Development Lines of Improved Physical Modeling at DLR

Window on Science Seminar
24 September 2018

US Air Force Research Laboratory (AFRL)
Wright-Patterson Air Force Base, OH, USA

Andreas Krumbein, Bernhard Eisfeld, Tobias Knopp, Normann Krimmelbein, Axel Probst, Silvia Probst, Vamshi Togiti, Marco Burnazzi, Daniela François, Philip Ströer

DLR, Institute for Aerodynamic and Flow Technology
C²A²S²E, Turbulence & Transition Group

Center for Computer Applications in AeroSpace Science and Engineering

Wissen für Morgen
The German Aerospace Center - DLR

- Three primary functions
 - National aeronautics and space research center of the Federal Republic of Germany

- Germany’s space agency

- One (out of a number of) project management agencies for national research projects
The German Aerospace Center - DLR

- Three primary functions
 - National aeronautics and space research center of the Federal Republic of Germany
 - Personnel: ~ 6000
 - Germany’s space agency
 - Personnel: ~ 800
 - One (out of a number of) project management agencies for national research projects
 - Personnel: ~ 1200
The German Aerospace Center - DLR

- 6 research areas:
 - Aeronautics
 - Space
 - Energy
 - Transport
 - Digitalisation (new)
 - Security (new)

- Institute for Aerodynamic and Flow Technology

- 8100 employees in 40 institutes at 20 sites in Germany

Braunschweig: H. Blenk, A. Busemann, …

Göttingen: L. Prandtl, H. Schlichting, W. Tollmien, Th. von Kármán, …
Institute for Aerodynamic and Flow Technology

- Research and work areas
 - Software Development
 - Aircraft Aerodynamics
 - Aircraft Design and Assessment
 - Experimental Methods
 - Military Aircraft
 - Helicopter Aerodynamics
 - High-Speed-Configurations
 - Spacecraft
 - Aeroacoustics
 - Technical Flows
 - Flow Measurement Technology
 - Acoustic Measurement Technology
 - Hardware
Institute for Aerodynamic and Flow Technology

- Research and work areas
 - Software Development
 - Aircraft Aerodynamics
 - Aircraft Design and Assessment
 - Experimental Methods
 - Military Aircraft
 - Helicopter Aerodynamics
 - High-Speed-Configurations
 - Spacecraft
 - Aeroacoustics
 - Technical Flows
 - Flow Measurement Technology
 - Acoustic Measurement Technology
 - Hardware
Outline

- Introduction
- Reynolds stress models (RSM)
- Scale resolving simulations (SRS)
- Transition prediction and modeling
- Turbulence modeling improvements
- Outlook
Introduction

Overview

- C²A²S²E – Numerical Methods Branch → CFD Code Development
 - TAU code – external aerodynamics, unstructured, FV, compressible
 → air vehicles
 - THETA code – internal/external flows, unstructured, FV, incompressible
 → combustion, wind turbines, two-phase flows (gas/liquid)
 - Flucs (FLexible Unstructured CFD Software) – external aerodynamics
 → DLR’s ‘next generation’ flow solver
 → unstructured, 2nd order FV branch + HO-DG-branch, compressible/incompressible
 → massive hybrid parallelization
 → flow-solver component of a multi-disciplinary simulation system FlowSimulator
 → development currently ongoing
 → 1st release planned for 12/2021

- Main Customers
 - Internal: Transport Aircraft, Helicopters (incl. Wind Turbines), High-Speed Configurations, Spacecraft
 - External: Airbus Operations

- Focus: Transport Type Aircraft
Our major driver: *The Digital Aircraft*

Numerical Analysis of Full Flight Envelope

- Extension of confidence region towards edge of flight envelope
 - Unsteady flows
 - Strong non-linearities
 - Separated flow regions
 - Strong shocks
 - Shock/boundary-layer interaction
 - …
 - CFD solver capabilities growing
 - Discretization schemes
 - Grid generation, higher resolution, geometrical complexity and details, …
 - HPC capacities and parallelization strategies
 - …

- Turbulence and transition models have to keep up with solver capabilities.
 - Coupling and extension of models needed.
Vision: **The Digital Aircraft**

Future goal for CFD

- Aircraft design and analysis based strongly on numerical simulation
- Bring down number of computations necessary and free from current configuration knowledge
- Two basic concepts
 - Time accurate maneuver simulations: *Flying the equations*
 - Generation of aerodynamic/aeroelastic data: *Flying through the data base*
Vision: The Digital Aircraft

Future goal for CFD

- Aircraft design and analysis based strongly on numerical simulation
- Bring down number of computations necessary and free from current configuration knowledge
- Two basic concepts
 - Time accurate maneuver simulations: *Flying the equations*
 - Physical Modeling for High Fidelity CFD
 - Generation of aerodynamic/aeroelastic data: *Flying through the data base*
Vision: The Digital Aircraft

Future goals for CFD:
- Aircraft design and analysis based strongly on numerical simulation
- Bring down number of computations necessary and free from current configuration knowledge
- Two basic concepts:
 - Time accurate maneuver simulations: Flying the equations
 - Generation of aerodynamic/aeroelastic data: Flying through the database
Vision: The Digital Aircraft

Numerical Analysis of Full Flight Envelope

- For accurate predictions, besides high grid resolution and accurate numerical handling of the equations, physical modeling is a key issue.

- **Four development lines:**
 1. Reynolds stress models (RSM)
 - As standard RANS approach for any kind of configuration (including highly complex industrial configurations)
 2. Scale resolving simulations (SRS)
 - Targeted application for specific components of aircraft or military configurations
 3. Transition prediction and modeling
 - Necessary condition for accurate results of turbulence models within the full flight envelope
 4. Turbulence modeling improvements
 - Targeted experimental (physical & numerical) investigations for specific flow phenomena
Reynolds stress models

Differential RSM (DRSM)

- DRSM represent highest level of RANS-modeling
 - Individual equations for stress components
 - Anisotropy of turbulence inherently accounted for
 - Effects of rotation and streamline curvature included
 - No corrections for free vortices necessary
 - No stagnation point anomaly
 - 7 model equations
- Sometimes lack of robustness for complex configurations
- DRSM in TAU
 - SSG/LRR-ω model (standard model)
 - Based on Menter’s BSL ω-equation
 - Exact transformation to $g = 1/\sqrt{\omega}$ and to $\tilde{\omega} = ln(\omega)$
 - Higher numerical stability + no near wall grid dependence
 - ε^h-JHh-v2 model (Jakirlic-Hanjalic + ISM of TU-BS)
 - Based on homogeneous dissipation rate ε^h
 - Advanced near-wall treatment + anisotropic dissipation
Reynolds stress models
Application of Reynolds Stress Models

Realistic aircraft configuration
Re = 40 × 10^6, M = 0.85, \(\alpha = 2.0^\circ \)

- Significant better shock prediction
- Very different separation pattern
Reynolds stress models

Application of Reynolds Stress Models

NASA Common Research Model (CRM), DWP-4

Re = 5 × 10^6, M = 0.85, α = 2.0, 2.75, …, 4.0

Grids: L3(5M), L4(17M)

RSM shows very low grid dependence
Reynolds stress models

Application of Reynolds Stress Models

NASA Common Research Model (CRM)

\[\frac{Re}{Ma} = 5 \times 10^6 / 0.85 \]

Reynolds stress models
Application of Reynolds Stress Models

Flow-through nacelle at stall
Re = 1.3 \times 10^6, M = 0.11

- URANS combined with e^N method
- Measured separation onset around \(\alpha \geq 24^\circ \)
- Improvement by DRSM
- In particular \(\varepsilon^h \)-JHh-v2 model
 - Coefficients depend on turbulence quantities
 - Uses \(\varepsilon^h \) instead of \(\varepsilon \): by targeted calibration matching with DNS data near walls achieved

Source: PhD thesis A. Probst

Oil-flow picture (left) and JHh-v2 RSM (right)
Scale resolving simulations

Basic approach

- Classical hybrid RANS/LES models
 - Detached-Eddy Simulation (DES, 1997)
 - Delayed DES (DDES, 2006)
 - Improved DDES (IDDES, 2008)
 - Coupled with SA or $k-\omega$ type RANS models

- Numerics
 - 2nd order central spatial discretization of all equations
 - 4th order matrix artificial dissipation with $k^{(4)} = 1/128$
 - Skew-symmetric convective fluxes (for kinetic energy conservation)
 - Low Mach number preconditioning (LMP) for $M < 0.3$
 - 2nd order dual-time stepping

- Range of applicability
 - Flows with massive local separations
 - Clear distinction between attached (stable) and separated (unstable) regions

NASA CRM at low speed and high AoA

DLR-F15
3-element high-lift airfoil near maximum lift
Scale resolving simulations
Sample applications of basic approach

NASA tandem cylinder

TAU results: green

Mean pressure

Pressure fluctuations

- Good prediction all approaches on both cylinders
- Influence of numerical method and underlying RANS model small

Experimental setup in WT

- \(L/D = 3.7 \)
- \(M = 0.1285 \)
- \(Re_D = 1.66 \times 10^5 \)

• k-ω based models too "noisy"
→ Reason unclear
Scale resolving simulations
Sample applications of basic approach

SA-DDES

URANS with different turbulence models

- BART Experiment, trip 70-80°
- UniMan, KE URANS
- UniMan, LPKE URANS
- UniMan, SST URANS
- UniMan, EBRSM URANS

Turbulence simulations of NASA tandem cylinder

Experimental setup in WT

- \(\text{L/D} = 3.7 \)
- \(M = 0.1285 \)
- \(\text{Re}_D = 1.66 \times 10^5 \)

Pressure fluctuations

- Influence of numerical method and underlying RANS model small

- \(\text{k-}\omega \) based models too “noisy”

\(\rightarrow \) Reason unclear
Scale resolving simulations

Extended approach

- Improved Numerics
 - Better satisfying general LES requirements
 -> Very high accuracy -> low dissipation (LD) and low dispersion (LD2)
 - LD2-scheme: 2nd-order central scheme with
 - Reduced dissipation settings (optimized)
 - Reduced dispersion by appropriate flux reconstruction
 - Test with pure LES applications, e.g. periodic 2D channel flow
 - Switch of standard RANS scheme into LD2 scheme for LES: apply optimized numerics in LES regions only
 -> Adaptive numerical scheme for hybrid RANS/LES computations

<table>
<thead>
<tr>
<th></th>
<th>Re_τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS</td>
<td>395</td>
</tr>
<tr>
<td>Ref. Num.</td>
<td>358</td>
</tr>
<tr>
<td>LD</td>
<td>389</td>
</tr>
<tr>
<td>LD2</td>
<td>393</td>
</tr>
</tbody>
</table>

WR-LES: given Re_δ (mass flow), target quantity Re_τ (wall shear stress)

Velocity profile

Resolved Reynolds stresses

2D-Channel, $Re_\tau = 6875$

LES-WALE
Scale resolving simulations
Sample applications of extended approach

Flow separation at backward facing step (BFS)

- SA-DDES of backward-facing step; Re_h = 38,000
- Optimized scheme in LES region, standard stable scheme in RANS region
- Switch based on suitable sensor function (l_{hyb}/l_{RANS} sensor)

Standard scheme

Optimized scheme: adaptive RANS/LES numerics

grey: Optimized LES-scheme in separated/re-attachment region

white: RANS-scheme in attached flow

Improved resolution in LES region (Q-criterion)
Scale resolving simulations
Sample applications of extended approach

Aircraft nacelle in side wind (1)

⇒ SST-IDDES + adaptive scheme with LD2

\[DC60 = \frac{P_{tot}(60^\circ) - P_{tot}(360^\circ)}{q_\infty} \]
Scale resolving simulations
Sample applications of extended approach

Aircraft nacelle in side wind (2)
→ SST-IDDES + adaptive scheme with LD2

Intake Distortion Measure
(Values in percentage of target operating point)

- RANS k-w SST
- IDDES k-w SST

Shock-induced separation
LD2 scheme
Reference scheme
Scale resolving simulations

Extended approach

→ Improved Modeling → *Towards extension of the applicability range from massive to incipient separation*

→ Three areas
 1. RANS/LES sensors for pressure-induced separation
 2. Acceleration of transition from RANS to LES (→ „grey area“ mitigation)
 3. Underlying RANS model (→ better representation of separation point)

1. RANS/LES sensors for pressure-induced separation

→ Shortcomings of DDES
 → No reliable “shielding” of attached BLs
 → No clear RANS/LES interface at separation

→ DLR development Algebraic DDES (ADDES)
 → Boundary-layer (BL) detection
 → Separation detection
 → Algebraic RANS/LES sensor
Scale resolving simulations

Extended approach

- Improved Modeling → ADDES

 1. **RANS/LES sensors for pressure-induced separation**

 - BL detection
 - algebraic BL criteria for U_{edge}
 - search algorithm to detect δ_{99}

 - Separation detection
 - Shape factor $H = \delta^*/\Theta \rightarrow H_{\text{crit}}$ as separation criterion (Castillo et al., 2004)
 - H_{crit} RANS-model dependent
 → calibration necessary

 - Algebraic RANS/LES sensor
 - RANS mode if: $d_w < \delta_{99}$ and $H < H_{\text{crit}}$
 - LES mode if: $H > H_{\text{crit}}$
Scale resolving simulations

Extended approach

- Improved Modeling → ADDES

Demonstration of separation detection

- Automatic injection of synthetic turbulence under development
Scale resolving simulations

Extended approach

2. Acceleration of transition from RANS to LES

- Hybrid RANS/LES of incipient separation suffers from “grey area”:
 - Weak separations rather stable w.r.t. outer disturbances
 - Hybrid RANS/LES switches to LES mode, but resolved turbulence is delayed
- Undefined modelling state with low total (modelled + resolved) turbulent stress

Techniques for grey area mitigation considered in TAU code:

1. **Stochastic forcing** of modeled turbulence
2. Modified **LES scale** considering **local vorticity** vector
 - Both 1. and 2. applicable to rather unstable separation or free shear flow
3. **Synthetic turbulence** generated from RANS data
 - Complex approach, but applicable to weakly separated or attached flow
Scale resolving simulations

Extended approach

1. Improved Modeling → Synthetic turbulence (RANS → LES)

2. Acceleration of transition from RANS to LES

- Initial implementation of Synthetic Eddy Method (SEM, 2006)
 - Artificial fluctuations generated from given turbulence statistics
 - First tests with SEM applied at inflow boundary:
 - 2D channel flow
 - Rounded step with separation:

<table>
<thead>
<tr>
<th>Method</th>
<th>$x_{\text{separation}}$</th>
<th>$x_{\text{reattachment}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDDES</td>
<td>1.15</td>
<td>6.04</td>
</tr>
<tr>
<td>IDDES + SEM</td>
<td>0.72</td>
<td>4.99</td>
</tr>
<tr>
<td>LES (reference)</td>
<td>0.83</td>
<td>4.36</td>
</tr>
</tbody>
</table>

- Ongoing:
 - Full integration in hybrid RANS/LES (i.e. combination with ADDES)
Scale resolving simulations

Extended approach

- Improved Modeling → Synthetic turbulence (RANS → LES)
 - 2D wall-mounted hump

Snapshot of: $\lambda_2 = 5 \cdot (U/c)^2$
(SST-IDDES + SEM(x=-1); mand. time step)
Scale resolving simulations

Extended approach

- Improved Modeling → Synthetic turbulence
- DLR-F15 at $Re = 2 \times 10^6$ and $\alpha = 6$

Snapshots:

RANS/LES interfaces + synth. turb.

Specifically adapted grid

- Embedded WM-LES:
 1) Restricted to flap region
 2) SEM at interfaces
 3) Large grid-point savings possible:
 - high-resolution structured grid in LES region (flap + wake)
 - coarser unstructured outer part
 → -62% grid points (baseline grid: 27 mio. points)
Scale resolving simulations

Extended approach

- Improved Modeling → Synthetic turbulence
- DLR-F15 at \(Re = 2 \times 10^6 \) and \(\alpha = 6 \)

Cross-comparison with project partners from EU project Go4Hybrid

Mean surface pressure:

Mean skin friction:

- reasonable agreement between different „zonal“ approaches
Scale resolving simulations

Extended approach

- Improved Modeling → Modified LES scale using local vorticity vector ($\mathbf{\Omega}$)
- Transition from RANS to LES: Take into account local orientation of vortices

\[\Delta_\omega = \sqrt{N_x^2 \Delta_{y,max} \Delta_{z,max} + N_y^2 \Delta_{x,max} \Delta_{z,max} + N_z^2 \Delta_{x,max} \Delta_{y,max}} \]

Transonic nozzle jet flow: Δ_{max} vs. Δ_ω
Scale resolving simulations

Extended approach

→ Improved Modeling → Modified LES scale

Engine line:

- axial oscillations (Ma-cells) captured by all simulations
- "wave length" better predicted by HRLM (increasing phase shift with RANS)

Fan line:
Scale resolving simulations

Extended approach

3. Underlying RANS model

- RANS model determines inflow boundary and location of LES region
- DDES solution sensitivity w.r.t. RANS model
 - Low for flows with massive separation, e.g. airfoils at deep stall, step flows, …
 - Large for more practical flows, e.g. airfoil near stall, distorted intake flow, …

- Example: ONERA-A airfoil at maximum lift (Re = 2 Mio.)

- DDES at flight boundaries requires more advanced RANS models, i.e. Reynolds-stress models (RSM)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$x_{sep/l}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>0.83</td>
</tr>
<tr>
<td>SA</td>
<td>0.96</td>
</tr>
<tr>
<td>SSG/LRR RSM</td>
<td>0.89</td>
</tr>
<tr>
<td>ε^h-RSM</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Scale resolving simulations

Extended approach

3. Underlying RANS model
 - RANS model determines inflow boundary and location of LES region
 - DDES solution sensitivity w.r.t. RANS model
 - Low for flows with massive separation, e.g. airfoils at deep stall, step flows
 - Large for more practical flows, e.g. airfoil near stall, distorted intake flow, …

Example: ONERA-A airfoil at maximum lift (Re = 2 Mio.)

DDES at flight boundaries requires more advanced RANS models, i.e. Reynolds-stress models (RSM)

\[x_{sep}/l = \text{Experiment} 0.83, \text{SA} 0.96, \text{SSG/LRR RSM} 0.89, \epsilon_{h-RSM} 0.88 \]

François, Radespiel (ISM, TU-BS), Probst (DLR), 2014

Synthetic turbulence generator (STG)
- Synthetic turbulence generated from RANS data
- ADDES + RSM + STG
- for „locally unstable“ and „stable“ flow cases
Transition Prediction and Modeling

Transition Prediction Module

- e^N method
- Local, linear stability code
- 2-N-factor-method: N_{TS}, N_{CF}

- Line-in-flight cuts
 - Swept tapered wings

- Inviscid streamlines
 - Necessary for fuselages, nacelles etc.
 - Start at attachment line

- Execution of the stability code along these lines
 - One single transition point per cut/line.
 - Transition line is a polygonal line on the surface.

Automated local, linear stability code
- Frequency estimator for range of frequencies f
- Wave length estimator for range wave lengths λ

High grid resolution

Low grid resolution

Inviscid streamlines at BL-edge
Spanwise sections for BL code

Conical laminar BL code
Swept, tapered wings
Transition Prediction and Modeling

Application of Transition Prediction Module

NASA trapezoidal wing, 1st HiLiPW

\[M = 0.2, \quad Re = 4.3 \times 10^6, \quad \alpha = 6^\circ - 36^\circ \]

\[N_\text{TS} = 8.5, \quad N_\text{CF} = 8.5 \]
Transition Prediction and Modeling
Application of Transition Prediction Module

DLR A320 D-ATRA high-lift landing configuration

- $M = 0.2, \text{Re} = 17 \times 10^6$
- Two different grids

$\alpha = 10.0^\circ$

ΔC_L between computations:
- fully-turbulent vs.
- predicted transition
Transition Prediction and Modeling

Transport equation model – γ-Re$_{th}$ model

- Basic model covers TS-, bypass- and separation induced transition
- **DLR development:** CF-extension of the basic model \rightarrow γ-Re$_{th}$-CF model
- Coupled to Menter SST k-ω and SSG/LRR-ω/g turbulence models

Validation

- Inclined prolate 6:1 spheroid
- Re = 6.5x106, Ma = 0.13, α = 10.0°
- Mixed T-S/CF transition
Transition Prediction and Modeling
Application of Transition Equation Model

DLR-F4 Wing-Body

\[\text{Rec}_{\text{cm}} = 6.0 \times 10^6 \]
\[C_L = 0.4 \ (\alpha = -1.58) \]
\[M = 0.785 \]

\[\gamma - \text{Re}_\theta - \text{CF} + \text{RSM} \]

TU Braunschweig
Sickle Wing
Transition Prediction and Modeling
Application of Transition Equation Model

DLR-F4 Wing-Body

\[\text{Re}_{cm} = 6.0 \times 10^6 \]
\[C_L = 0.4 \ (\alpha = -1.58) \]
\[\text{M} = 0.785 \]

Ongoing and future activities
- Getting rid of this malfunction
- Extension to rotating systems
- Hybrid laminar-flow control (HLFC)
- Coupling to hybrid RANS/LES methods

TU Braunschweig
Sickle Wing
Turbulence modeling improvements

Need for better RANS turbulence models

- Today, simulation of *moderately separated* flows **not reliable**, neither with RANS, nor with hybrid RANS/LES methods (HRLM).
- RANS models needed for next decades
 - Due enormous computational costs for LES
 - Pure RANS → highly complex configurations
 - HRLM → components of aircraft or special configurations (fighter)
- Technology gap **must be closed**
 - Insignificant unsteadyness → RANS
 - Significant unsteadyness → hybrid RANS/LES
- Identification of significant physical phenomena necessary
 - Flow separation, boundary-layer representation, shock/BL interaction
 - Transition
 - Wake modeling, vortical flows
 - Engine jet flows, …

⇒ Dedicated RANS turbulence modeling improvements for specific flow phenomena
Turbulence modeling improvements

Change of current turbulence modeling paradigm

- Focus **not** on validation of existing models using experiments
- **Instead:** use experiments to derive specific model modifications
- **Twofold approach**
 - **Identify** significant physical **quantities and laws** for specific identified phenomena
 - Derive models satisfying identified laws
- **Design of experiments** for phenomenon specific flows of major relevance
 - Dedicated physical experiments in wind tunnel
 - Numerical experiments using LES/DNS
- Finally, go back to traditional validation using more complex cases.
Turbulence modeling improvements

Ongoing: Improvement for incipient separation

Step I: Establish a high-quality data base from experiments & DNS

Step II: Find law-of-the-wall for mean velocity and Reynolds stresses at dp/dx > 0

Step III: Use new wall-laws to improve RANS models

Reduction of „Karman constant“ with increasing adverse pressure gradient
Turbulence modeling improvements

Ongoing: Improvement for incipient separation

Step I:

A very first step towards validation:

Step II:

Step III:

Reduction of „Karman constant“ with increasing adverse pressure gradient

HGR-01 airfoil (VTP)

$\alpha=12.0^0$, $Re=0.65\times10^6$

$M=0.07$

separation point from exp.

standard models

new model
Turbulence modeling improvements

Further modeling activities

- **Improvements for general shear layer flows**
 - Based on experimental data from literature
 - Different data sets defining the anisotropy of the Reynolds shear-stresses
 - Boundary layer, plane jet, axisymmetric jet, plane mixing layer
 - Resolves the round-jet/plane-jet anomaly → both correct using the corresponding data set
 - Theory ready, implementation ongoing

- **Improvements for turbulent wake under APG**
 - Collaboration with Braunschweig University and NTS (St. Petersburg, Russia)
 - Braunschweig University carries out experiment
 - NTS does IDDES for the exp. test case
 - Recently started

- **Data-driven approaches for model augmentation**
 - Planned to start next year
Turbulence modeling improvements

Further modeling activities

- **Improvements for general shear layer flows**
 - Based on experimental data from literature
 - Different data sets defining the anisotropy of the Reynolds shear-stresses
 - Boundary layer, plane jet, axisymmetric jet, plane mixing layer
 - Resolves the round-jet/plane-jet anomaly → both correct using the corresponding data set
 - Theory ready, implementation ongoing

- **Improvements for turbulent wake under APG**
 - Collaboration with Braunschweig University and NTS (St. Petersburg, Russia)
 - Braunschweig University carries out experiment
 - NTS does IDDES for the exp. test case
 - Recently started

- **Data-driven approaches for model augmentation**
 - Planned to start next year
Turbulence modeling improvements

Further modeling activities

- **Improvements for general shear layer flows**
 - Based on experimental data from literature
 - Different data sets defining the **anisotropy** of the Reynolds shear-stresses
 - Boundary layer, plane jet, axisymmetric jet, plane mixing layer
 - Resolves the round-jet/plane-jet anomaly → both correct using the corresponding data set
 - Theory ready, implementation ongoing

- **Improvements for turbulent wake under APG**
 - Collaboration with Braunschweig University and NTS (St. Petersburg, Russia)
 - Braunschweig University carries out experiment
 - NTS does IDDES for the exp. test case
 - Recently started

- **Data-driven approaches for model augmentation**
 - Planned to start next year
Turbulence modeling improvements

Further modeling activities

- **Improvements for general shear layer flows**
 - Based on experimental data from literature
 - Different data sets defining the anisotropy of the Reynolds shear-stresses
 - Boundary layer, plane jet, axisymmetric jet, plane mixing layer
 - Resolves the round-jet/plane-jet anomaly → both correct using the corresponding data set
 - Theory ready, implementation ongoing

- **Improvements for turbulent wake under APG**
 - Collaboration with Braunschweig University and NTS (St. Petersburg, Russia)
 - Braunschweig University carries out experiment
 - NTS does IDDES for the exp. test case
 - Recently started

- **Data-driven approaches for model augmentation**
 - Planned to start next year
Turbulence modeling improvements

Further modeling activities

- **Improvements for general shear layer flows**
 - Based on experimental data from literature
 - Different data sets defining the **anisotropy** of the Reynolds shear-stresses
 - Boundary layer, plane jet, axisymmetric jet, plane mixing layer
 - Resolves the round-jet/plane-jet anomaly
 → both correct using the corresponding data set
 - Theory ready, implementation ongoing

- **Improvements for turbulent wake under APG**
 - Collaboration with Braunschweig University and NTS (St. Petersburg, Russia)
 - Braunschweig University carries out experiment
 - NTS does IDDES for the exp. test case
 - Recently started

- **Data-driven approaches for model augmentation**
 - Planned to start next year
Turbulence modeling improvements

Further modeling activities

- **Improvements for general shear layer flows**
 - Based on experimental data from literature
 - Different data sets defining the anisotropy of the Reynolds shear-stresses
 - Boundary layer, plane jet, axisymmetric jet, plane mixing layer
 - Resolves the round-jet/plane-jet anomaly
 → both correct using the corresponding data set
 - Theory ready, implementation ongoing

- **Improvements for turbulent wake under APG**
 - Collaboration with Braunschweig University and NTS (St. Petersburg, Russia)
 - Braunschweig University carries out experiment
 - NTS does IDDES for the exp. test case
 - Recently started

- **Data-driven approaches for model augmentation**
 - Planned to start next year