0 8 19 15 22 9 55 12 21

Total number of nodes θi 46 105 132 179 98

Total number of factors fi 67 143 182 250 140

Total driven dist. (m) 56.33 51.59 199.82 170.85 211.21 197.45 206.99 209.18 118.52 129.81

Ground truth avail. (m) 55.82 50.36 61.89 51.75 64.61 65.19 63.35 54.17 53.93 51.66

Mean 3D trajectory error (m) 0.19 0.13 0.29 0.40 0.14 0.27 0.42 0.29 0.25 0.28

Max. 3D trajectory error (m) 0.47 0.20 0.70 1.81 0.33 0.55 0.88 0.59 0.62 0.75

Mean yaw error (deg) 2.55 1.79 3.08 2.87 1.03 2.27 3.07 3.78 2.10 1.41

Max. yaw error (deg) 5.04 3.80 6.63 11.39 3.33 5.69 6.38 6.81 4.03 3.82

TABLE 2 Comparison of trajectory and graph statistics (number of
nodes and factors) for multi‐robot and single‐robot SLAM for

Experiment #2 presented in Figure 10

Multi-Robot Single-Robot

LRU1 LRU2 LRU1 LRU2

Number of robot poses xi
r 26 26 0 0

Number of submaps si
r 29 24 29 24

Number of per robot 2 1 0 3

Submap matches ci inter‐robot 9 0

Number of robot detections di 8 19 0 0

Total number of nodes θi 105 29 24

Total number of factors fi 143 29 27

Total driven distance (m) 199.82 170.85 199.82 170.85

Ground truth available (m) 61.89 51.75 61.89 51.75

Mean 3D trajectory error (m) 0.29 0.40 1.64 1.62

Mean angular error (deg) 3.08 2.87 0.58 5.78

SCHUSTER ET AL. | 21

importance of maximizing the number of loop closures to gain

robustness with respect to such failure cases, which are impossible to

rule out when working on limited amounts of noisy input data.

In Table 2, we compare the results of Experiment #2 to running

single‐robot SLAM on the same data set. The mean SLAM 3D trajectory

error for the robots in the tracking area is 0.29m and 0.40m, thus

altogether less than 0.19% of their total trajectory length. The

differences in numbers of intra‐robot map matches between the two

setups shown in Table 2 likely stem from differing submap pose and

uncertainty estimates as input to the map matcher, whereas the low

angular error for LRU1 in the single‐robot setup likely results from

accumulated errors coincidentally canceling each other out. In the

single‐robot case, LRU1 did not manage to compute map matches

before the end of the experiment, at which the matcher process gets

interrupted. Thus in this case, its SLAM trajectory matches that of the

filter solution. The higher positional accuracy in the multi‐robot setup
indicates the benefit of joint graph optimization compared to estimating

a single relative transformation between the robots’ coordinate frames

to just connect their maps. The robots both act as “moving landmarks”

for each other, leading to a weighted distribution of the errors, as can be

observed in particular for the angular errors. As we perform a joint

optimization over the data of both rovers, inter‐robot loop closures

improving the accuracy of one rover might lead to a, usually smaller,

degradation of the other’s. This can be observed in Figure 11e,f,

showing the positional errors of LRU1 and LRU2 in Experiment #2.

Between 580 s and 600 s, the error of LRU2 decreases due to an

optimization on inter‐robot loop closures, while the error for LRU1 rises

slightly. However, in total, a joint optimization brings benefits for all

participating robots as the loop closures of one robot help to improve

the estimates of the other as well. Accompanying this study, we present

a video of our multi‐robot online mapping for Experiment #2.

7.3.3 | Computational resources

In our distributed system, each robot processes all high‐frequency as

well as high‐bandwidth data locally (raw stereo streams: 38.75 MB/s

at 14.3 Hz and 1.25 MB image size). Thus, they only need to share

aggregated 3D data in terms of submaps as well as a small set of filter

and robot detection estimates. In the multi‐robot Experiment #2, the

average size of a submap was 700 kB. Submaps were exchanged

between the rovers whenever a submap was finished, that is, after a

frame switch, which resulted in an average rate of 0.04 Hz. The

bandwidth required for the exchange of submap data between the

rovers thus was 58 kB/s. This allows a transmission over low‐
bandwidth connections like, for example, GSM (Global System for

Mobile Communications) networks and facilitates an upscaling to

setups with a larger number of robots.

We acquired statistics on runtimes, computational load and

memory on desktop computers, one per robot, using a synchronized

playback of recorded sensor data at framerate. Their Intel Xeon E5‐
1620 CPUs (4 real/8 virtual cores) have similar performance ratings

as the Intel i7‐3740QM CPUs on our robots. All runtime measure-

ments of particular processing steps refer to wall clock durations, not

pure processing times. In particular the maximum computation times

thus can be significantly affected by interrupts and waits caused by

other processes on non‐realtime systems.

We base our discussion on the results for LRU2 in our multi‐robot
Experiment #2, the data of the other four experiments exhibit similar

effects. In Figure 12, we present the CPU and memory usage of the major

components of our SLAM system, which we discuss in the following:

• Local reference filter (see Section 4): Our local reference filter runs

two threads, one for the strap‐down algorithm (SDA) integrating

IMU data and one for the Kalman filter updates themselves. As

expected, the filter exhibits approximately constant CPU usage

and memory requirements, making it real‐time capable. We

measured a mean/max. runtime per iteration of <0.01/1.2 ms for

the SDA and 0.2/2.7 ms for the filter updates, respectively.

• Graph creation and optimization (see Section 6): The computation

in our graph SLAM component is based on a single main thread,

apart from a helper thread to publish transformations at regular

intervals. The plot of its CPU usage shows a constant part and

small spikes of short duration but increasing size. The spikes relate

to graph optimization steps performed on large loop closures on

F IGURE 12 Stacked area plots of the computational resources used by our localization and mapping components to process the data of
Experiment #2 for LRU2 (from bottom to top: Local reference filter, graph creation & optimization, submap creation & composition, submap
matching). a, CPU usage over time (100% b = all cores). b, Memory usage over time [Color figure can be viewed at wileyonlinelibrary.com]

22 | SCHUSTER ET AL.

the constantly growing graph. We measured a mean/max. runtime

of 1.7/162ms per iteration for the graph optimization step that

computes the maximum likelihood pose estimates. The more

expensive part is the computation of the covariance estimates for

all submap origins with a mean/max. runtime of 106/341ms,

respectively. In our current implementation, we compute this on

every graph update to use the most recent values in the map

matcher’s internal heuristics. It would, however, be sufficient to

update these values only after significant changes due to impactful

loop closures. An appropriate heuristic represents a topic for

future work.

• Submap creation and composition (see Section 5.1): We employ

two separate threads, one to integrate the stream of 3D data into

submaps and one to compose the full multi‐robot map at regular

intervals (0.5 Hz). Their CPU usages in Figure 12a mainly

correspond to the constant part and the spikes of increasing size,

respectively. The memory consumption and effort for composing a

full map grow over time since we do not remove old submaps yet.

We measured a mean/max. runtime of 0.01/0.04 s for the

integration of new data. The composition of the full map took a

mean/max. runtime of 0.26/3.27 s, with the merging of probabil-

istic voxel‐grid submaps being particularly expensive. We cache

intermediate results, such that a full computation is only required

after significant changes of the submap poses due to impactful loop

closures.

• Submap matching (see Section 5.2): The map matcher runs as a

background process with lower priority. It consists of two threads,

one for preparing potentially matching pairs and one for the

matching itself. Their CPU usages mainly correspond to

the constant part and the spikes, respectively. Toward the end of

the experiment, as large numbers of overlapping submaps and thus

match opportunities are available, the matching thread utilizes one

CPU core continuously to process its prioritized working queue. It

would be straightforward to further parallelize the matcher to

process multiple elements from the queue simultaneously. The

memory consumption for the map matcher grows faster than for

the submapping component as it stores several internal represen-

tations, such as the feature descriptors, in its cache. When memory

limitations become relevant, these caches could easily either be

swapped to disk or deleted and recreated on demand. We

measured a mean/max. runtime of 0.39/0.67 s for keypoint

selection and feature generation (per map), 3.07/8.71 s for feature

matching (per selected pair), 0.02/0.05 s for Hough3D voting,

including its RANSAC steps, and 2.38/4.81 s for the ICP refine-

ment. The most expensive steps are the descriptor matching,

corresponding to a nearest neighbor search in a high‐dimensional

space, and the ICP. The former was executed 38 times for LRU2,

whereas the final ICP refinement step is only computed for almost

certain matches, five times in this experiment. While thus

optimizations in the other steps might not yet be worth much

effort, for future work, we plan to look into lower‐dimensional

feature descriptors to speed up the matching.

We designed our global optimization to build upon the filter

results and thus create graphs with only a small number of nodes. As

presented here, we thereby can achieve fast online optimization

steps. Compared to the other components, in particular those

processing 3D vision data, the overall computational load and

memory consumption of the graph optimization is almost negligible.

This makes it suitable even for resource‐constrained systems. The

overhead from running the optimization of the full graph on each

robot separately thus is acceptably low and guarantees an online

global estimate on all systems with all available information even

during communication losses, thus increasing the robustness of a

multi‐robot team.

Note that we did not yet optimize most of the implementations of

our algorithms with respect to their runtime, processing require-

ments and memory consumption. We thus expect potential for

significant future improvements on the values presented above.

8 | DEMONSTRATION
IN MOON ‐ANALOGUE ENVIRONMENT

In addition to the experimental evaluation in simulation and real‐
world indoor environments presented in the previous section, we

F IGURE 13 Our two LRU rovers during
an autonomous multi‐robot exploration
experiment at a Moon‐analogue test site
on the volcano Mt. Etna, Sicily, Italy [Color
figure can be viewed at

wileyonlinelibrary.com]

SCHUSTER ET AL. | 23

demonstrate the applicability of our methods for autonomous

planetary exploration at a Moon‐analogue site on the volcano

Mt. Etna, Sicily, Italy, featuring a challenging, rough‐terrain outdoor

environment. There we conducted experiments in summer 2017 as

part of the Helmholtz Alliance Robotic Exploration of Extreme

Environments (ROBEX), an association of 16 universities and

institutes that perform space and underwater research in extreme

environments (Kanzog, 2017).

8.1 | The ROBEX space‐analogue mission

The objective of the ROBEX space‐analogue mission is to study the

lunar crust model with the help of seismic measurements. Mt. Etna

has been selected as a well‐suited Moon‐analogue test site as it

exhibits natural seismic activity at depths similar to lunar deep

quakes. As an important aspect with regard to robot navigation, the

volcanic rough‐terrain environment is also visually similar to the

surface of the Moon. In the ROBEX main experiment, one of our LRU

roves autonomously picked up seismic measurement instruments

from a lander mockup and deployed them at predefined target

locations, see Wedler et al. (2017) for details. We successfully used

our localization and mapping framework for single‐robot local and

global localization and mapping during this mission and used the test

site for an additional multi‐robot exploration experiment.

8.2 | Collaborative multi‐robot exploration

We conducted a preliminary collaborative exploration experi-

ment with our two LRU rovers at the Moon‐analogue site on Mt.

Etna, depicted in Figure 13, to demonstrate the applicability of

our multi‐robot mapping methods for planetary exploration. For

the experiment, we ran a frontier‐based exploration algorithm

(Yamauchi, 1998) that employs our global probabilistic 3D voxel‐
grid maps to compute the expected information gain at each new

F IGURE 14 Overview of the site on Mt. Etna for our autonomous exploration experiment and view of navigation stereo camera during the

experiment. a, Aerial image of test site with manually overlayed approximate exploration target area (red) and area mapped during the
experiment (green). b, Image taken by LRU's navigation camera with local terrain classification overlay (green to red: traversibility from easy to
hard obstacles)

F IGURE 15 Multi‐robot 3D map created during our autonomous exploration experiment on Mt. Etna. Left: Point cloud‐based map (resolution
0.05m, grid size: 5m) created by our two rovers LRU1 (blue) and LRU2 (red). Right: Height‐colored voxel grid representation (resolution 0.1m) of
the same map, showing the slope of the terrain. Similar to Figure 10, the ellipsoids represent the estimated positional standard deviation of the

rovers at their submap origins with respect to the start position of LRU2

24 | SCHUSTER ET AL.

exploration goal location, as described by Lehner et al. (2017).

This information is used to rank the goals and select the

respective next location to be explored. To apply these methods

to collaborative multi‐robot exploration, we extended them to

spatially distribute goal locations between robots. Therefore,

each robot communicates each new exploration goal to all other

robots and enforces a minimum distance between exploration

goals of different robots of at least 7 m, approximately two times

the sensor range of our rovers when pointing their pan/tilt units

toward leveled ground. For the experiment, we defined a target

region of 25 m × 20 m to be explored, as indicated by the red

polygon in Figure 14.

The exploration experiment ran for 35min. The two rovers traveled

a combined distance of 394m and mapped an area of approx. 650m2,

including parts outside of the exploration target area that have been

traversed to avoid obstacles like large stones. Due to a limited

availability of fully charged batteries, we were not able to fully explore

the target area and in due time manually set waypoints to drive the

rovers back close to their start positions. In Figure 15, we present the

final map in its point cloud and probabilistic voxel‐grid representations

as well as the multi‐robot SLAM graph, which, similarly to the previous

experiments, is small and sparse with 163 nodes and 224 factors. As we

applied a frontier‐based exploration algorithm, the rover trajectories

exhibited few overlap, resulting in only a single loop closure from our

map matching system. To approach this general issue, recent work from

our group is concerned with active loop closing that makes a trade‐off
during the selection of goal locations between exploring new areas and

revisiting already mapped places for relocalization, as presented in

Lehner et al. (2017).

We faced many additional challenges during the experiments at

our volcanic test site at a height of 2,645m above sea level. In

contrast to previous indoor and clouded‐sky outdoor experiments,

the AprilTag markers on our rovers used for mutual robot

observations oftentimes could only be detected from one direction.

In direct sunlight on Mt. Etna, they turned out to be too reflective,

leading to severe overexposure in the camera images that made the

whole tags appear plain white and thus impossible to decode. For the

experiment presented here, we manually ensured that the rovers

could see each other’s markers at least at the start and end of the

experiment. For future work, we plan to extend the robots’ behaviors

to actively look at each other based on their relative localization

estimates to create further loop‐closure opportunities.

While in general, obstacles often provide unambiguous 3D

structures suitable for keypoint‐based feature matching, the restric-

tion to these limited the capabilities of our map matcher in the Moon‐
analogue scenario. Although the rough‐terrain ground exhibited

recognizable and thus potentially matchable geometry in some areas,

it was not classified as an obstacle and thus excluded from the

feature matching process. We are currently looking into replacing

this by an obstacle‐independent selection of the map matcher

keypoints. Further, it might be beneficial to tune some map matcher

parameters like the aforementioned keypoint selection to different

environments. In this context, we started work on automatic

parameter optimization, a topic that Cadena et al. (2016) recently

identified as one of the important open challenges for the SLAM

community. Despite these open challenges and lessons learned, on

Mt. Etna we could successfully demonstrate the applicability of our

methods to planetary exploration scenarios. We present the mapping

process of the experiment discussed here in the second half of the

accompanying video.

9 | CONCLUSION AND FUTURE WORK

In this study, we have presented a multi‐robot 6D localization and

mapping system that combines real‐time local state estimation with

global online optimization. The decoupling of these allows a

distributed processing of high‐frequency measurements in a multi‐
robot team and leads to a small graph for computationally efficient

optimization steps. For this, we employ a novel graph topology to

incorporate the results of local reference filters according to their

uncertainty estimates. In our distributed system, each robot has its

own online global pose and map estimate available at all times, even

in case of interrupted communication to any of the other robots.

For 3D mapping, we aggregate high‐bandwidth sensor data into

submaps to online generate dense point cloud maps (resolution

0.05m) and probabilistic 3D voxel‐grid maps (resolution 0.1 m) from

noisy stereo data. Sharing aggregated map data instead of raw image

streams between robots allows us to reduce the required bandwidth

from 38.75MB/s to 58 kB/s. We generate loop‐closure constraints

from visual robot detections as well as intra‐ and inter‐robot submap

matches and present in detail our technique for matching stereo

vision‐based submaps on geometric environment features. In this

context, the decoupling of observable and unobservable states

through partial frame switching in the local reference filter allows

us to introduce a novel optimization: A reduction of the dimension-

ality from 6D to 4D of the map matching itself leads to a, on average,

40% higher number of loop‐closure constraints, as we demonstrated

in our evaluation based on the data of 40 simulated and 13 real‐
world experiments. We integrated all these components into our

modular mapping architecture that allows an easy adaption to

include resource‐limited systems as part of future heterogeneous

multi‐robot teams.

To evaluate our full SLAM system, we conducted five multi‐robot
experiments with two rovers in areas of up to 57m×53m. Our

localization and mapping components generated accurate joint maps

from both robots’ stereo data and estimated their trajectories with

average 3D translational errors below 0.5m with respect to partially

available ground truth, that is, errors below 0.4% of the robots’ respective

total trajectories. In addition, we successfully demonstrated the applica-

tion of our localization and mapping framework for autonomous multi‐
robot exploration and presented insights gained from a novel experiment

conducted in the challenging environment of a Moon‐analogue test site

located on the volcano Mt. Etna, Sicily, Italy.

For future work, we plan to further improve our map matching

algorithm by adapting the keypoint selection to include traversable

SCHUSTER ET AL. | 25

but locally discriminative parts of rough terrain to obtain matches in

environments with no or few obstacles. Another open challenge is the

intelligent and consistent merging of submaps in a multi‐robot setup to

allow long‐term mapping. On the graph optimization level, we work on

a separation of observable and unobservable states, similar to filter

and map matcher, expecting benefits in large‐scale multi‐robot
scenarios. As we designed our mapping system for the requirements

of heterogeneous robot teams, we aim for an evaluation of our

approach with a team of flying and driving robots, employing the

resulting maps for autonomous multi‐robot exploration.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments

and suggestions. We thank the current and former members of the

Mobile Robots Group at DLR‐RMC, especially Felix Ruess, Sebastian

Vetter and Sebastian G. Brunner for their works on the local

reference filter, uncertainty estimation for marker detections and

pose covariance transforms, respectively. In addition, we thank

Hannah Lehner for providing exploration experiment data, Philip

Heijkoop, Marcus Müller, Mallikarjuna Vayugundla for their assis-

tance with the experiments, the ROBEX team for their support on

Mt. Etna, and Dr. Tim Bodenmüller, Dr. Simon Kriegel and PD

Dr. habil. Rudolph Triebel for their support and many valuable

discussions. This study was supported by the Helmholtz Association,

project alliance ROBEX (contract number HA‐304) and project

ARCHES (contract number ZT‐0033). The last author was funded

by the European Commission, FP7 project SHERPA.

ORCID

Martin J. Schuster http://orcid.org/0000-0002-6983-3719

REFERENCES

Agarwal, P., Tipaldi, G. D., Spinello, L., Stachniss, C., & Burgard, W. (2013).

Robust map optimization using dynamic covariance scaling. IEEE

International Conference on Robotics and Automation (ICRA). https://

doi.org/10.1109/ICRA.2013.6630557

Ahmad, A., Tipaldi, G. D., Lima, P., & Burgard, W. (2013). Cooperative

robot localization and target tracking based on least squares

minimization. IEEE International Conference on Robotics and Auto-

mation (ICRA). https://doi.org/10.1109/ICRA.2013.6631396

Ahmad, L. A. (2012). 3D descriptors for object and category recognition: A

comparative evaluation. Workshop on Color‐Depth Camera Fusion in

Robotics at the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS).

Bailey, T., Nieto, J., Guivant, J., Stevens, M., & Nebot, E. (2006).

Consistency of the EKF‐SLAM algorithm. IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS).

Brand, C., Schuster, M. J., Hirschmüller, H., & Suppa, M. (2014).

Stereo‐vision based obstacle mapping for indoor/outdoor SLAM.

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Chicago. https://doi.org/10.1109/IROS.2014.

6942805

Brand, C., Schuster, M. J., Hirschmüller, H., & Suppa, M. (2015). Submap

matching for stereo‐vision based indoor/outdoor SLAM. IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

Hamburg, Germany. https://doi.org/10.1109/IROS.2015.7354182

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., &

Leonard, J. J. (2016). Past, present, and future of simultaneous

localization and mapping: Toward the robust‐perception age. IEEE

Transactions on Robotics, 32(6), 1309–1332. https://doi.org/10.1109/

TRO.2016.2624754

Cunningham, A., Indelman, V., & Dellaert, F. (2013). DDF‐SAM 2.0:

Consistent distributed smoothing and mapping. IEEE International

Conference on Robotics and Automation (ICRA). https://doi.org/10.

1109/ICRA.2013.6631323

Dellaert, F. (2015). GTSAM 3.2.1. https://collab.cc.gatech.edu/borg/gtsam

Accessed 4 January 2017.

Dong, J., Nelson, E., Indelman, V., Michael, N., & Dellaert, F. (2015).

Distributed real‐time cooperative localization and mapping using an

uncertainty‐aware expectation maximization approach. IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pp 5807–

5814. .https://doi.org/10.1109/ICRA.2015.7140012

Durrant‐Whyte, H., & Bailey, T. (2006). Simultaneous localization and

mapping: Part I. IEEE Robotics & Automation Magazine, 13(2), 99–110.

https://doi.org/10.1109/MRA.2006.1638022

Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., & Burgard, W.

(2012). An evaluation of the RGB‐D SLAM system. IEEE International

Conference on Robotics and Automation (ICRA). https://doi.org/ 10.

1109/ICRA.2012.6225199

Forster, C., Carlone, L., Dellaert, F., & Scaramuzza, D. (2017). On‐manifold

preintegration for real‐time visual‐inertial odometry. IEEE Transactions

on Robotics, 33(1), 1–21. https://doi.org/10.1109/TRO.2016.2597321

Forster, C., Pizzoli, M., & Scaramuzza, D. (2013). Air‐ground localization

and map augmentation using monocular dense reconstruction. IEEE/

RSJ International Conference on Intelligent Robots and Systems

(IROS). https://doi.org/10.1109/IROS.2013.6696924

Grisetti, G., Kümmerle, R., Stachniss, C., & Burgard, W. (2011). A tutorial

on graph‐based SLAM. IEEE Intelligent Transportation Systems Magazine,

2(4), 31–43. https://doi.org/10.1109/MITS.2010.939925

Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for

grid mapping with Rao‐Blackwellized particle filters. IEEE Transactions

on Robotics, 23(1), 34–46. https://doi.org/10.1109/TRO.2006.889486

Hellerer, M., Schuster, M. J., & Lichtenheldt, R. (2016). Software‐in‐the‐
loop simulation of a planetary rover. International Symposium on

Artificial Intelligence, Robotics and Automation in Space (i‐SAIRAS).
Hesch, J. A., Kottas, D. G., Bowman, S. L., & Roumeliotis, S. I. (2014).

Camera‐imu‐based localization: Observability analysis and consis-

tency improvement. International Journal of Robotics Research, 33(1),

182–201. https://doi.org/10.1177/0278364913509675

Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual

information. IEEE Transactions on Pattern Analysis and Machine Intelligence

(IPAMI), 30(2), 328–341. https://doi.org/10.1109/TPAMI.2007.1166

Hirschmüller, H., Innocent, P. R., & Garibaldi, J. M. (2002). Fast,

unconstrained camera motion estimation from stereo without

tracking and robust statistics.IEEE International Conference on

Control, Automation, Robotics and Vision (ICARCV). https://doi.org/

10.1109/ICARCV.2002.1238577

Holz, D. & Behnke, S. (2014). Registration of non‐uniform density 3D

point clouds using approximate surface reconstruction. International

Symposium on Robotics (ISR) and the German Conference on

Robotics (ROBOTIK), Munich, Germany.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W.

(2013). OctoMap: An efficient probabilistic 3D mapping framework

based on octrees. Autonomous Robots, 34(3), 189–206. https://doi.org/

10.1007/s10514‐012‐9321‐0. http://octomap.github.com

Kaess, M. (2013). AprilTags C++ Library. http://people.csail.mit.edu/kaess/

apriltags Accessed 3 January 2017.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F.

(2012). iSAM2: Incremental smoothing and mapping using the Bayes

26 | SCHUSTER ET AL.

http://orcid.org/0000-0002-6983-3719
https://doi.org/10.1109/ICRA.2013.6630557
https://doi.org/10.1109/ICRA.2013.6630557
https://doi.org/10.1109/ICRA.2013.6631396
https://doi.org/10.1109/IROS.2014.6942805
https://doi.org/10.1109/IROS.2014.6942805
https://doi.org/10.1109/IROS.2015.7354182
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/ICRA.2013.6631323
https://doi.org/10.1109/ICRA.2013.6631323
https://collab.cc.gatech.edu/borg/gtsam
https://doi.org/10.1109/ICRA.2015.7140012
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/ 10.1109/ICRA.2012.6225199
https://doi.org/ 10.1109/ICRA.2012.6225199
https://doi.org/10.1109/TRO.2016.2597321
https://doi.org/10.1109/IROS.2013.6696924
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1177/0278364913509675
https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1109/ICARCV.2002.1238577
https://doi.org/10.1109/ICARCV.2002.1238577
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0
http://octomap.github.com
http://people.csail.mit.edu/kaess/apriltags
http://people.csail.mit.edu/kaess/apriltags

tree. International Journal of Robotics Research, 31, 217–236. https://

doi.org/10.1177/0278364911430419

Kanzog, C. (2017). ROBEX ‐ Robotic Exploration of Extreme Environ-

ments. http://www.robex‐allianz.de/en/ Accessed 19 October 2017.

Kim, B., Kaess, M., Fletcher, L., Leonard, J., Bachrach, A., Roy, N., & Teller, S.

(2010). Multiple relative pose graphs for robust cooperative mapping.

IEEE International Conference on Robotics and Automation (ICRA).

https://doi.org/10.1109/ROBOT.2010.5509154

Koch, P. & Lacroix, S. (2016). Managing environment models in multi‐
robot teams. IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp 5722–5728. https://doi.org/10.1109/IROS.

2016.7759842

Kschischang, F. R., Frey, B. J., & Loeliger, H. ‐A. (2001). Factor graphs and
the sum‐product Algorithm. IEEE Transactions on Information Theory,

47(2), 498–519. https://doi.org/10.1109/18.910572

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011).

g2o: A general framework for graph optimization. IEEE International

Conference on Robotics and Automation (ICRA). https://doi.org/10.

1109/ICRA.2011.5979949

Kümmerle, R., Steder, B., Dornhege, C., Kleiner, A., Grisetti, G., & Burgard, W.

(2011). Large scale graph‐based SLAM using aerial images as prior

information. Autonomous Robots, 30(1), 25–39. https://doi.org/10.1007/

s10514‐010‐9204‐1
Labbé, M. & Michaud, F. (2014). Online global loop closure detection for

large‐scale multi‐session graph‐based SLAM. IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). https://doi.org/

10.1109/IROS.2014.6942926

Latif, Y., Cadena, C., & Neira, J. (2014). Robust graph SLAM back‐ends: A
comparative analysis. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). https://doi.org/10.1109/IROS.2014.6942929

Lázaro, M. T., Paz, L. M., Piniés, P., Castellanos, J. A., & Grisetti, G. (2013).

Multi‐robot slam using condensed measurements. IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). https://

doi.org/10.1109/IROS.2013.6696483

Lee, G. H., Fraundorfer, F., & Pollefeys, M. (2013). Robust pose‐graph
loop‐closures with expectation‐maximization. IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). https://doi.org/

10.1109/IROS.2013.6696406

Lehner, H., Schuster, M. J., Bodenmüller, T., & Kriegel, S. (2017).

Exploration with active loop closing: A trade‐off between exploration

efficiency and map quality. IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS).

Leishman, R. C., McLain, T. W., & Beard, R. W. (2013). Relative navigation

approach for vision‐based aerial GPS‐denied navigation. International

Conference on Unmanned Aircraft Systems (ICUAS). https://doi.org/

10.1109/ICUAS.2013.6564707

Li, M., & Mourikis, A. I. (2013). High‐precision, consistent EKF‐based visual‐
inertial odometry. International Journal of Robotics Research, 32(6), 690–

711. https://doi.org/10.1177/0278364913481251

Li, X., & Guskov, I. (2005). Multi‐scale features for approximate alignment

of point‐based surfaces. Eurographics Symposium on Geometry

Processing.

Lupton, T., & Sukkarieh, S. (2012). Visual‐inertial‐aided navigation for

high‐dynamic motion in built environments without initial conditions.

IEEE Transactions on Robotics, 28(1), 61–76. https://doi.org/10.1109/

TRO.2011.2170332

Mei, C., Sibley, G., Cummins, M., Newman, P., & Reid, I. (2011). RSLAM: A

system for large‐scale mapping in constant‐time using stereo.

International Journal of Computer Vision, 94(2), 198–214. https://doi.

org/10.1007/s11263‐010‐0361‐7
Mendes, E., Koch, P., & Lacroix, S. (2016). ICP‐based pose‐graph SLAM.

IEEE International Symposium on Safety, Security, and Rescue

Robotics (SSRR), 195‐200. IEEE.
Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., &

Tadokoro, S. (2012). Collaborative mapping of an earthquake‐

damaged building via ground and aerial robots. Journal of Field

Robotics, 29(5), 832–841. https://doi.org/10.1002/rob.v29.5

Mohanarajah, G., Usenko, V., Singh, M., D’Andrea, R., & Waibel, M.

(2015). Cloud‐based collaborative 3D mapping in real‐time with

low‐cost robots. IEEE Transactions on Automation Science and

Engineering, 12(2), 423–431. https://doi.org/10.1109/TASE.2015.

2408456

Mourikis, A. I., & Roumeliotis, S. I. (2007). A multi‐state constraint Kalman

filter for vision‐aided inertial navigation. IEEE international Confer-

ence on Robotics and Automation (ICRA).https://doi.org/10.1109/

ROBOT.2007.364024

Nagatani, K., Okada, Y., Tokunaga, N., Kiribayashi, S., Yoshida, K., Ohno, K.,

& Koyanagi, E. (2011). Multirobot exploration for search and rescue

missions: A report on map building in RoboCupRescue 2009. Journal of

Field Robotics, 28(3), 373–387. https://doi.org/10.1002/rob.v28.3

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D.,

Davison, A. J., … Fitzgibbon, A. (2011). KinectFusion: Real‐time

dense surface mapping and tracking. IEEE International Sympo-

sium on Mixed and Augmented Reality (ISMAR). https://doi.org/

10.1109/ISMAR.2011.6092378

Nüchter, A., Lingemann, K., Hertzberg, J., & Surmann, H. (2007). 6D SLAM –

3D mapping outdoor environments. Journal of Field Robotics, 24(8‐9),
699–722. https://doi.org/10.1002/(ISSN)1556‐4967

Olson, E. (2011). AprilTag: A robust and flexible visual fiducial system.

IEEE International Conference on Robotics and Automation (ICRA).

https://doi.org/10.1109/ICRA.2011.5979561

Piniés, P., & Tardós, J. D. (2008). Large‐scale SLAM building conditionally

independent local maps: Application to monocular vision. IEEE

Transactions on Robotics, 24(5), 1094–1106. https://doi.org/10.1109/

TRO.2008.2004636

Quang, P. B., Musso, C., & Le Gland, F. (2010). An insight into the issue of

dimensionality in particle filtering. Conference on Information Fusion

(FUSION). https://doi.org/10.1109/ICIF.2010.5712050

Reid, R. & Bräunl, T. (2011). Large‐scale multi‐robot mapping in

MAGIC 2010. IEEE Conference on Robotics, Automation and

Mechatronics (RAM), pp 239–244. https://doi.org/10.1109/

RAMECH.2011.6070489

Roumeliotis, S. I. & Burdick, J. W. (2002). Stochastic cloning: A generalized

framework for processing relative state measurements. IEEE Inter-

national Conference on Robotics and Automation (ICRA). https://doi.

org/10.1109/ROBOT.2002.1014801

Rusu, R. B. & Cousins, S. (2011). 3D is here: Point cloud library (PCL).

IEEE International Conference on Robotics and Automation (ICRA).

https://doi.org/10.1109/ICRA.2011.5980567

Saeedi, S., Trentini, M., Seto, M., & Li, H. (2016). Multiple‐robot simultaneous

localization and mapping: A review. Journal of Field Robotics, 33(1), 3–46.

https://doi.org/10.1002/rob.21620 Accessed 30 August 2016.

Schadler, M., Stückler, J., & Behnke, S. (2014). Data set Spacebot Arena.

http://www.ais.uni‐bonn.de/mav_registration/

Schmid, K., Lutz, P., Tomić, T., Mair, E., & Hirschmüller, H. (2014a).

Autonomous vision‐based micro air vehicle for indoor and outdoor

navigation. Journal of Field Robotics, 31(4), 537–570. https://doi.org/

10.1002/rob.21506

Schmid, K., Ruess, F., & Burschka, D. (2014b). Local reference filter for life‐
long vision aided inertial navigation. Conference on Information

Fusion (FUSION).

Schmid, K., Ruess, F., Suppa, M., & Burschka, D. (2012). State estimation for

highly dynamic flying Systems using key frame odometry with varying

time delays. IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). https://doi.org/10.1109/IROS.2012.6385969

Schuster, M. J., Brand, C., Hirschmüller, H., Suppa, M., & Beetz, M.

(2015). Multi‐robot 6D Graph SLAM connecting decoupled local

reference filters. IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), Hamburg, Germany. https://doi.

org/10.1109/IROS.2015.7354094

SCHUSTER ET AL. | 27

https://doi.org/10.1177/0278364911430419
https://doi.org/10.1177/0278364911430419
http://www.robex-allianz.de/en/
https://doi.org/10.1109/ROBOT.2010.5509154
https://doi.org/10.1109/IROS.2016.7759842
https://doi.org/10.1109/IROS.2016.7759842
https://doi.org/10.1109/18.910572
https://doi.org/10.1109/ICRA.2011.5979949
https://doi.org/10.1109/ICRA.2011.5979949
https://doi.org/10.1007/s10514-010-9204-1
https://doi.org/10.1007/s10514-010-9204-1
https://doi.org/10.1109/IROS.2014.6942926
https://doi.org/10.1109/IROS.2014.6942926
https://doi.org/10.1109/IROS.2014.6942929
https://doi.org/10.1109/IROS.2013.6696483
https://doi.org/10.1109/IROS.2013.6696483
https://doi.org/10.1109/IROS.2013.6696406
https://doi.org/10.1109/IROS.2013.6696406
https://doi.org/10.1109/ICUAS.2013.6564707
https://doi.org/10.1109/ICUAS.2013.6564707
https://doi.org/10.1177/0278364913481251
https://doi.org/10.1109/TRO.2011.2170332
https://doi.org/10.1109/TRO.2011.2170332
https://doi.org/10.1007/s11263-010-0361-7
https://doi.org/10.1007/s11263-010-0361-7
https://doi.org/10.1002/rob.v29.5
https://doi.org/10.1109/TASE.2015.2408456
https://doi.org/10.1109/TASE.2015.2408456
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1002/rob.v28.3
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1002/(ISSN)1556-4967
https://doi.org/10.1109/ICRA.2011.5979561
https://doi.org/10.1109/TRO.2008.2004636
https://doi.org/10.1109/TRO.2008.2004636
https://doi.org/10.1109/ICIF.2010.5712050
https://doi.org/10.1109/RAMECH.2011.6070489
https://doi.org/10.1109/RAMECH.2011.6070489
https://doi.org/10.1109/ROBOT.2002.1014801
https://doi.org/10.1109/ROBOT.2002.1014801
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1002/rob.21620
http://www.ais.uni-bonn.de/mav_registration/
https://doi.org/10.1002/rob.21506
https://doi.org/10.1002/rob.21506
https://doi.org/10.1109/IROS.2012.6385969
https://doi.org/10.1109/IROS.2015.7354094
https://doi.org/10.1109/IROS.2015.7354094

Schuster, M. J., Brunner, S. G., Bussmann, K., Büttner, S., Dömel, A.,

Hellerer, M., … Wedler, A. (2017). Towards autonomous planetary

exploration: The lightweight rover unit (LRU), its success in the

SpaceBotCamp challenge, and beyond. Journal of Intelligent &

Robotic Systems (JINT). https://doi.org/10.1007/s10846‐017‐0680‐9
Schweighofer, G., & Pinz, A. (2006). Robust pose estimation from a

planar target. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 28(12), 2024–2030. https://doi.org/10.1109/TPAMI.

2006.252

Souvannavong, F., Lemaréchal, C., Rastel, L., & Maurette, M. (2010).

Vision‐based motion estimation for the ExoMars rover. International

Symposium on Artificial Intelligence, Robotics and Automation in

Space (iSAIRAS).

Tombari, F. & Di Stefano, L. (2010). Object recognition in 3D scenes with

occlusions and clutter by Hough voting. Fourth Pacific‐Rim Sympo-

sium on Image and Video Technology (PSIVT). https://doi.org/10.

1109/PSIVT.2010.65

Tombari, F., Salti, S., & DiStefano, L. (2010). Unique signatures of histograms

for local surface description. In Daniilidis, K, Maragos, P., & Paragios, N.

(Eds.), Computer Vision – ECCV 2010: 11th European Conference on

Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceed-

ings, Part III (pp. 356–369). Berlin, Heidelberg: Springer.

Tombari, F., Salti, S., & DiStefano, L. (2011). A combined texture‐shape
descriptor for enhanced 3D feature matching. IEEE International

Conference on Image Processing (ICIP). https://doi.org/10.1109/ICIP.

2011.6116679

Umeyama, S. (1991). Least‐squares estimation of transformation para-

meters between two point patterns. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 13(4), 376–380. https://doi.org/10.

1109/34.88573

Vidal‐Calleja, T. A., Berger, C., Sola`, J., & Lacroix, S. (2011). Large scale

multiple robot visual mapping with heterogeneous landmarks in semi‐
structured terrain. Robotics and Autonomous Systems, 59(9), 654–674.

https://doi.org/10.1016/j.robot.2011.05.008

Wedler, A., Vayugundla, M., Lehner, H., Lehner, P., Schuster, M., Brunner, S., …

Wilde, M. (2017). First results of the ROBEX analogue mission campaign:

Robotic deployment of seismic networks for future Lunar missions.

International Astronautical Congress (IAC).

Weiss, S. M. (2012). Vision based navigation for micro helicopters (PhD

thesis). Zürich, Switzerland, Eidgenössische Technische Hochschu-

leETH Zürich.

Williams, S., Indelman, V., Kaess, M., Roberts, R., Leonard, J. J., &

Dellaert, F. (2014). Concurrent filtering and smoothing: A parallel

architecture for real‐time navigation and full smoothing. Interna-

tional Journal of Robotics Research, 33(12), 1544–1568. https://doi.

org/10.1177/0278364914531056

Williams, S. B., Dissanayake, G., & Durrant‐Whyte, H. (2002). Towards

multi‐vehicle simultaneous localisation and mapping. IEEE Interna-

tional Conference on Robotics and Automation (ICRA). https://doi.

org/10.1109/ROBOT.2002.1013647

Wolchover, N. (2011). NASA Gives Up On Stuck Mars Rover Spirit.

http://www.space.com/11773‐nasa‐mars‐rover‐spirit‐mission‐
ends.html Accessed 20 December 2017.

Yamauchi, B. (1998). Frontier‐based exploration using multiple robots.

Autonomous Agents. https://doi.org/10.1145/280765.280773

Yousif, K., Bab‐Hadiashar, A., & Hoseinnezhad, R. (2014). Real‐time

RGB‐D registration and mapping in texture‐less environments

using ranked order statistics. IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/

IROS.2014.6942925

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Schuster MJ, Schmid K, Brand C,

Beetz M. Distributed stereo vision‐based 6D localization and

mapping for multi‐robot teams. J Field Robotics. 2018;1–28.

https://doi.org/10.1002/rob.21812

APPENDIX: INDEX TO MULTIMEDIA
EXTENSIONS

Extension Media type Description

1 Video Localization and mapping with two

LRU rovers in our multi‐robot
experiment #2 discussed in Section

7.3 and in our outdoor multi‐robot
exploration experiment at the Moon‐
analogue site on the volcano

Mt. Etna presented in Section 8

28 | SCHUSTER ET AL.

https://doi.org/10.1007/s10846-017-0680-9
https://doi.org/10.1109/TPAMI.2006.252
https://doi.org/10.1109/TPAMI.2006.252
https://doi.org/10.1109/PSIVT.2010.65
https://doi.org/10.1109/PSIVT.2010.65
https://doi.org/10.1109/ICIP.2011.6116679
https://doi.org/10.1109/ICIP.2011.6116679
https://doi.org/10.1109/34.88573
https://doi.org/10.1109/34.88573
https://doi.org/10.1016/j.robot.2011.05.008
https://doi.org/10.1177/0278364914531056
https://doi.org/10.1177/0278364914531056
https://doi.org/10.1109/ROBOT.2002.1013647
https://doi.org/10.1109/ROBOT.2002.1013647
http://www.space.com/11773-nasa-mars-rover-spirit-mission-ends.html
http://www.space.com/11773-nasa-mars-rover-spirit-mission-ends.html
https://doi.org/10.1145/280765.280773
https://doi.org/10.1109/IROS.2014.6942925
https://doi.org/10.1109/IROS.2014.6942925
https://doi.org/10.1002/rob.21812

