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Abstract

In wireless propagation transmitted signals are reflected, scattered and diffracted by

objects. Especially in urban canyons or inside buildings, the signal reaching the re-

ceiving antenna consists of multiple replicas of the transmitted signal, which are called

multipath components. The positioning accuracy might be drastically reduced due to

the distorted received signal by multipath components. Hence, positioning algorithms

need to mitigate the impact of multipath components on the received signal to obtain

an accurate position estimate.

With this thesis, we propose a paradigm shift in how to process the received sig-

nal in order to provide accurate position estimation for mobile receivers: rather than

mitigating multipath components we propose an algorithm to exploit multipath. We

call this algorithm Channel-SLAM. The basic idea of Channel-SLAM is to interpret

multipath components as signals emitted from so called virtual transmitters. These

virtual transmitters are inherently time synchronized to the physical transmitter and

static in their positions. In this thesis, we show that the presence of multipath compo-

nents allows positioning even if signals of only one physical transmitter are receivable.

The concept of virtual transmitters considers multipath propagation occurring due to

multiple number of reflections, diffractions or scattering as well as the combination of

these effects. Specifically, we derive a generic signal model to describe virtual trans-

mitters, where a distinct model detection for reflection, diffraction or scattering is not

necessary.

To use the information of the multipath components, Channel-SLAM estimates the

position of the virtual transmitters without the necessity of any prior information such

as a room-layout. The novelty of the algorithm is to estimate the position of the receiver

and the virtual transmitters simultaneously, which can be interpreted as simultaneous

localization and mapping (SLAM) with radio signals. Instead of mapping the physical

environment, Channel-SLAM maps the virtual transmitter positions and interprets

them as landmarks. To ease the computational complexity, a hierarchical particle filter

based on Rao-Blackwellization is derived that estimates the position of each virtual

transmitter using a separated particle filter. The derived hierarchical particle filter
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allows to use a different amount of particles in each particle filter associated to a virtual

transmitter. Additionally, we show that the number of particles can by dynamically

adapted during runtime which enables a significant performance gain.

In order to quantitatively analyze the performance and location accuracy of Channel-

SLAM, the posterior Cramér-Rao lower bound for Channel-SLAM is derived. Based

on simulations, the position accuracy of Channel-SLAM is compared to the posterior

Cramér-Rao lower bound. Especially for higher signal to noise ratios and beneficial

geometric relations, the performances of the position estimations of the virtual trans-

mitters using Channel-SLAM are close to the posterior Cramér-Rao lower bound.

We verify the performance of Channel-SLAM using broadband signals in different

scenarios. With our experiments we show that Channel-SLAM is able to accurately

estimate the mobile receiver position by exploiting multipath propagation even without

the prior information on the physical transmitter position. Furthermore, we confirm

that Channel-SLAM is able to determine virtual transmitter positions accurately.
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Chapter 1

Introduction

1.1 Positioning in Challenging Environments

With the proliferation of smartphones, the expectation on the position accuracy is

increasing [SGLSJBLR12]. Today, most smartphones are equipped with global nav-

igation satellite systems (GNSSs) receivers which allow to use applications on the

smartphones for navigation [BVD16] and provide sufficient position accuracies for mass

market application in open sky conditions. GNSSs consist of synchronized satellites

where each satellite transmits a periodic unique radio signal. By measuring the ar-

rival times, called time of arrivals (TOAs), the distance between the satellites at

known locations and the receiver can be estimated. The position of the receiver

can be obtained by trilateration from the estimated distances to a minimum num-

ber of four satellites. With GNSSs accurate position estimates can be obtained in

line-of-sight (LoS) conditions. The LoS propagation path is the direct path between

the physical transmitter and the receiver. However, indoors or in urban canyons

the GNSS positioning accuracy might be drastically reduced. In these situations,

the received GNSS signals might be blocked, degraded by multipath effects or re-

ceived with low power. To enhance the positioning performance indoors, different

methods and sensor systems can provide position information rather than relying on

GNSSs [LDBL07,GLN09,NK11,Har13,MPS14,DCD15]. Most of the indoor position-

ing systems use local infrastructure like positioning with radio frequency identifica-

tion (RFID) [Li211], mobile communication base-stations [STK05,Zha02], wireless local

area networks (WLANs) [KK04b] or ultra-wideband (UWB) [WS02,MCC+06,SW10b].

Especially, using WLAN for indoor positioning is a common approach because WLAN

infrastructure is widely deployed [LHC13, BP00]. However, also these wireless ra-

dio technologies experience multipath and non-line-of-sight (NLoS) propagation. In
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2 Chapter 1. Introduction

NLoS situations the direct path is shadowed or blocked. Thus, the transmitted sig-

nal travels not directly from the physical transmitter to the receiver, it is reflected,

diffracted or scattered before arriving at the receiver. The traveled distance of the

first detectable path has a delay offset to the geometrical line-of-sight (GLoS) path.

Therefore, most of the indoor positioning methods using WLAN are not based on dis-

tance estimation. Instead fingerprinting approaches are very common which measure

the received signal strengths (RSSs) of signals coming from nearby WLAN transmit-

ters [LDBL07,KK04a,KK04b]. Fingerprinting approaches consist typically of a training

phase and a positioning phase: In the training phase, RSSs measurements are recorded

and stored at defined locations together with the measurement location in order to

generate a RSSs map of the environment. During positioning phase, the position of

the receiver can be estimated by correlating the measured RSS with the preconstructed

map. The coordinates corresponding to the closest RSS match are returned as an es-

timate for the receiver position. The main drawback of the fingerprinting approach is

that generation and maintenance of the RSSs maps is time-consuming and expensive

when performed over wide areas.

1.2 Mitigating Multipath Propagation

Multipath propagation of signals is particularly problematic for the delay estima-

tion [Mau12,SW10a,SWW10,SW08]. When multipath propagation occurs, the trans-

mitted signal arrives at the receiver via multiple propagation paths. These propaga-

tion paths with different delays are caused by reflections, diffractions and scattering

of the radio signal. Hence, the signal at the receiving antenna consists of multiple

replicas of the transmitted signal, which are called multipath components (MPCs).

The delay estimation problem arises when MPCs degrade the ability to determine

the delay of the LoS path. If the differences in propagation time between MPCs are

less than the reciprocal of the transmission bandwidth, the MPCs are observed as

the envelope of their sum [Mau12, SW10a, SWW10, SW08]. Standard distance esti-

mation methods cannot resolve multipath propagation and are biased in multipath

propagation environments [PS96, Mau12, SW10a, SWW10, SW08]. In order to mit-

igate the influence of multipath propagation on the distance estimate, algorithms

like [TFvDN95, ANU08, FTH+99, KRW10, CFPFR09] estimate the channel impulse

response (CIR). Prominent classes of algorithms are based on maximum likelihood

[TFvDN95,ANU08,FTH+99] or on recursive Bayesian filters [KRW10,CFPFR09].

To retrieve the distance between the physical transmitter and the receiver, the

propagation path with the smallest delay of the CIR is treated as the LoS path. Even
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these advanced multipath mitigation algorithms reduce the multipath effects only to

a certain degree due to limited signal bandwidth and measurement noise [KRW10].

Additionally, treating the smallest delay as the LoS path may result in weak positioning

performance in NLoS situations.

1.3 Exploiting Multipath Propagation

This thesis proposes a paradigm shift in how to process the received signal in order

to provide accurate position estimation for mobile receivers: rather than mitigating

multipath we propose to exploit multipath. Analog to this thesis, multipath exploita-

tion instead of mitigation is attracting more and more interest. The authors of [DT09]

show that the surrounding environment can be estimated using multipath propaga-

tion with a non-static UWB radar. By extracting information on different features

like walls, edges and corners from the measured CIRs, the surrounding environment

is reconstructed. This idea was extended in [DT10], where these features are used

as landmarks to navigate with a simultaneous localization and mapping (SLAM) ap-

proach [SC86,SSC86,LDw91,DB06,BD06]. Similarly, [LTDU11] describes a SLAM ap-

proach to estimate the room dimensions as well as the receiver position based on UWB

by using single time reflected MPCs. Additionally, acoustic multipath components,

hence, echoes coming from an acoustic source and received by multiple microphones

can be used to estimate the room geometry [Plu13,DPW+13]. Furthermore, [KDV16]

use a single microphone located on a moving robot and acoustic echoes from an acoustic

source to estimate jointly the robot’s trajectory and the geometry of the room.

Besides estimating the room geometry, the authors of [TSRF06, KWC13] exploit

multipath propagation for positioning of mobile terminals with multipath fingerprint-

ing algorithms. The multipath fingerprinting algorithms rely on memorized CIRs,

which are measured and memorized for all possible receiver locations together with

the known coordinates of each CIR in an aforementioned training phase. During the

positioning phase, the multipath fingerprinting algorithms compare an estimated CIR

to the memorized CIRs, where the coordinates corresponding to the closest CIR match

are returned as an estimate for the receiver position.

Other multipath assisted positioning algorithms, like [SW09,FLMW13, LMLW15,

MWK14, WM12] use reflected MPCs as signals emitted from virtual transmitters

(VTs). Fig. 1.1 summarizes the idea of [SW09,FLMW13,LMLW15,MWK14,WM12]

with receiver 1 and receiver 2. The transmitted signal from the physical transmitter

is reflected on a reflecting surface, i.e. a wall, and reaches the receiver 1 and receiver

2. As shown in Fig. 1.1, these reflected MPCs can be considered as direct paths from
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Reflecting surface

Virtual transmitter (VT)

Receiver 1

Receiver 2

M
ir
ro
ri
n
g

Physical transmitter

Moving
receiver 3

Figure 1.1. Multipath component which are reflected on a wall can be considered as direct

paths from a virtual transmitter. The position of the virtual transmitter can be obtained

by mirroring the physical transmitter position at the wall.

a VT. The position of the VT can be obtained by mirroring the position of the phys-

ical transmitter at the wall. Hence, in order to use the reflected MPCs for locating

the receiver, the knowledge of the positions of walls and of the physical transmitter is

required to precalculate the VT positions.

1.4 Aim of this Thesis

State-of-the-art multipath assisted positioning algorithms require fingerprinting

databases or prior information on the building layout and physical transmitter po-

sitions in order to calculate VT positions. Hence, not only an accurate knowledge

of the physical transmitter positions and building layout are necessary; the building

layout must be stationary during positioning phase and doors, windows or furniture

must not be moved. Furthermore, algorithms like [SW09,FLMW13,LMLW15,KAT13,

MWK14,WM12,DT09,DT10, LTDU11] use only reflected multipath signals for posi-

tioning whereas scattered and diffracted MPCs are not considered for positioning.

The aim of the thesis is to propose a novel multipath assisted positioning algorithm

referred to as Channel-SLAM. Channel-SLAM considers a moving receiver and is suit-

able for GNSS denied areas like indoor environments. Similarly to other multipath
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assisted positioning approaches, Channel-SLAM interprets MPCs as LoS signals emit-

ted from VTs. Fig. 1.1 shows an example of Channel-SLAM, where receiver 3 receives

during its movement two MPCs for each time step: a LoS signal and a signal which is

reflected on a wall. When the receiver is moving, the reflection point is moving on the

surface as well. However, we can interpret the reflected signal as being emitted from a

VT which position is constant for the whole receiver movement. Inherently, the VT is

time synchronized to the physical transmitter.

Compared to state-of-the-art multipath assisted positioning algorithms, Channel-

SLAM has the following advantages:

• In addition to the reflected signals as shown in Fig. 1.1, Channel-SLAM con-

siders also paths occurring due to multiple number of reflections, diffractions or

scattering as well as the combination of these effects. We derive a generic model

to describe each MPC as a LoS path being emitted from a VT with unknown

but fixed position where a distinct model detection for reflection, diffraction or

scattering is not necessary. These VTs are inherently time synchronized to the

physical transmitter and static in their positions. Thus, each received MPC in-

creases the number of transmitters which may result in a more accurate position

estimate or may enable positioning when the number of physical transmitters is

insufficient. As a consequence, the presence of several MPCs allows position esti-

mation even if signals of only one physical transmitter are receivable. Interpreting

all MPCs as signals originated from VTs, Channel-SLAM enables positioning also

in situations where the position of the physical transmitter is unknown.

• Channel-SLAM does not require any prior information on the building layout

and can operate with only one single fixed physical transmitter. To use the

information of the MPCs, Channel-SLAM is based on recursive Bayesian filtering

and estimates the receiver position, velocity, clock bias and the VT positions

simultaneously. This simultaneous estimation can be interpreted as SLAM with

radio signals, see [SC86, LDw91, DB06, LKK+11]. Usually, SLAM approaches

estimate the user position and build a map of the environment simultaneously.

Instead of mapping the environment, Channel-SLAM maps the VT positions and

interprets them as landmarks. As a consequence, Channel-SLAM is not affected

by changes in the environment.

• Channel-SLAM does not rely on UWB signals. UWB signals have the advantage

to provide an accurate CIR estimation due to the fine delay resolution. How-

ever, UWB signals have to be of low power to be harmless to other systems

which limits the coverage distance. Instead, Channel-SLAM considers wideband
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signals which can be used to cover larger distances. Estimating the CIR is though

more challenging with wideband signals than with UWB signals, but works well

as elaborated in this work.

In order to use Channel-SLAM we propose a two level approach in this thesis: On

the first level, the multipath parameters for each MPC are estimated based on the re-

ceived wireless signal where we assume that the physical transmitter emits continuously

known wideband signals. For consistency between different time instances, the mul-

tipath parameter estimation algorithm needs to include a path association such that

distinct propagation paths are individually tracked over sequential time instances. We

use the algorithm called Kalman enhanced super resolution tracking (KEST), for the

estimation and tracking of MPCs [JWFP12]. On the second level, we propose two dif-

ferent implementations of Channel-SLAM: The first implementation of Channel-SLAM

assumes that the receiver is equipped with a linear antenna array aligned in moving

direction [GJW+16]. Hence, additional to the estimated delays, Channel-SLAM uses

angle of arrival (AoA) measurements to improve the positioning accuracy. Because of

ambiguities in the estimation of the VT positions, the physical transmitter position

and an initial prior information on the receiver position and moving direction to define

the coordinate system are mandatory. The second implementation of Channel-SLAM

uses only a single receiving antenna [GPU+17b]. To resolve the ambiguities, the second

implementation of Channel-SLAM fuses additional information coming from an iner-

tial measurement unit (IMU) to obtain heading information of the moving receiver.

The heading information of the IMU allows to improve the performance of Channel-

SLAM by resolving ambiguities. Thus, Channel-SLAM requires only the initial prior

information on the receiver position and moving direction to define the coordinate

system.

1.5 Structure of this Thesis and Major Contribu-

tions

This thesis comprises six chapters. Chapter 2.1 provides technical background on

multipath propagation, multipath parameter estimation algorithms and the principles

of positioning.

Chapter 3 gives an overview of the state-of-the-art of recursive Bayesian filtering.

First, we present as an optimal Bayesian filters the Kalman filter (KF), thereafter

we introduce as suboptimal Bayesian filters the extended Kalman filter (EKF) and
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particle filters (PFs) in linear domain and logarithmic domain [GZJ18]. The last part

of Chapter 3 describes briefly the SLAM approach based on recursive Bayesian filtering.

In Chapter 4, the Channel-SLAM algorithm is proposed and explained in all its de-

tails. First, we address the signal model to describe each MPC as a signal emitted from

a VT. Then, we describe the Channel-SLAM algorithm based on recursive Bayesian

filtering by a Rao-Blackwellized particle filter (RBPF). The contents of this chapter

have appeared in [GJ13,GJW+16,GPU+17b,GZJ18].

In Chapter 5, we quantitatively analyze the performance and location accuracy

of Channel-SLAM by deriving the posterior Cramér-Rao lower bound (PCRLB). We

evaluate and compare the position precision of Channel-SLAM to the derived PCRLB

based on simulations. The contents of this chapter have appeared in [GJW+16].

In Chapter 6 the performance of Channel-SLAM is evaluated by three measurement

campaigns using a channel sounder. The first measurement campaign considers a short

track in an indoor scenario where the receiver is mounted on a model train and equipped

with a linear antenna array. The second measurement campaign considers a moving

pedestrian, carrying a single receiving antenna and an IMU. To show that Channel-

SLAM is able to estimate the VT position as well as the pedestrian position accurately,

we conducted the second measurement campaign in front of a hangar with metallic

doors which act as a reflecting surface for the radio signal. The third measurement

campaign considers a pedestrian moving inside a building. The moving pedestrian

carries equivalently to the second measurement campaign a single receiving antenna

and an IMU. The contents of this chapter have appeared in [GJW+16,GPU+17b].

Finally, Chapter 7 concludes this work and discusses possible directions for future

research.





Chapter 2

Multipath Propagation and Position

Estimation

In the first part of this chapter we provide a survey of propagation mechanisms and

the different propagation effects of the wireless channel. Furthermore, we describe the

effect of band-limited signals in multipath propagation channels and the estimation of

the MPC. In the second part we describe distance estimation error sources and their

effect on the position estimation.

2.1 Multipath Propagation and Estimation

2.1.1 Multipath Propagation

The signal transferred through a wireless channel is altered by additive noise, inter-

ference, signal attenuation and multipath propagation. Multipath propagation is ex-

perienced when the transmitted signal arrives at the receiver via several propagation

paths. Hence, the signal at the receiving antenna consists of a superposition of multiple

versions of the transmitted signal, which are called MPCs. In acoustics or in optics,

MPCs are often referred to echoes or rays. The MPC with the smallest possible prop-

agation delay, the direct path is referred to the LoS path. The LoS path represents the

connection line between the physical transmitter and the receiver and has an absolute

propagation delay proportional to the geometrical distance divided by the speed of

light. For notational conveniences, the LoS propagation path is considered also as a

MPC in this thesis. All other propagation paths have longer delays than the LoS path

and are caused by reflections, diffractions and scattering of the impinging radio signal.

These propagation paths experience differences in attenuation, delay and phase shift

while traveling from the physical transmitter to the receiver.

9
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Diffraction

Receiver 2

Receiver 1

Reflection

Scattering LoS

Transmitter

Figure 2.1. Typical multipath scenario with a physical transmitter and two different

receiver positions. The different physical propagation effects are shown by the different

colors.

Fig. 2.1 illustrates a multipath scenario with a physical transmitter and two re-

ceivers, where the different physical propagation effects are shown by different colors.

Receiver 1 receives two MPCs, the LoS path indicated in green and a MPC which is

reflected at the front of the building indicated in red. Reflections occur on smooth

surfaces where the strength of the reflected signal depends on the reflection coefficient,

which in turn depends on the electric properties of the surface [Par00]. Fig. 2.1 depicts

by receiver 2 a NLoS situation where the direct path is blocked by the building. Even

though the direct path, i.e. the LoS path, is blocked, receiver 2 receives a signal: it is

the signal (indicated by the blue line) which is diffracted on the edge of the building

and a signal (indicated by the yellow line) which is scattered at the lamp post. Diffrac-

tion describes the bending of waves around edges. The propagation effect of scattering

occurs if a radio signal impinges an object, i.e. a lamp post, where the impinging

energy of the incoming wave is reflected in all directions [Rap96,BS87]. Geometrically,

scattering can be described as a fixed point, i.e. the lamp post, in the pathway of the

MPC.

As indicated by the moving receivers in Fig. 2.1, the received signal has geometrical

dependencies on the physical transmitter, the receiver positions and the environment.

In case of short motion of the physical transmitter, receiver or objects that interact

with the emitted signal the multipath propagation parameters are highly correlated.

This is indicated in Fig. 2.1, where the MPCs are received for both receiver positions

of the moving receiver 1 and receiver 2.

Mathematically, the behavior of the multipath channel can be described by the

time variant CIR h(tk, τ) where tk indicates the discrete time step, and τ is the delay
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of the MPC [Bel63]. According to [Bel63], the CIR h(tk, τ) can be assumed to be

constant for a short time interval T at time tk and time index k, with

h(tk, τ) =

N(tk)−1
∑

i=0

αi(tk) δ (τ − τi(tk)) , (2.1)

for T0 ≤ tk ≤ T0 + T , where N(tk) is the number of MPCs, τi(tk) is the delay, αi(tk)

the complex amplitude of the i-th MPC, and δ(·) stands for the Dirac distribution

[Tur72]. Generally, the CIR is a summation of an infinitive number of MPCs, however,

a practical receiver is only capable of capturing signals whose powers are above a

certain sensitivity level, thus, N(tk) MPCs. Considering a transmitted signal s(tk)

with a length smaller than T , the received noiseless signal y(tk) is the convolution of

the transmitted signal s(tk) and the CIR h(tk, τ), hence,

y(tk) = s(tk) ∗ h(tk, τ) (2.2)

=

∫ ∞

−∞

h(tk, τ) s(tk − τ) dτ (2.3)

=

N(tk)−1
∑

i=0

αi(tk) s(tk − τi(tk)) . (2.4)

The time variant CIR h(tk, τ) of (2.1) is the most popular way to describe the channel.

As shown in Fig. 2.2, the channel can also be described by:

• The time variant channel transfer function Hh(tk, f) which describes the time-

variant fading effects of the multipath components of the channel in the frequency

domain.

• The Doppler variant CIR S(νk, τ) which describes the dispersion in delay and

Doppler frequency of the channel.

• The Doppler variant channel transfer function D(νk, f) which describes the dou-

ble Fourier transform of the time-variant weight function, where the time-variance

is shown in both frequency domains.

These functions completely describe the behavior of the channel in time and/or fre-

quency domain. As indicated in Fig. 2.2, these functions can be derived from each

other by the Fourier transform F{·} [Bel63], where Ftk
{·} is the discrete-time Fourier

transform with respect to tk and F
−1
f {·} denotes the inverse discrete-time Fourier

transform with respect to f .
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Figure 2.2. Pairwise relations by the Fourier transform of the channel functions.

2.1.2 Bandlimited Received Signal

In the following, we assume that the transmitted signal s(tk) is band-limited with

bandwidth B and time-limited with a length smaller than T . Additionally, we consider

a receiver equipped with a linear antenna array. Using multiple antennas at the receiver,

the angle between the received MPC and a given coordinate axis can be determined

which is called AoA. Thus, the signal received by the l-th antenna at time tk sampled

with rate B, bin indices m = 0, . . . ,M − 1 and the delay τm = m
B

can be written as

yl(tk, τm) =

N(tk)−1
∑

i=0

αi(tk) al(θi(tk)) s(τm − τi,l(tk)) + n(τm) (2.5)

= ỹl(tk, τm) + n(τm) , (2.6)

for T0 ≤ tk ≤ T0 + T , where al(θi(tk)) denotes the response of the l-th receiving

antenna with respect to the phase center, θi(tk) the AoA, ỹl(tk, τm) is the sum of all

paths’ contributions and n(τm) denotes the white circular symmetric normal distributed

receiver noise with variance σ2
n. The expression given in (2.5) considers a linear antenna

array only, which can be extended to other types of antenna arrays able to measure the

two dimensional AoA separately. For the later derivations and evaluations in Chapter 5,

we write the sampled received signal of (2.5) in matrix notation, as

Y (tk) =








y1(tk, τ0) · · · y1(tk, τm) · · · y1(tk, τM−1)
...

. . .
...

. . .
...

yL(tk, τ0) · · · yL(tk, τm) · · · yL(tk, τM−1)








(2.7)



2.1. Multipath Propagation and Estimation 13

1

τ(tk)

τ 0
(t

k
)

τ 1
(t

k
)

τ 2
(t

k
)

τ 3
(t

k
)

Amplitude

Figure 2.3. Illustration of the effect of band-limitation. The transmitted signal s(tk) =

sinc (tkB) = sin(πtkB)
πtkB

is a band-limited signal with bandwidth B and transmitted trough a

multipath channel with 4 MPCs indicated in black. The received signal is the superposition,

hence, convolution of the transmitted signal with the CIR indicated in red.

and similarly the sum of all paths’ contribution for all antennas l = 1, . . . , L, as

Ỹ(tk) =








ỹ1(tk, τ0) · · · ỹ1(tk, τm) · · · ỹ1(tk, τM−1)
...

. . .
...

. . .
...

ỹL(tk, τ0) · · · ỹL(tk, τm) · · · ỹL(tk, τM−1)







. (2.8)

The CIR of (2.1) is represented as the sum of delayed and weighted Dirac distribu-

tions, each representing an individual MPC, with a sparse structure [Shu06]. However,

this sparse structure of the received measured signal Y (tk) is degraded by additive noise

and band-limitation of the physical transmitter and receiver hardware [Shu06]. Fig. 2.3

illustrates by an example the effect of band-limitation. The ideal CIR of (2.1) is shown

in black with four MPCs and normalized real valued amplitudes, where the first MPC

has a delay of τ0(tk), the second τ1(tk) = τ0(tk) + 1/B, the third τ2(tk) = τ0(tk) + 4/B

and the fourth τ3(tk) = τ0(tk)+6/B at time tk. We assume that the physical transmit-

ter emits a band-limited signal with rectangular power spectral density (PSD) which

corresponds to the time domain signal s(tk) = sinc (tkB) = sin(πtkB)
πtkB

with bandwidth

B. The signal arriving at τ0(tk) corresponds to the LoS propagation path and the dis-

tance estimate d(tk) between the physical transmitter and the receiver can be directly
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obtained by d(tk) = τ0(tk) · c, where c denotes the speed of light. As indicated by the

red curve in Fig. 2.3, the received signal is a superposition of multiple versions of the

transmitted signal. Especially, the maximum amplitude of the received signal is shifted

to the right caused by the closely spaced first and second MPC. As visualized by the

dashed lines, algorithms which detect the maximum peak as the LoS path might be

biased in multipath propagation environments [PS96].

2.1.3 Multipath Propagation Estimation

In order to obtain the sparse structure of the CIR from the measurements, multipath

estimation algorithms are necessary [KV96]. We can distinguish between static and dy-

namic multipath estimation algorithms. These algorithms fit a measured band-limited

CIR h(tk, τ) at discrete time steps tk and sampled delay τ , to a given model. Snapshot-

based multipath estimation algorithms independently estimate the CIR for each time

step tk. Examples for snapshot-based multipath estimation algorithms are paramet-

ric spectral estimators like multiple signal classification (MUSIC) [Sch86], ESPRIT

[RK89, HN95] or deterministic parametric estimators like the expectation maximiza-

tion (EM) [DLR77], RIMAX [Ric] or the space-alternating generalized expectation-

maximization (SAGE) [FTH+99] which are based on maximum likelihood (ML). A

crucial problem in snapshot-based multipath estimation is the model order detec-

tion, i.e., the number of MPCs for each time step which has been investigated in

e.g. [SS04, XRK94]. In contrast, dynamic multipath estimation algorithms incorpo-

rate the previous time information of a dynamic measurement scenario. As aforemen-

tioned, in a dynamic measurement scenario with a moving receiver and/or a mov-

ing physical transmitter, propagation paths can be observed for a certain time dura-

tion. This time duration depends on the physical transmitter, receiver positions and

on the surrounding environment, see e.g. [JWFPF12,WJ12a, Leh05, SRK09]. Algo-

rithms like [RSZ94,KRW10,JWFP12,CFPFR09,SRK09,WJG+16] allow to model the

time evolution for each MPC, e.g. [JWFPF12, JWFP12] use a KF, [SRK09] a EKF

or [KRW10] a PF to track the MPCs.

In this thesis, we use the dynamic multipath estimation algorithm named KEST

[JWFP12,WJD10,Wan15,Jos13] for estimating and tracking MPCs. Fig. 2.4 shows a

flow chart of KEST which consists of several SAGE-Kalman filters running in parallel.

KEST estimates the MPCs

Φ̂ (tk) =
[

φ̂0 (tk) , φ̂1 (tk) , . . . , φ̂N(tk)−1 (tk)
]

, (2.9)

where the i-th MPC is characterized by its parameters

φ̂i (tk) =
[

α̂i (tk) , θ̂i (tk) , τ̂i (tk)
]T

, (2.10)
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Figure 2.4. Flow chart of KEST which estimates and tracks the channel parameters

Φ̂ (tk) by several SAGE-Kalman filters running in parallel.

with the estimated complex amplitude α̂i (tk), AoA θ̂i (tk) and delay τ̂i (tk) at time step

tk. Additionally, KEST tracks the parameter changes ∆Φ̂ (tk) of the MPCs, which are

for simplicity not shown in Fig. 2.4. Each SAGE-Kalman filter consists of a KF which

tracks the MPCs Φ̂ (tk) and a SAGE estimator. Please note, KEST can use any ML

estimator. KF consists of two steps, a prediction and an update step (see Section 3.2

for a detailed description). In general the number of MPCs N(tk) is unknown and needs

to be detected for each time step tk. Hence, the KF uses the model order N(tk−1) and

the MPCs Φ̂ (tk−1) from the last time step tk−1 to predict the MPCs of the current

time step tk using a linear system model with additive normal distributed noise. The

predicted MPCs are used to initialize the SAGE algorithm. Afterwards, the SAGE

estimates are the inputs of the update step of the KF. Because changes in the model

order are possible at each time step, KEST runs several SAGE-Kalman filters in parallel

and erases and initializes MPCs. After parallel processing of the SAGE-Kalman filters,

the decision block decides the model order based on the residuals. For further details

about KEST, see [JWFP12,WJD10,Wan15,Jos13].

The authors of [JWFP12,WJD10,Wan15,Jos13] show that KEST is superior com-

pared to the snapshot-based multipath estimation algorithms. Even in critical scenarios

where two MPCs are close in state-space, KEST is able to effectively keep on track-

ing two MPCs. Additionally, KEST allows to smoothly and continuously model the

evolution of the CIR which is essential for Channel-SLAM.
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2.2 Radio Based Positioning

Positioning describes methods to determine the location of objects and persons. GNSS

receivers are well known to deliver very good position estimates under open sky con-

ditions [ME05,PS96,Kap05,HL98]. Also signals from terrestrial radio systems can be

used for radio based positioning and might be helpful to augment GNSS [SCGL05,

GG05,Gez08]. By measuring the signal travel times from multiple physical transmit-

ters at known locations to the receiver, the receiver position can be obtained. Assuming

ideal wave propagation conditions and a receiver clock which is synchronized to the

physical transmitter time, the distance between the physical transmitter i at position

rt,i and the receiver can be calculated as

di(tk) = c · (ta,i(tk)− tt,i(tk)) = ‖rt,i − ru(tk)‖ , (2.11)

where ta,i(tk) is the arrival time called TOA, tt,i(tk) is the time step of transmission

of physical transmitter i and ru(tk) the receiver position. As shown in Fig. 2.5 by the

dashed circles, the distances di(tk) defines a circle centered at the physical transmitter

position rt,i with radius di(tk). The receiver position can be estimated by trilateration:

finding the unique intersection of the circles as indicated by the cross. Similarly, po-

sitioning in three dimensions can be interpreted by finding the unique intersection of

several spheres.

However, usually the receiver clock is not synchronized to the physical transmitter

time. As the physical transmitters are synchronized, the measured travel times at the

receiver have a common clock bias bu(tk) which has to be estimated in addition to the

receiver position. Hence, we obtain from (2.11) the pseudorange ρi(tk), which is the

pseudo distance between the physical transmitter i and the receiver, with

ρi(tk) = di(tk) + c · bu(tk) . (2.12)

Most positioning algorithms assume that the signals propagate on a direct path,

i.e. the LoS path, from the physical transmitters to the receiver. However, in NLoS

propagation conditions, the direct path between the physical transmitter is blocked and

the signal travels not directly, but is reflected, diffracted or scattered before arriving at

the receiver. Thus, the traveled distance of the first detectable path at τ0(tk) introduces

a NLoS bias ǫn,i(tk) to the GLoS path at τG(tk) which is the dominant error source

for mobile positioning [CS98] as illustrated in Fig. 2.6a by an example. Additional

to NLoS propagation, the direct signal path between the physical transmitter and

the receiver may be interfered by multipath which adds a multipath error ǫm,i(tk)



2.2. Radio Based Positioning 17

x
Transmitter 1

rt,1

Transmitter 2
rt,2

Transmitter 3
rt,3

d1(tk)

ρ1(tk)

Receiver
ru(tk)

Figure 2.5. Two dimensional positioning of a receiver at position ru(tk) with trilatera-

tion using circles. The intersection point of circles, with center at the physical transmitter

positions rt,i and radius of the geometrical distance di(tk) between the physical transmit-

ter i and the receiver. However, the measured distance ρi(tk) is different from the true

geometrical distance di(tk).

[PS96]. An example of the multipath error is illustrated in Fig. 2.6b, the maximum

amplitude of the received signal is shifted to the right caused by the closely spaced

MPCs. Hence, algorithms which detect the maximum peak as the LoS path might be

biased in multipath propagation environments [PS96] as visualized by the dashed lines.

Furthermore, the pseudorange ρi(tk) is subject to a number of inaccuracies introduced

at the physical transmitter and receiver side, which are residual errors ǫr,i(tk) coming

from thermal noise and hardware effects. Taking these error sources into account, the

pseudorange ρi(tk) is

ρi(tk) = di(tk) + c · (bu(tk) + ǫm,i(tk) + ǫn,i(tk) + ǫr,i(tk)) . (2.13)

As indicated in Fig. 2.5, the pseudorange ρi(tk) is different from the true geometrical

distance di(tk) and may introduce a positioning error. To deal with these kind of error
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Figure 2.6. Illustration of the NLoS bias ǫn,i(tk) and multipath error ǫm,i(tk) for the

measured band-limited CIR of the physical transmitter i.

sources, the errors have to be modeled, see e.g. [WJMD09,GMK+12], and mitigated

as mentioned in Section 2.1.3. Please note, the pseudorange defined in (2.13) only

includes the errors occurring from transmissions from terrestrial radio systems, GNSS

pseudoranges include additional inaccuracies e.g. from the atmosphere or satellite,

see [ME05,PS96,Kap05,HL98].

To obtain the receiver position from the pseudorange ρi(tk) different methods

with different complexity and restrictions are available, where we can distinguish be-

tween snapshot-based and dynamic position estimation algorithms [SZT08, Men13].

Snapshot-based position estimation algorithms use only the parameters available at

a specific time step. Several approaches exist to solve the underlying problem which

belongs to the class of nonlinear optimization problems. Examples are [CS98] which

is based on ML or [CSMC04] which is based on least square (LS). Dynamic position

estimation algorithms use information about previous estimates. In dynamic position

estimation algorithms, it is assumed that the receiver follows a certain path which can

be integrated directly in the estimation problem in terms of transition or movement

models. Well-known methods for dynamic position estimation algorithms are based on

recursive Bayesian filtering, see Chapter 3, e.g. KF [Kal60], EKF [SSM62,WB95] or

PF [AMGC02].



Chapter 3

Recursive Bayesian Filtering

In the first part of this chapter, we introduce the principle of recursive Bayesian filtering.

Thereafter, we describe in Section 3.2 the KF, in Section 3.3 the EKF, and in Section 3.4

PFs as examples of recursive Bayesian filters. The last part of this chapter discusses

SLAM which is often solved by recursive Bayesian filtering.

3.1 Introduction to Recursive Bayesian Filtering

Dynamic systems can be described by state-space models where the state is only observ-

able by noisy measurements. Hence, the state is estimated using sequentially arriving

noisy measurements of the system. Usually, prior knowledge on the system dynamics

exists, which can be used to propose or apply restrictions on the state evolution. The

optimal approach to use the prior knowledge of the system dynamics and the mea-

surements in the estimation process is recursive Bayesian filtering. Recursive Bayesian

filtering refers to the Bayesian way of formulating the estimation of the state of a

time-varying system which is indirectly observed through noisy measurements.

Fig. 3.1 illustrates the relation of the states and measurements over adjacent time

instants by a dynamic Bayesian network (DBN). The true state at discrete time instant

tk is modeled by a random variable x(tk) following a hidden Markov model (HMM). In

a HMM, the state of interest x(tk) cannot be observed directly and is estimated from

the measurements z(tk). In our application we assume a first-order HMM, i.e. the

state x(tk) depends only on the state x(tk−1) and is independent from states x(t0:k−2).

As indicated in Fig. 3.1, we can describe the dynamic estimation based on a discrete

time formulation by two models:

1. The transition model,

x(tk) = f(x(tk−1) ,nt(tk)) , (3.1)

19
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Figure 3.1. First-order HMM representing the dynamic system with state x(tk) and

meaurements z(tk). The state is a hidden variable, which cannot be observed directly and

is estimated from the measurements z(tk).

which describes the state evolution from time instant tk−1 to time instant tk

employing a possibly nonlinear function f(·, ·) and process noise nt(tk). We

may express the transition model in a probabilistic way as the transition prior

p
(
x(tk)|x(tk−1)

)
which is the conditional probability distribution of the state

x(tk) at time instant tk given the previous state x(tk−1).

2. The measurement model,

z(tk) = h(x(tk) ,nh (tk)) , (3.2)

which relates the state vector to the measurements at time instant tk with a

possibly nonlinear function h(·, ·) and the measurement noise nh (tk). Similar to

the transition model, we may express the measurement model in a probabilistic

way with the likelihood p

(
z(tk)|x(tk)

)
which is the conditional probability distri-

bution of the measurement z(tk) at time instant tk conditioned the current state

x(tk).

From a Bayesian perspective, an unknown probability density function (PDF) of the

state x(tk) is estimated recursively by measurements over time. In order to obtain the

PDF of the state x(tk), the posterior density p

(
x(tk)|z(t1:k)

)
has to be calculated and

might be obtained by two steps, the prediction and the update step. In the prediction
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step, the PDF p

(
x(tk)|z(t1:k−1)

)
of the state is calculated based on the prior according

to

p

(
x(tk)|z(t1:k−1)

)
=

∫

p

(
x(tk)|x(tk−1)

)
p

(
x(tk−1)|z(t1:k−1)

)
dx(tk−1) , (3.3)

assuming a first-order HMM with the transition prior

p
(
x(tk)|x(tk−1) , z(t1:k−1)

)
= p

(
x(tk)|x(tk−1)

)
. During the update step, the measure-

ment z(tk) is used to correct the prediction based on the measurement model to obtain

the required posterior density of the current state, with

p

(
x(tk)|z(t1:k)

)
=

p

(
z(tk)|x(tk)

)
p

(
x(tk)|z(t1:k−1)

)

p

(
z(tk)|z(t1:k−1)

) , (3.4)

where

p
(
z(tk)|z(t1:k−1)

)
=

∫

p
(
z(tk)|x(tk)

)
p
(
x(tk)|z(t1:k−1)

)
dx(tk) . (3.5)

In many applications, we are interested in a point estimate of the state instead of

the posterior density p
(
x(tk)|z(t1:k)

)
. To obtain a point estimate, we can determine

the maximum a posteriori (MAP) estimate as

x̂MAP(tk) = argmax
x(tk)

p
(
x(tk)|z(t1:k)

)
, (3.6)

or the expectation

x̂MMSE(tk) =

∫

x(tk) p
(
x(tk)|z(t1:k)

)
dx(tk) . (3.7)

which is equivalent to the minimum mean square error (MMSE) estimate. For a

symmetric posterior densities, the MAP and MMSE criteria are equivalent.

The prediction and update equations (3.3) and (3.4) may not always be analytically

solvable. Solutions are Gaussian filters like KF, EKF which represent the posterior

density by a multivariate normal distribution. The KF introduced in Section 3.2 is

an optimal Bayesian filter which can be used if the considered system is linear and

the probabilistic model is Gaussian. However, most of the real world problems are

nonlinear. In such cases we need to resort into sub-optimal Bayesian filters, like the

EKF introduced in Section 3.3. Also the EKF behaves poorly when the degree of

nonlinearity becomes high. Hence, nonlinear filters like PFs introduced in Section 3.4

approximate the posterior density with a finite number of parameters and are suitable

for multivariate data and nonlinear/non-Gaussian processes. Section 3.2, Section 3.3

and Section 3.4 show examples of recursive Bayesian filters. Other recursive Bayesian

filters can be found in literature see [Che03,AMGC02,RAG04].
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3.2 Kalman Filter

The KF [Kal60] is an optimal implementation of recursive Bayesian filters. It is based

on the assumption that the posterior density can be characterized by the mean and the

variance of a Gaussian at every time instant. Thus, the KF recursively computes the

mean and the covariance of the Gaussian posterior density p

(
x(tk)|z(t1:k)

)
over time

instants tk. Additionally, the transition model of (3.1) is restricted to a linear function

with

x(tk) = F(tk)x(tk−1) + nt(tk) , (3.8)

where F(tk) is a known matrix and nt(tk) is the transition noise drawn from a Gaussian

distribution with covariance Q(tk). Equivalently, the measurement model of (3.2) is a

linear function with

z(tk) = H(tk)x(tk−1) + nh (tk) , (3.9)

where H(tk) is a known matrix and nh (tk) is the measurement noise drawn from a

Gaussian distribution with covariance R(tk). Using these assumptions, the KF can be

derived based on (3.3) and (3.4) with

p
(
x(tk)|z(t1:k−1)

)
= N (x(tk) ;m(tk|tk−1)),P(tk|tk−1)) , (3.10)

p
(
x(tk)|z(t1:k)

)
= N (x(tk) ;m(tk|tk),P(tk|tk)) , (3.11)

where a ∼ N (a;µa, σ
2
a) denotes a Gaussian distributed random variable a with mean

µa, variance σ
2
a and

m(tk|tk−1) = F(tk)m(tk−1|tk−1) , (3.12)

P(tk|tk−1) = Q(tk−1) + F(tk)P(tk−1|tk−1)F
T (tk) , (3.13)

m(tk|tk) = m(tk|tk−1) +K(tk) (z(tk)−H(tk)m(tk|tk−1)) , (3.14)

P(tk|tk) = P(tk|tk−1)−K(tk)H(tk)P(tk|tk−1) , (3.15)

K(tk) = P(tk|tk−1)H
T (tk)

(
H(tk)P(tk|tk−1)H

T (tk) +R(tk)
)−1

, (3.16)

where K(tk) is the Kalman gain which specifies the impact of the new measurement

in the new posterior estimate. The KF is computationally efficient and is optimal in

the Bayesian sense if the mentioned assumptions hold. However, most of the real world

problems are nonlinear where the KF cannot be used and sub-optimal algorithms like

the EKF introduced in the following section have to be used.

3.3 Extended Kalman Filter

A sub-optimal implementation of recursive Bayesian filters for more general nonlinear

problems is the EKF [SSM62,WB95]. In the EKF, a local linearization of the transition
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and measurement equations is made to approximate the nonlinearity starting from

an initial guess. According to the Gaussian assumptions, the prediction and update

equations can be approximated as

p

(
x(tk)|z(t1:k−1)

)
≈ N (x(tk) ;m(tk|tk−1)),P(tk|tk−1)) , (3.17)

p

(
x(tk)|z(t1:k)

)
≈ N (x(tk) ;m(tk|tk),P(tk|tk)) , (3.18)

with

m(tk|tk−1) = f(m(tk−1|tk−1)) , (3.19)

P(tk|tk−1) = Q(tk−1) + F(tk)P(tk−1|tk−1)F
T (tk−1) , (3.20)

m(tk|tk) = m(tk|tk−1) +K(tk) (z(tk)− h(m(tk|tk−1))) , (3.21)

P(tk|tk) = P(tk|tk−1)−K(tk)H(tk)P(tk|tk−1) , (3.22)

K(tk) = P(tk|tk−1)Ĥ
T (tk)

(

H(tk)P(tk|tk−1)Ĥ
T (tk) +R(tk)

)−1

, (3.23)

where K(tk) is the Kalman gain. The local linearization of f(·) and h(·) around

m(tk−1|tk−1) and m(tk|tk−1) are denoted by F(tk) and H(tk) with

F(tk) =
df(x)

dx

∣
∣
∣
∣
x=m(tk−1|tk−1)

, (3.24)

H(tk) =
dh(x)

dx

∣
∣
∣
∣
x=m(tk|tk−1)

. (3.25)

The linearization of the functions in the EKF can yield highly unstable filters when the

local linearity assumption does not hold. Also the approximation of p
(
x(tk)|z(t1:k)

)

by a Gaussian may fail if the density is non-Gaussian or the nonlinearity is too high.

Hence, other filters based on the KF have been proposed, which are not introduced

in this thesis but can be found e.g. in [WVDM00, RAG04, Che03]. In the following

section we introduce PFs which are suitable for nonlinear/non-Gaussian processes.

3.4 Particle Filters

In this section we give a short introduction to particle filtering. First we introduce

the sequential importance sampling (SIS) PF which forms the basis of most PF im-

plementations. Several flavors of PFs have been developed over the last few years.

They differ in their choice of the importance sampling density and the resampling

step. We focus on the sequential importance resampling (SIR) PF, regularized PF and

Rao-Blackwellized PF. Rao-Blackwellized PF forms the basis of the PF implementa-

tion of Channel-SLAM described in Chapter 4. Section 3.4.6 introduces a novel PF in



24 Chapter 3. Recursive Bayesian Filtering

logarithmic domain (log-domain) published in [GZJ18] which uses the Jacobian loga-

rithm to describe all steps of the PF, including weight update, weight normalization,

resampling and point estimations in log-domain.

3.4.1 Sequential Importance Sampling Particle Filter

PFs are based on sequential Monte Carlo methods which implement recursive Bayesian

filters by Monte Carlo integrations [GSS93, AMGC02, RAG04,Gus10]. PFs approxi-

mate the probability density of the state vector x(tk) at time step tk by Np particles.

Assuming a first-order HMM, the posterior density p

(
x(tk)|z(t1:k)

)
is approximated as

p
(
x(tk)|z(t1:k)

)
≈

Np∑

j=1

w(j)(tk) δ
(
x(tk)− x(j)(tk)

)
, (3.26)

where δ (·) stands for the Dirac distribution, x(j)(tk) denotes the particle state vector

and w(j)(tk) denotes the normalized weight. The particles are drawn according to the

concept of importance sampling from the importance density q
(
x(tk)|x(j)(tk−1), z(tk)

)

such that

w∗(j)(tk) = w(j)(tk−1)
p
(
z(tk)|x(j)(tk)

)
p
(
x(j)(tk)|x(j)(tk−1)

)

q
(
x(j)(tk)|x(j)(tk−1), z(tk)

) , (3.27)

and

w(j)(tk) =
w∗(j)(tk)

∑Np

i=1w
∗(i)(tk)

. (3.28)

with the likelihood distribution p

(
z(tk)|x(j)(tk)

)
and the transition prior distribution

p
(
x(j)(tk)|x(j)(tk−1)

)
[AMGC02]. For Np → ∞, the approximation used in (3.26)

approaches p

(
x(tk)|z(t1:k)

)
. PFs have the advantage not being restricted to linear

models or Gaussian distributions. By (3.26) and (3.27) the SIS PF can be described as

shown in Algorithm 1 by a pseudo-code which is the basis of most PFs. Algorithm 1

is evaluated at each time step tk, where {x(j)(tk), w
(j)(tk)}Np

j=1 denotes the set for the

particle states x(j)(tk) and weights w(j)(tk) with j = 1, . . . , Np for time instant tk. The

SIS PF sequentially calculates the particle states x(j)(tk) and weights w(j)(tk) with the

measurements z(tk).

3.4.2 Degeneracy in Particle Filters

A crucial problem of the SIS PF is degeneracy. Degeneracy occurs when all particles

except one have low weights and do not contribute anymore to the computation of

the posterior PDF, i.e. the distribution estimation degenerates. A suitable measure
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Algorithm 1: Sequential importance sampling (SIS) PF

1 {x(j)(tk), w
(j)(tk)}Np

j=1 = SIS
(

{x(j)(tk−1), w
(j)(tk−1)}Np

j=1, z(tk)
)

2 for j = 1 : Np do

3 Draw: x(j)(tk) ∼ q

(
x(j)(tk)|x(j)(tk−1), z(tk)

)
;

4 Calculate: w∗(j)(tk) according to (3.27);

5 Calculate: W (tk) =
∑Np

j=1w
∗(j)(tk);

6 for j = 1 : Np do

7 Normalize: w(j)(tk) =
w∗(j)(tk)
W (tk)

;

of degeneracy is the effective sample size Neff [GSS93, AMGC02, RAG04, Che03]. A

widely used approximation for the effective sample size is

Neff =
1

∑Np

j=1(w
(j)(tk))2

=

(
∑Np

j=1(w
∗(j)(tk))

)2

∑Np

j=1(w
∗(j)(tk))2

, (3.29)

with 1 ≤ Neff ≤ Np. Small values of Neff indicate a severe degeneracy and vice versa.

Alternative effective sample size approximations can be found e.g. in [MEL17].

Using a very large number of particles Np is one solution to avoid the degeneracy

problem, however, impractical in most applications due to the high computational time

and effort. Additionally, very large number of particles Np may introduce numerical

errors due to number representation during normalization [GZJ18]. In practical systems

the degeneracy problem is resolved by choosing an appropriate importance density or

by resampling.

Importance Density

An appropriate choice of the importance density q

(
x(j)(tk)|x(j)(tk−1), z(tk)

)
is essen-

tial, i.e. [AMGC02] proposes different importance density functions. The choice of an

optimal importance density function minimizes the variance of the weights and hence,

reduces the degeneracy problem, see [DFMR00]. The most popular and convenient

way is to set the importance density to be equal to the transitional prior distribution,

with

q
(
x(tk)|x(j)(tk−1), z(tk)

)
, p
(
x(tk)|x(j)(tk−1)

)
, (3.30)

which simplifies the weight update in (3.27) to

w∗(j)(tk) = w(j)(tk−1)p
(
z(tk)|x(j)(tk)

)
. (3.31)
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The authors of [AMGC02] calculate additionally the optimal importance density

for the special case where the measurements are more informative than the transition

model. Hence, the likelihood p

(
z(t1:k)|x(j)(tk−1)

)
has a lower variance than the prior

distribution p

(
x(tk)|x(j)(tk−1)

)
. This optimal importance density requires the ability

to sample from p

(
z(tk)|x(j)(tk−1)

)
and to evaluate the integral over the new state.

However, we are only able to sample from the distribution p

(
z(tk)|x(j)(tk−1)

)
if its

Gaussian distributed or when x(tk−1) is a member of a finite set.

Resampling

The basic idea of the resampling method is to eliminate particles with low weights

and reproduce particles with high weights. For example, the generic PF extends the

SIS PF by a resampling step to prevent degeneration as shown in Algorithm 3 by a

pseudo-code. Whenever a significant degeneracy is observed in the generic PF, i.e. Neff

is less than a threshold Nthr the particles are resampled. Resampling is hence required

in the PF when the true distribution differs from the distribution of the proposal.

Resampling generates a new set {x̃(j)(tk), w̃
(j)(tk) = N−1

p }Np

j=1 with uniform distributed

weights generated from {x(j)(tk), w
(j)(tk)}Np

j=1. In this way particles with high weights

are duplicated and particles with low weight are eliminated. After the resampling

procedure, all particles have the same weight. Algorithm 2 shows a pseudo-code of

the systematic resampling algorithm [Kit96] which is a standard resampling algorithm

with low complexity and used in Section 4.3. First, the estimated sampled cumulative

distribution function (CDF) is constructed, presented by a vector c with length Np and

element [c]j with j = 1, . . . , Np. According to the estimated sampled CDF, particles are

resampled. Also other types of resampling algorithms exist in literature: multinomial

resampling, residual resampling and local Monte Carlo resampling, see e.g. [LC98,

CCF99,Che03] for more details.

3.4.3 Sampling Importance Resampling Particle Filter

The SIR PF is a wildly spread PF and was first proposed in [GSS93] under the name

bootstrap filter. Algorithm 4 shows a pseudo-code of the SIR PF, which is derived from

the SIS PF. The SIR PF sets the importance density to be equal to the transitional

prior distribution as stated in (3.30) and resampling is performed at every time step,

thus the weight update of (3.31) simplifies to

w∗(j)(tk) ∝ p
(
z(tk)|x(j)(tk)

)
. (3.32)

Fig. 3.2 illustrates by an example the evaluation of the SIS PF for one time instant tk

with the actual probability distributions of interest and three steps of particle filtering:
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Algorithm 2: Resampling algorithm

1 {x̃(j)(tk), w̃
(j)(tk)}Np

j=1 = Resampling
(

{x(j)(tk), w
(j)(tk)}Np

j=1

)

2 Initialize the CDF: [c]1 = w(1)(tk);

3 for j = 2 : Np do

4 Construct CDF: [c]j = [c]j−1 + w(j)(tk);

5 i = 1;

6 Draw starting point: [u]1 ∼ U
[
0, N−1

p

]
;

7 for j = 1 : Np do

8 [u]j = [u]1 +N−1
p (j − 1);

9 while [u]j > [c]i do

10 i = i+ 1;

11 Assign:
{
x̃(j)(tk), w̃

(j)(tk)
}
=
{
x(i)(tk), N

−1
p

}
;

Algorithm 3: Generic-PF

1 {x(j)(tk), w
(j)(tk)}Np

j=1 = Generic
(

{x(j)(tk−1), w
(j)(tk−1)}Np

j=1, z(tk)
)

2 for j = 1 : Np do

3 Draw: x(j)(tk) ∼ q
(
x(j)(tk)|x(j)(tk−1), z(tk)

)
;

4 Calculate: w∗(j)(tk) according to (3.27);

5 Calculate: W (tk) =
∑Np

j=1w
∗(j)(tk);

6 for j = 1 : Np do

7 Normalize: w(j)(tk) =
w∗(j)(tk)
W (tk)

;

8 Calculate Neff = 1
∑Np

j=1(w
(j)(tk))2

;

9 if Neff < Nthr then

10 Resample with Algorithm 2: Obtaining
{
x(j)(tk), w

(j)(tk)
}Ns

j=1
;
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drawing, weighting and resampling. The solid curve represents the distributions of

interest, which is approximated by the particles where the sizes of the particles reflect

the value of their weight. After resampling, particles with high weights are duplicated,

particles with low weights are eliminated and all particles have the same weight. The

next time instant, the particles are drawn according to the transition model.

Algorithm 4: Sequential importance resampling (SIR) PF

1 {x(j)(tk), w
(j)(tk)}Np

j=1 = SIR
(

{x(j)(tk−1), w
(j)(tk−1)}Np

j=1, z(tk)
)

2 for j = 1 : Np do

3 Draw: x(j)(tk) ∼ p

(
x(j)(tk)|x(j)(tk−1)

)
;

4 Calculate: w∗(j)(tk) = p

(
z(tk)|x(j)(tk)

)
;

5 Calculate: W (tk) =
∑Np

j=1w
∗(j)(tk);

6 for j = 1 : Np do

7 Normalize: w(j)(tk) =
w∗(j)(tk)
W (tk)

;

8 Resample with Algorithm 2: Obtaining
{
x(j)(tk), w

(j)(tk)
}Ns

j=1
;

3.4.4 Regularized Particle Filter

The regularized PF is based on the SIS PF and addresses the effect that resampling

introduces the problem of loss of diversity among the particles [MOLG01,AMGC02].

The loss of diversity occurs due to the fact that particles are drawn from a discrete

distribution rather than a continuous distribution in the resampling step. Particles

drawn from the discrete distribution might be identical in the state which gives a poor

representation of the posterior density. Whereas the SIR resamples from the discrete

approximation (3.26), the regularized PF resamples from a continuous approximation

of the posterior density. Thus, in the regularized PF, samples are drawn from

p
(
x(tk)|z(t1:k)

)
≈

Np∑

j=1

w(j)(tk) K(x(tk)− x(j)(tk)) , (3.33)

where K(x(tk)− x(j)(tk)) is a kernel function centered at x(j)(tk) with bandwidth σK

and normalized weights w(j)(tk).

3.4.5 Rao-Blackwellized Particle Filter

PF based on the SIS PF have the disadvantage that the computational complex-

ity grows exponentially with the dimension of the state size. The RBPF [CR96,
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1. Drawing

{x(j)(tk),
1
Np

}

Posterior
p
(
x(tk)|z(tk)

)

2. Weighting

{x(j)(tk), w
(j)(tk)}

3. Resampling

{x(j)(tk),
1
Np

}

1. Drawing

{x(j)(tk+1),
1
Np

}

Figure 3.2. Graphical illustration of the SIR PF steps: drawing, weighting, resampling.

The sizes of the particles reflect their weights.

DGK01,DFMR00,Che03], also known as marginalized PF, marginalizes out sub-states.

Thus, the state vector x(tk) is partitioned into sub-state vectors r(tk) and y(tk) with

x(tk) = [r(tk)
T ,y(tk)

T ]T and the posterior density p
(
x(tk)|z(t1:k)

)
can be written as

p
(
x(tk)|z(t1:k)

)
= p

(
r(tk),y(tk)|z(t1:k)

)

= p
(
y(tk)|z(t1:k) , r(tk)

)
p
(
r(tk)|z(t1:k)

)
. (3.34)

For instants the sub-state y(tk) can be updated analytically and efficiently using any

optimal Bayesian filter such as KF, while r(tk) cannot be represented parametrically

and a PF is used for the estimation. Hence, the RBPF contains additionally to the sam-

ple r(j)(tk) from p

(
r(tk)|z(t1:k)

)
a parametric representation of p

(
y(tk)|z(t1:k) , r(j)(tk)

)

for each particle j. Using a RBPF allows that the state dimension can be kept small

enough to be feasible for a PF by representing parts of the state space using e.g.

parametrical functions.

3.4.6 Particle Filter in Logarithm Domain

For numerical stability reasons, weights are often computed and stored in the log-domain,

which is also computationally efficient when the distributions involved contain expo-
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nentials or products. From (3.27), we obtain the update equation in log-domain with

ŵ∗(j)(tk) = ŵ(j)(tk−1) + ln
(
p
(
z(tk)|x(j)(tk)

))
(3.35)

+ ln
(
p

(
x(j)(tk)|x(j)(tk−1)

))
− ln

(
q

(
x(tk)|x(j)(tk−1), z(tk)

))
,

where we define with

ŵ(j)(tk) = ln (w(j)(tk)) ,

ŵ∗(j)(tk) = ln (w∗(j)(tk)) ,
(3.36)

the log-domain weights (log-weights) ŵ(j)(tk) and ŵ∗(j)(tk) for particle j. After cal-

culating the weights ŵ∗(j)(tk) in log-domain, the weights are transferred for further

processing to the linear domain with w∗(j)(tk) = eŵ
∗(j)(tk) for j = 1, . . . , Np and are

normalized with (3.28).

In order to obtain a more stable PF implementation, the weights ŵ∗(j)(tk) can be

transferred to the linear domain by

w+(j)(tk) = e
ŵ∗(j)(tk)− max

l
(ŵ∗(l)(tk))

, (3.37)

such that

w(j)(tk) =
w+(j)(tk)

∑Np

i=1w
+(i)(tk)

, (3.38)

see e.g. [LFS+12,GZJ18]. In Algorithm 5, we show a pseudo-code of the Generic PF

where the weights are calculated in log-domain according to (3.35), normalized and

transferred to the linear domain according to (3.37). Further improvements can be

obtained if the weights ŵ∗(j)(tk) are directly propagated in log-domain if resampling is

not necessary.

In [GZJ18], we investigate a different approach, where the transformation from the

log-domain to the linear domain is not necessary. Hence, [GZJ18] introduces the weight

calculation, weight normalization, resampling and point estimations in log-domain. To

compute all these steps of the PF in log-domain, we obtain for the approximation of

the posterior filtered density from (4.19)

p

(
x(tk)|z(t1:k)

)
≈

Np∑

j=1

eŵ
(j)(tk) δ

(
x(tk)− x(j)(tk)

)
, (3.39)

using (3.35) and (3.36). The normalization of the log-weight can be calculated directly

in log-domain as a simple subtraction, with

ŵ(j)(tk) = ŵ∗(j)(tk)− Ŵ (tk) , (3.40)
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Algorithm 5: Generic-PF in linear domain with weight calculation in

log-domain (Generic Lin-Log-PF)

1 {x(j)(tk), w
(j)(tk)}Np

j=1 = Generic-Lin-Log
(

{x(j)(tk−1), w
(j)(tk−1)}Np

j=1, z(tk)
)

2 for j = 1 : Np do

3 Draw: x(j)(tk) ∼ q

(
x(j)(tk)|x(j)(tk−1), z(tk)

)
;

4 Transfer: ŵ(j)(tk) = ln (w(j)(tk));

5 Calculate: ŵ∗(j)(tk) according to (3.35);

6 for j = 1 : Np do

7 Transfer and Normalize: w+(j)(tk) = e
ŵ∗(j)(tk)− max

l
(ŵ∗(l)(tk))

;

8 Calculate: W (tk) =
∑Np

j=1w
+(j)(tk);

9 for j = 1 : Np do

10 Normalize: w(j)(tk) =
w+(j)(tk)
W (tk)

;

11 Calculate Neff = 1
∑Np

j=1(w
(j)(tk))2

;

12 if Neff < Nthr then

13 Resample with Algorithm 2: Obtaining
{
x(j)(tk), w

(j)(tk)
}Ns

j=1
;

where Ŵ (tk) denotes the normalization factor with

Ŵ (tk) = ln

(
Np∑

i=1

eŵ
∗(i)(tk)

)

. (3.41)

To compute the normalization factor Ŵ (tk) of (3.41) without transferring the

log-weights to the linear domain, the Jacobian logarithm [EPG94,KB90] can be used.

The Jacobian logarithm computes the logarithm of a sum of two exponentials ln(eδ1 +

eδ2) using the max(·) operator and adding a correction term, i.e.,

ln(eδ1 + eδ2) = max(δ1, δ2) + ln
(
1 + e−|δ2−δ1|

)
. (3.42)

With (3.42) and as derived in [RVH95], the expression ln
(∑n

l=1 e
δl
)
can be calculated

iteratively as

ln(eδ1 + · · ·+ eδn) = ln(∆ + eδn) = max (ln (∆) , δn) + ln
(
1 + e−|ln(∆)−δn|

)
, (3.43)

where δ = ln
(
eδ1 + · · ·+ eδn−1

)
and ∆ = eδ1 + · · · + eδn−1 . Hence, using the Jacobian

logarithm allows to compute operations such as summations like in (3.41) efficiently in
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the log-domain. We express (3.43) by an iterative algorithm shown in Algorithm 6 by

a pseudo-code, i.e.,

ln

(
n∑

l=1

eδl

)

= Jacob
(
{δl}nl=1

)
, (3.44)

where {δl}nl=1 defines the set for δl with l = 1, . . . , n. Thus, the normalization factor

Algorithm 6: Iterative Jacobian Algorithm

1 ln
(∑n

l=1 e
δi
)
= Jacob

(
{δl}nl=1

)

2 Init: ∆1 = δ1;

3 for l = 2 : n do

4 ∆l = max(δl,∆l−1) + ln
(
1 + e−|δl−∆l−1|

)
;

5 ln
(∑n

l=1 e
δi
)
= ∆n;

Ŵ (tk) of (3.41) can be calculated iteratively by

Ŵ (tk) = Jacob
(
{ŵ∗(i)(tk)}Np

i=1

)
. (3.45)

Hence, we obtain for the log-weight normalization of (3.40),

ŵ(j)(tk) = ŵ∗(j)(tk)− Jacob
(
{ŵ∗(i)(tk)}Np

i=1

)
. (3.46)

Similar to the description above, the calculation of the effective sampling size, re-

sampling and point estimations can be described in log-domain using the Jacobian log-

arithm, see [GZJ18]. Algorithm 7 and Algorithm 8 show by pseudo-codes the Generic

PF and the systematic resampling algorithm transferred into log-domain. For further

details about the PF implementation in log-domain, see [GZJ18].

3.5 Simultaneous Localization and Mapping

Dynamic position estimation algorithms can be implemented using the aforementioned

implementations of recursive Bayesian filters. For instance in radio based positioning

as introduced in Section 2.2, the location of the receiver is estimated using a transi-

tion model and pseudorange measurements between physical transmitters at known

locations and the receiver. However, in cases where the locations of the physical

transmitters are unknown, the receiver and physical transmitters positions have to

be calculated simultaneously. A method to estimate the positions of the receiver

and of the physical transmitters at the same time is called SLAM [GU17, GUJ18].
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Algorithm 7: Generic-PF in log-domain (Generic Log-PF)

1 {x(j)(tk), ŵ
(j)(tk)}Np

j=1 = Generic-Log
(

{x(j)(tk−1), ŵ
(j)(tk−1)}Np

j=1, z(tk)
)

2 for j = 1 : Np do

3 Draw: x(j)(tk) ∼ q

(
x(j)(tk)|x(j)(tk−1), z(tk)

)
;

4 Calculate: ŵ∗(j)(tk) according to (3.35);

5 Calculate: Ŵ (tk) = Jacob
(
{ŵ∗(j)(tk)}Np

j=1

)
;

6 for j = 1 : Np do

7 Normalize: ŵ(j)(tk) = ŵ∗(j)(tk)− Ŵ (tk);

8 Calculate ln(Neff) = −Jacob
(
{2 · ŵ(j)(tk)}Np

j=1

)
;

9 if ln(Neff) < ln(Nthr) then

10 Resample with Algorithm 8: Obtaining
{
x(j)(tk), ŵ

(j)(tk)
}Ns

j=1
;

Algorithm 8: Resampling in log-domain

1 {x̃(j)(tk), w̃
(j)(tk)}Np

j=1 = Log-Resampling
(

{x(j)(tk), ŵ
(j)(tk)}Np

j=1

)

2 Initialize the cumulative distribution function in log-domain (log-CDF):

3 [c]1 = ŵ(1)(tk);

4 for j = 2 : Np do

5 Construct log-CDF using the Jacobian logarithm:

[c]j = max(ŵ(j)(tk), [c]j−1) + ln
(

1 + e−|[c]j−1−ŵ(j)(tk)|
)

;

6 i = 1;

7 Draw starting point: s ∼ U
[
0, N−1

p

]
;

8 for j = 1 : Np do

9 [u]j = ln
(
s+N−1

p (j − 1)
)
;

10 while [u]j > [c]i do

11 i = i+ 1;

12 Assign:
{
x̃(j)(tk), w̃

(j)(tk)
}
=
{
x(i)(tk),− ln (Np)

}
;
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True position

Estimated position

True landmark’s position

Estimated landmark’s position

m(i)

m(j)

zi(tk−1)

zj(tk−1)

zj(tk)
zj(tk+1)

xu(tk−1)
xu(tk)

xu(tk+1)

xu(tk+2)

u(tk)

u(tk+1)

u(tk+2)

Figure 3.3. Overview of the SLAM method with a moving object, where the positions of

the moving object and of the landmarks are estimated simultaneously.

In general, SLAM addresses the method of estimating the location of a moving ob-

ject in an unknown environment and simultaneously builds a map of the environ-

ment [SC86, SSC86, LDw91,DB06, BD06]. In SLAM the map and the trajectory are

estimated without the need of any prior knowledge of the environment. SLAM was

originally presented within the robotics community as a technique to jointly estimate

the position of a robot and a map of detected landmarks. In a recursive Bayesian

formulation, the SLAM method computes the probability distribution

p
(
xu(tk) ,m|z(t1:k)u(t1:k) ,xu(t0)

)
, (3.47)

with

• The state vector xu(tk) which describes the location and orientation of the moving

object.

• The map m which comprises a set of objects m = {m(i)} in the environment

for 0 ≤ i < Nm, where Nm is the number of objects in the environment and

m(i) specifies the properties, such as positions, of object i whose true location is

assumed to be time invariant.
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• The control inputs u(t1:k) =
[

u(t1)
T , . . . ,u(tk)

T
]T

are the control inputs for time

instant t1, . . . , tk, where u(tk) is used at time instant tk−1 to move the object from

state xu(tk−1) to state xu(tk).

• The measurements z(t1:k) =
[

z(t1)
T , . . . , z(tk)

T
]T

are the measurements taken

of the landmarks from the moving object for time instant t1, . . . , tk and z(tk) =

[z0(tk) , z1(tk) , . . .] are the measurements at time instant tk.

The probability distribution of (3.47) describes the joint posterior density of the land-

marks’ locations and object state given the measurements and control inputs together

with the initial state of the object. Fig. 3.3 visualizes the SLAM method: an object

moves through an environment and takes relative measurements of a number of land-

marks at unknown positions using a sensor located on the object. In order to use the

information of the landmarks, the object estimates simultaneously the positions of the

object and landmarks. The true locations are never known or measured directly.

Equivalent to Section 3.1, the posterior density p
(
xu(tk) ,m|z(t1:k)u(t1:k) ,xu(t0)

)

might be obtained recursively by the prediction and update step. In the prediction

step, the PDF

p
(
xu(tk) ,m|z(t1:k−1) ,u(t1:k) ,xu(t0)

)
(3.48)

=

∫

p
(
xu(tk)|xu(tk−1) ,u(tk)

)
p
(
xu(tk−1) ,m|z(t1:k−1) ,u(t1:k−1) ,xu(t0)

)
dxu(tk−1)

is calculated where we assume a first-order HMM with the transition prior

p
(
x(tk)|x(tk−1) ,u(tk)

)
, (3.49)

which depends on the state x(tk−1) and the applied control input u(tk) and is indepen-

dent of both, the measurements and the map. During the update step with

p
(
xu(tk) ,m|z(t1:k) ,u(t1:k) ,xu(t0)

)
(3.50)

=
p
(
z(tk)|xu(tk) ,m

)
· p
(
xu(tk) ,m|z(t1:k−1) ,u(t1:k) ,xu(tk−1)

)

p
(
z(tk)|z(t1:k−1) ,u(t1:k)

) ,

the measurement z(tk) is used to correct the prediction based on the measurement

model

p

(
z(tk)|x(tk) ,m

)
. (3.51)

Equations (3.48) and (3.50) provide a recursive procedure for calculating the joint

posterior p
(
xu(tk) ,m|z(t1:k)u(t1:k) ,xu(t0)

)
for the object state xu(tk) and map m at

time instant tk based on all measurements z(t1:k) and all control inputs u(t1:k).
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As aforementioned, SLAM was originally presented within the robotics commu-

nity. The most well-known implementations are based on EKF [DNC+01,SC86,SSC86,

LDw91], GraphSLAM [TM06] and FastSLAM [MTK+02]. State-of-the-art techniques

of SLAM within the robotics community use cameras [DRMS07] and distance measure-

ments, e.g. laser scanners [TBF00] to obtain measurements of the landmarks. In recent

years, pedestrian SLAM has become an important research area [BR11,FFL07,SCZ+13,

RAK09,KD15,HRMT12,AR12,PBRJ14,Puy17]. For instant [BR11,FFL07, SCZ+13]

map the positions of detected WLAN access points or [RAK09,KD15,HRMT12,AR12,

PBRJ14, Puy17] build probabilistic maps based on human motion using pedestrian

step measurements.



Chapter 4

Multipath Assisted Positioning

In this chapter, the Channel-SLAM algorithm is explained in all its details. Section 4.1

addresses the concept of VTs to represent each MPC as a LoS signal from a VT to

the receiver. Then, Section 4.2 describes the Channel-SLAM algorithm: Section 4.2.1

addresses the derivation of Channel-SLAM based on recursive Bayesian filtering; Sec-

tion 4.2.2 addresses the derivation of the RBPF for Channel-SLAM; Section 4.2.4

describes two different transition models without and with heading information from

an IMU; Section 4.3 describes the implementation of the RBPF.

4.1 The Concept of Virtual Transmitters

In order to use MPCs for the localization of a mobile receiver, a model reflecting their

parameters in dependency of the receiver position ru(tk) needs to be found. In the

following, we consider a two dimensional static environment with a physical transmitter

at position rt and a receiver moving along an arbitrary trajectory. We consider the

aforementioned propagation effects described in Section 2.1.1: reflection, scattering

and diffraction. Both, scattering and diffraction can be geometrically described by a

fixed point S at position rs in the path of the MPC.

In Fig. 4.1, we consider the case of reflection on a smooth surface. The reflection

point at position rr(tk) is moving on the surface when the receiver is in motion. As indi-

cated by VT1, we can construct a VT at position rVT,1 by mirroring the physical trans-

mitter position at the reflecting surface. The distance between VT1 and the receiver

equals dTR(tk) + dRU(tk) = ‖rt − rr(tk)‖+ ‖rr(tk)− ru(tk)‖ = ‖rVT,1 − ru(tk)‖, which
is the geometrical length of the reflected path, i.e. the delay of the MPC multiplied

by the speed of light, where dTR(tk) is the distance between the physical transmitter

and the reflection point and dRU(tk) the distance between the reflection point and the

receiver. Seen from the receiver side, both, the reflected and the virtual propagation

37
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Figure 4.1. The transmitted signal is reflected on a smooth surface. The position of

VT1 is obtained by mirroring the physical transmitter position at the reflecting surface.

Inherently, VT1 is time synchronized to the physical transmitter.

paths starting at VT1 have the same AoA and delay. Therefore, a reflected path can

be described as a direct path between VT1 and the receiver. Inherently, VT1 is time

synchronized to the physical transmitter.

Using the same approach, a VT can be obtained for propagation paths which are

reflected multiple times. Fig. 4.2 shows a multiple reflection scenario, where the trans-

mitted signal is reflected twice. If the receiver is moving, the reflection points on

both reflecting surfaces at the coordinates rr,j(tk) for j = 1, 2 are moving accord-

ingly. As depicted in Fig. 4.2 by VT2, we can construct a VT at position rVT,2

by mirroring the physical transmitter position at both reflecting surfaces. The dis-

tance between the VT2 and the receiver is equal to dTR(tk) + dRR(tk) + dRU(tk) =

‖rt − rr,1(tk)‖ + ‖rr,1(tk)− rr,2(tk)‖ + ‖rr,2(tk)− ru(tk)‖ = ‖rVT,2 − ru(tk)‖ which is

equivalent to the propagation time of the reflected signal multiplied with the speed

of light. The distances dTR(tk), dRR(tk) and dRU(tk) are the distances between the

physical transmitter and the reflection point on the first reflecting surface; between

the reflection points on both reflecting surfaces; between the reflection point on the

second reflecting surface and the receiver. Equivalently to Fig. 4.1 the reflected path

can be described as a direct path between VT2 and the receiver. VT2 is inherently time
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Figure 4.2. The transmitted signal is reflected on two smooth surfaces. VT2 is defined

by mirroring the physical transmitter position at the first and additionally at the second

reflecting surface. Inherently, VT2 is time synchronized to the physical transmitter.

synchronized to the physical transmitter and seen from the receiver side, the virtual

propagation path starting at VT2 has the same AoA and delay as the reflected path.

Fig. 4.3 provides a visualization of scattering of the signal at the physical scatterer

S at position rs. The geometrical propagation distance of the scattered propagation

path is a direct path between S and the receiver with distance dSU(tk) and the propaga-

tion distance dTS(tk) between the physical transmitter and S. Thus, we can construct

a VT at the scatterer position rVT,3 = rs as visualized by VT3 in Fig. 4.3. The propa-

gation distance of the scattered path is dTS(tk)+dSU(tk) = ‖rt − rs‖+‖rs − ru(tk)‖ =

‖rVT,3 − ru(tk)‖+dVT,3 where dTS(tk) = dVT,3 > 0 is constant for all receiver positions

ru(tk). Hence, the scattered signal can be interpreted as a direct signal from VT3 to

the receiver plus an additional constant propagation distance dVT,3.

As indicated in Fig. 4.3 by the winded line, additional interactions between the

physical transmitter and S may occur including reflections, scattering and diffractions.

Fig. 4.4 provides examples if the last propagation effect is a scatterer before the signal

reaches the receiving antenna. In Fig. 4.4, the signal before reaching the scatterer S2
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ru(tk+2)

Moving receiver

dSU(tk)

S = VT3

rs = rVT,3

dTS(tk) = dVT,3

Figure 4.3. The transmitted signal is scattered at S. VT3 is defined at the position of S

and the additional propagation distance dVT,3 equals to dTS(tk). Additional interactions

between the physical transmitter and S may occur indicated by the winded line.

Physical
transmitter

rt
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ru(tk)

ru(tk+1)
ru(tk+2)

Moving receiver

dS2U(tk)

S2 = VT4, rs,2 = rVT,4

rr,2(tk) rr,3(tk)rr,1(tk)

S1, rs,1

Figure 4.4. The transmitted signal is scattered at S2. Before reaching the scatterer S2,

the transmitted signal is either reflected at the reflecting surface, scattered at S1, scattered

at S1 and afterwards reflected or reflected on the reflecting surface and afterwards scattered

at S1. For all these possibilities, VT4 is defined at the position of S2.

is either reflected at the reflecting surface; scattered at S1; scattered S1 and afterwards

reflected; reflected and afterwards scattered at S1. For all of these cases, we can

construct a VT at the scatterer S2 position rVT,4 = rs,2 as visualized by VT4 in Fig. 4.4.

The propagation distance of the scattered path is dTS2(tk) + dS2U(tk) = dTS2(tk) +

‖rs − ru(tk)‖ = ‖rVT,4 − ru(tk)‖+dVT,4 where dTS2(tk) is the traveled distance between

the physical transmitter and scatterer S2 and dTS2(tk) = dVT,4 > 0 is constant for all

receiver positions ru(tk). Hence, the scattered signal can be interpreted as a direct

signal from VT4 to the receiver plus an additional constant propagation distance dVT,4.

Fig. 4.5 shows a scenario where the emitted signal from the physical transmitter is

first scattered at S and then reflected before it reaches the receiver. When the receiver

is moving, the reflection point at position rr(tk) in Fig. 4.5 is moving on the surface.

Hence, the VT is defined by mirroring the location of the scatterer S at the surface as
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Figure 4.5. The transmitted signal is scattered and afterwards reflected on a smooth

surface. VT5 is defined by mirroring the location of the scatterer S at the surface; the

additional propagation distance dVT,5 equals to dTS(tk). Additional interactions between

the physical transmitter and S may occur indicated by the winded line.

indicated by VT5 at position rVT,5. The propagation distance is therefore dTS(tk) +

dSR(tk)+dRU(tk) = dVT,5+‖rs − rr(tk)‖+‖rr(tk)− ru(tk)‖ = dVT,5+‖rVT,5 − ru(tk)‖,
where dTS(tk) = dVT,5 > 0, dSR(tk) is the distance between S and rr(tk), and dRU(tk) is

the distance between rr(tk) and the receiver. As mentioned before, between the physical

transmitter and S additional interactions may occur leading to the same position of

VT5.

Combining the approaches described before leads to the conclusion that the prop-

agation path of any i-th MPC can be equivalently described as a direct path between

VTi and the receiver plus an additional constant propagation distance dVT,i. This

additional propagation distance is zero, i.e. dVT,i = 0, if only reflections occurred on

the path between the physical transmitter and the receiver; the additional propagation

distance is greater than zero, i.e. dVT,i > 0, if the i-th MPC interacts with at least one

scatterer. In general, dVT,i/c can be interpreted as a clock bias between the i-th VT

and the physical transmitter. In the following, we will denote the position of the VT

and the additional propagation distance associated to the i-th MPC at time instant

tk by rVT,i(tk) and dVT,i(tk), respectively. The position of the VTs and the additional
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propagation distances are constant over time. Nevertheless for notational convenience

in the later sections a time dependency on tk is introduced here.

4.2 Algorithm Derivation

According to the description given in the previous section, a MPC can be represented

by a direct path between a VT and the receiver plus an additional propagation distance.

However, the receiver position ru(tk) as well as the states of the VTs, i.e. rVT,i(tk)

and dVT,i(tk), are unknown. Additionally, it is unknown whether the MPC is caused

by a reflection or an interaction with a scatterer. We assume that a total of N(tk)

propagation paths arrrive at the receiver at time instant tk. Please note, the number

of propagation paths N(tk) includes all MPCs with the LoS component. Hence, the

state vector x(tk) that describes the parameters to be estimated at time instant tk for

N(tk) propagation paths is defined by

x(tk) =
[

xu(tk)
T ,xVT(tk)

T
]T

, (4.1)

with the receiver states

xu(tk) =
[

ru(tk)
T ,vu(tk)

T , bu(tk)
]T

, (4.2)

where ru(tk) is the receiver position, vu(tk) the receiver velocity, bu(tk) the receiver’s

clock bias with respect to the phyical transmitter and the VT states

xVT(tk) =
[

xVT,0(tk)
T , . . . , xVT,N(tk)−1(tk)

T
]T

. (4.3)

The parameters representing the i-th VT are defined as

xVT,i(tk) =
[
rVT,i(tk)

T , dVT,i(tk)
]T

, (4.4)

where rVT,i(tk) is the position of the i-th VT for i = 0, . . . , N(tk) − 1 and dVT,i(tk)

the additional propagation distance. If the physical transmitter position is known, we

use for notational conveniences, VT0 to describe the physical transmitter with known

position rVT,0(tk) = rt and additional propagation distance dVT,0(tk) = 0. If the

physical transmitter position is unknown, the physical transmitter position is estimated

as a VT position.

Fig. 4.6 presents the available sensors at the receiver together with the correspond-

ing measurements. As shown on the left, the receiver measures the sampled received

signal Y (tk) as stated in (2.7) assuming that the physical transmitter continuously

emits known wideband signals. Based on the received signal Y (tk), the signal param-

eters Φ̂ (tk) with amplitude αi(tk), delay τi(tk) =
di(tk)

c
and AoA θi(tk) if an antenna
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Figure 4.6. System model consisting of a terrestrial receiver and an IMU.

array is used are estimated for each MPC i = 0, . . . , N(tk)−1. For consistency between

different time instances, the signal parameter estimation algorithm needs to include a

path association such that distinct propagation paths are individually tracked over se-

quential time instances. As mentioned in Section 2.1.3, we use the algorithm called

KEST for the estimation and tracking of MPCs. Also other multipath estimation and

tracking algorithms could be applied, e.g. [KRW10,SRK09]. The estimated AoA θ̂i(tk)

and propagation path length d̂i(tk) = τ̂i(tk) · c of all N(tk) MPCs of KEST are used

as measurements

z(tk) = [θ̂(tk)
T , d̂(tk)

T ]T , (4.5)

with

θ̂(tk) = [θ̂0(tk), . . . , θ̂N(tk)−1(tk)]
T , (4.6)

d̂(tk) = [d̂0(tk), . . . , d̂N(tk)−1(tk)]
T , (4.7)

in Channel-SLAM with their corresponding variances σ2
z(tk) =

[
σ2

θ(tk)
T ,σ2

d(tk)
T
]T
.

In case of a single receiving antenna, the measurements z(tk) include only the es-

timated propagation path lengths d̂(tk). Multipath estimation algorithms like KEST

cannot distinguish between reflected paths, scattered paths or the combination of both.

However, by including the additional propagation distance dVT,i(tk) in the state vector

xVT,i(tk), a specific model detection is not necessary, since for reflected paths, scattered

paths or the combination of both, the same model can be used. Hence, if the MPC

was interacting with a scatterer, Channel-SLAM estimates dVT,i(tk) > 0. If only re-
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flections occurred on the propagation path between physical transmitter and receiver,

Channel-SLAM estimates dVT,i(tk) ≈ 0.

Additionally, as illustrated in Fig. 4.6, an IMU might be used. The IMU provides

measurements of the accelerations ab(tk) and turn rates ωb
ib(tk) in three dimensions.

After preprocessing, the heading change φ̇(tk) and moving indicator m(tk) can be used

in Channel-SLAM as a control input u(tk), with

u(tk) =
[

φ̇(tk),m(tk)
]T

(4.8)

and is therefore directly integrated into the transition model of the recursive Bayesian

filter. The heading information of the IMU allows to improve the performance of

Channel-SLAM by resolving ambiguities. Further details about the IMU can be found

in Appendix A.

4.2.1 Algorithm Description by Recursive Bayesian Filtering

As introduced in Section 3.1, recursive Bayesian filtering provides a methodology to

optimally estimate parameters in non-stationary scenarios. Fig. 4.7 shows the consid-

ered DBN of Channel-SLAM using a first-order hidden Markov model. Channel-SLAM

requires to calculate the posterior filtered density

p
(
x(tk)|z(t1:k) ,u(t1:k) ,xu(t0)

)
, (4.9)

considering the aforementioned first-order hidden Markov model. Assuming indepen-

dency among MPCs, we obtain from (4.9),

p

(
x(tk)|z(t1:k) ,u(t1:k) ,xu(t0)

)
(4.10)

= p
(
xu(tk) ,xVT(tk)|z(t1:k) ,u(t1:k) ,xu(t0)

)

= p

(
xu(tk)|z(t1:k) ,u(t1:k) ,xu(t0)

)
· p
(
xVT(tk)|xu(tk) , z(t1:k)

)

= p
(
xu(tk)|z(t1:k) ,u(t1:k) ,xu(t0)

)
N(tk)−1
∏

i=0

p
(
xVT,i(tk)|xu(tk) , zi(t1:k)

)
,

where zi(tk) denotes the measurements of the i-th MPC with

zi(tk) =
[

θ̂i(tk), d̂i(tk)
]T

. (4.11)

The transition prior p
(
x(tk)|x(tk−1) ,u(tk)

)
used in the prediction step of the recursive

Bayesian filter is defined here as

p

(
x(tk)|x(tk−1) ,u(tk)

)
= p

(
xu(tk)|xu(tk−1) ,u(tk)

)
N(tk)−1
∏

i=0

p

(
xVT,i(tk)|xVT,i(tk−1)

)
,

(4.12)
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Figure 4.7. First-order hidden Markov model representing the dynamic system of

Channel-SLAM.

where we assume independence between the transition priors of the receiver state

vector xu(tk) and the VT state vectors xVT,i(tk) associated to the i-th MPC. The

independency among MPCs in (4.12) is based on the well-known uncorrelated scat-

tering assumption in wireless propagation channel modelling [Rap96]. As mentioned

in Section 4.1, the state xVT,i(tk) is time-invariant, hence, for the transition prior

p

(
xVT,i(tk)|xVT,i(tk−1)

)
of the i-th MPC we obtain

p

(
xVT,i(tk)|xVT,i(tk−1)

)
= δ (xVT,i(tk)− xVT,i(tk−1)) . (4.13)

For the transition prior p

(
xu(tk)|xu(tk−1) ,u(tk)

)
of the receiver state vector, Sec-

tion 4.2.4 describes two different transition models indicated by the function

f (xu(tk−1) ,u(tk) ,nt(tk)) in Fig. 4.7.

Assuming the elements of z(tk) to be independent Gaussian distributed conditioned

on the current state x(tk), p
(
z(tk)|x(tk)

)
can be expressed as

p
(
z(tk)|x(tk)

)
= p
(
d̂(tk)|x(tk)

)
· p
(
θ̂(tk)|x(tk)

)
, (4.14)
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where

p

(
d̂(tk)|x(tk)

)
=

N(tk)−1
∏

i=0

1√
2πσd,i(tk)

e
−

(d̂i(tk)−di(tk))2

2σ2
d,i

(tk) , (4.15)

p

(
θ̂(tk)|x(tk)

)
=

N(tk)−1
∏

i=0

1√
2πσθ,i(tk)

e
−

(θ̂i(tk)−θi(tk))2

2σ2
θ,i

(tk) , (4.16)

with the propagation distance

di(tk) = ‖ru(tk)− rVT,i(tk)‖+ dVT,i(tk) + bu(tk) · c (4.17)

and the AoA

θi(tk) = arccos

(

(rVT,i(tk)− ru(tk))
T · vu(tk)

‖rVT,i(tk)− ru(tk)‖ · ‖vu(tk)‖

)

, (4.18)

for the i-th MPC, where σ2
d,i(tk) and σ

2
θ,i(tk) denote the corresponding variances. Please

note that we assume in (4.18) that the linear antenna array is aligned to the direction

of vu(tk), i.e. the moving direction.

4.2.2 Rao-Blackwellized Particle Filter

In this section a formulation of Channel-SLAM is derived based on Rao-Blackwellization

[GJW+16], where the states space of x(tk) is partitioned into subspaces. We use PFs

to estimate the subspaces representing the VTs inside a PF. The formulation al-

lows to use different numbers of particles in each PF associated to a VT and reduces

the computational complexity compared to [GJ13, GJD13, GPJD14]. The reason to

use a PF instead of a low complexity EKF is the high degree of nonlinearity of the

measurements in (4.18) and (4.17). As shown in Fig. 4.8, the RBPF of Channel-

SLAM is based on a superordinate particle filter (super-PF) and subordinate particle

filters (sub-PFs): Each particle j = 1 . . . Ns of the super-PF with the state vector

x
(j)
u (tk) =

[

r
(j)
u (tk)

T ,v
(j)
u (tk)

T , b
(j)
u (tk)

]T

consists of N(tk) sub-PFs. Each sub-PF is

represented by the particles x
(j,a)
VT,i(tk) with a = 1, . . . , NP,j,i(tk) where NP,j,i(tk) stands

for the number of particles in the i-th sub-PF with i = 0, . . . , N(tk)− 1. The number

of particles NP,j,i(tk) in the i-th sub-PF is time dependent because of a grid based re-

duction method introduced in Section 4.3. In the super-PF, the marginalized posterior

filtered density p
(
xu(tk)|z(t1:k) ,u(t1:k)

)
can be approximated by importance samples,

see [GJW+16,GPU+17b], as

p
(
xu(tk)|z(t1:k) ,u(t1:k)

)
≈

Ns∑

j=1

w(j)(tk) δ
(
xu(tk)− x(j)

u (tk)
)
, (4.19)
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Figure 4.8. The RBPF of Channel-SLAM is based on a superordinate particle filter

(super-PF) and subordinate particle filters (sub-PFs): the sub-PFs estimate the conditional

posterior density p
(
xVT,i(tk)|xu(tk) , zi(t1:k)

)
of xVT,i(tk) for the i-th VT and the super-PF

estimates the marginalized posterior filtered density p
(
xu(tk)|z(t1:k) ,u(t1:k)

)
of xu(tk).

Each particle j = 1 . . . Ns of the super-PF consists of N(tk) sub-PFs.

where

w(j)(tk) ∝ w(j)(tk−1)
p

(
z(tk)|x(j)

u (tk) , z(tk−1)
)
p
(
x
(j)
u (tk)|x(j)

u (tk−1) ,u(tk)
)

q

(
x
(j)
u (tk)|x(j)

u (tk−1) , z(tk) ,u(tk)
) (4.20)

is the weight for the j-th particle at time instant tk which is calculated recursively as

described in Appendix B. Using the transition prior as the importance density, hence,

q

(
xu(tk)|xu(tk−1) , z(tk) ,u(tk)

)
= p

(
xu(tk)|xu(tk−1) ,u(tk)

)
, (4.21)
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we obtain from (4.20)

w(j)(tk) ∝ w(j)(tk−1) · p
(
z(tk)|x(j)

u (tk) , z(tk−1)
)

∝ w(j)(tk−1)

∫

p

(
z(tk)|x(j)

u (tk) ,xVT(tk) , z(tk−1)
)

× p

(
xVT(tk)|x(j)

u (tk) , z(tk−1)
)

dxVT(tk)

∝ w(j)(tk−1)

N(tk)−1
∏

i=0

∫

p

(
zi(tk)|x(j)

u (tk) ,xVT,i(tk) , zi(tk−1)
)

× p

(
xVT,i(tk)|x(j)

u (tk) , zi(tk−1)
)

dxVT,i(tk) , (4.22)

again with the assumption of independency among MPCs. The term

p

(
xVT,i(tk)|x(j)

u (tk) , zi(tk−1)
)
of (4.22) can be reformulated to

p
(
xVT,i(tk)|x(j)

u (tk) , zi(tk−1)
)
=

∫

p
(
xVT,i(tk)|xVT,i(tk−1) ,x

(j)
u (tk) , zi(tk−1)

)
(4.23)

× p
(
xVT,i(tk−1)|x(j)

u (tk) , zi(tk−1)
)
dxVT,i(tk−1) .

In order to calculate (4.23), we consider the stationarity of the VTs for all time instants

of (4.13) and that the states of the VTs xVT,i(tk−1) are independent from the receiver

states x
(j)
u (tk) according to (4.12), hence,

p

(
xVT,i(tk)|xVT,i(tk−1) ,x

(j)
u (tk) , zi(tk−1)

)
= p

(
xVT,i(tk)|xVT,i(tk−1)

)

= δ (xVT,i(tk)− xVT,i(tk−1)) , (4.24)

and represent p
(
xVT,i(tk−1)|x(j)

u (tk) , zi(tk−1)
)
by NP,j,i(tk) Kernels K(·) using a Gaus-

sian kernel based density estimator which is approximated by a regularized PF, see

Section 3.4.4, with weight w
(j,a)
i (tk−1) and bandwidth σ

(j)
K,i(tk−1), thus,

p

(
xVT,i(tk−1)|x(j)

u (tk) , zi(tk−1)
)
=

NP,j,i(tk)∑

a=1

w
(j,a)
i (tk−1) ·K(xVT,i(tk−1)− x

(j,a)
VT,i(tk−1)).

(4.25)

Inserting (4.24) and (4.25) in (4.23), we obtain

p
(
xVT,i(tk)|x(j)

u (tk) , zi(tk−1)
)
≈

NP,j,i(tk)∑

a=1

w
(j,a)
i (tk−1) ·K(xVT,i(tk)− x

(j,a)
VT,i(tk−1)). (4.26)
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Finally, by inserting (4.26) in (4.22), we obtain

w(j)(tk) ∝ w(j)(tk−1)

N(tk)−1
∏

i=0

NP,j,i(tk)∑

a=1

w
(j,a)
i (tk−1)

∫

p

(
zi(tk)|x(j)

u (tk) ,xVT,i(tk)
)

×K(xVT,i(tk)− x
(j,a)
VT,i(tk−1)) dxVT,i(tk)

∝ w(j)(tk−1)

N(tk)−1
∏

i=0

NP,j,i(tk)∑

a=1

w
(j,a)
i (tk−1)p

(
zi(tk)|x(j)

u (tk) ,x
(j,a)
VT,i(tk)

)

︸ ︷︷ ︸

w
(j,a)
i (tk)

, (4.27)

where we use p
(
zi(tk)|x(j)

u (tk) ,xVT,i(tk)
)
= p

(
zi(tk)|x(j)

u (tk) ,xVT,i(tk) ,x
(j,a)
VT,i(tk−1)

)
and

interpret K(xVT,i(tk)− x
(j,a)
VT,i(tk−1)) as a density p

(
xVT,i(tk)|x(j,a)

VT,i(tk−1)
)
given the par-

ticle state x
(j,a)
VT,i(tk−1) and using x

(j,a)
VT,i(tk) = x

(j,a)
VT,i(tk−1). Hence, the weight w

(j,a)
i (tk) of

the sub-PFs at time instant tk is

w
(j,a)
i (tk) , w

(j,a)
i (tk−1) · p

(
zi(tk)|x(j)

u (tk) ,x
(j,a)
VT,i(tk)

)
. (4.28)

4.2.3 Point Estimation

In order to obtain a point estimate of the state, x̂(tk) =
[

x̂u(tk)
T , x̂VT(tk)

T
]T

, we use

the MMSE criterion of (3.7). The MMSE of the RBPF can be derived with (4.19) as

x̂(tk) =

∫

x(tk) p
(
x(tk)|z(t1:k) ,u(t1:k)

)
dx(tk) (4.29)

=

∫

xu(tk)

∫

xVT(tk)

x(tk) p
(
xu(tk) ,xVT(tk)|z(t1:k)u(t1:k)

)
dxu(tk) dxVT(tk)

=

∫

xu(tk)

∫

xVT(tk)

x(tk) p
(
xu(tk)|z(t1:k) ,u(t1:k)

)

× p
(
xVT(tk)|xu(tk) , z(t1:k)

)
dxu(tk) dxVT(tk)

=

N(tk)−1
∏

i=0

∫

xu(tk)

∫

xVT,i(tk)

x(tk) p
(
xu(tk)|z(t1:k) ,u(t1:k)

)

× p
(
xVT,i(tk)|xu(tk) , zi(t1:k)

)
dxu(tk) dxVT,i(tk) ,

which leads to the approximation of the MMSE for the receiver state

x̂u(tk) ≈
Ns∑

j=1

w(j)(tk) x
(j)
u (tk) , (4.30)

and the ith VT

x̂VT,i(tk) ≈
Ns∑

j=1

w(j)(tk)

NP,j,i(tk)∑

a=1

w
(j,a)
i (tk) x

(j,a)
VT,i(tk) . (4.31)
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4.2.4 Transition Models

In this thesis, we consider a moving receiver optionally equipped with an IMU. We de-

scribe in the following two different transition models reflecting two cases: a receiver not

equipped with an IMU referred to as Gaussian-Transition-Model; a receiver equipped

with an IMU referred to as IMU-Transition-Model. For both transition models we are

using a discrete white noise acceleration model [BSLK04] in a two dimensional Carte-

sian coordinate system. The receiver state vector xu(tk) =
[

ru(tk)
T ,vu(tk)

T , bu(tk)
]T

as introduced in (4.2) contains the x-y positions

ru(tk) = [ru,x(tk) , ru,y(tk)]
T , (4.32)

the corresponding velocities

vu(tk) = [vu,x(tk) , vu,y(tk)]
T (4.33)

and the receiver’s clock bias bu(tk). The state equation for the discrete white noise

acceleration model is defined by

xu(tk) = Au(tδ, φ̇(tk))xu(tk−1) + nu(tk) , (4.34)

with tδ = tk − tk−1, the transition noise nu(tk) and transition matrix

Au(tδ, φ̇(tk)) =







Au,L(tδ) without IMU

Au,I(tδ, φ̇(tk)) with IMU
, (4.35)

that will be described in the following. Please note, also other transition models could

be applied, see e.g. [GPU+17b,HM95,YFL+03,RABC09,Khi13,PS96,RAG04,KKR12,

BSLK04].

Gaussian-Transition-Model

The Gaussian-Transition-Model is a discrete white noise acceleration model [BSLK04],

with the transition matrix

Au,L(tδ) =














1 0 tδ 0 0

0 1 0 tδ 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1














, (4.36)
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and the covariance matrix Qu(tδ) = E
[
nu(tk) · nu(tk)

H
]
with

Qu(tδ) =














σ2
qu

(tδ)
3

3
0 σ2

qu

(tδ)
2

2
0 0

0 σ2
qu

(tδ)
3

3
0 σ2

qu

(tδ)
2

2
0

σ2
qu

(tδ)
2

2
0 σ2

qu
tδ 0 0

0 σ2
qu

(tδ)
2

2
0 σ2

qu
tδ 0

0 0 0 0 σ2
qb














, (4.37)

where σ2
qu

defines the continuous-time process noise intensity, which has to be dimen-

sioned according to the application with physical dimension
[
m2

s3

]

and σ2
qb
the variance

of the clock bias following a random walk model [PS96,RAG04]. If physical transmitter

and receiver oscillators provide different frequencies, a clock drift parameter has to be

considered additionally.

IMU-Transition-Model

The IMU-Transition-Model is based on a discrete white noise acceleration model incor-

porating additional information from an IMU. We use solely the heading changes from

the IMU. The heading changes allow to improve the performance of Channel-SLAM by

resolving ambiguities such that AoA measurements are not required anymore. Addi-

tionally we consider the moving indicator m(tk) if the object is moving with m(tk) = 1

or static with m(tk) = 0 based on the amplitude of the inertial measurement. Further

details about the used IMU, the coordinate transformation and preprocessing can be

found in Appendix A. The IMU-Transition-Model includes the heading changes φ̇(tk)

in the transition matrix Au,I(tδ, φ̇(tk)), with

Au,I(tδ, φ̇(tk)) =














1 0 tδ ·m(tk) 0 0

0 1 0 tδ ·m(tk) 0

0 0 cos(φ̇(tk)) − sin(φ̇(tk)) 0

0 0 sin(φ̇(tk)) cos(φ̇(tk)) 0

0 0 0 0 1














(4.38)

and the covariance matrix Qu(tδ) defined in (4.37). Equivalently to the Gaussian-

Transition-Model we use in (4.38) a random walk model for the clock bias [PS96,

RAG04].



52 Chapter 4. Multipath Assisted Positioning

Algorithm 9: Channel-SLAM for time instant tk
Input:

Multipath estimates: z(tk), σ
2
z(tk);

Control input: u(tk);

States and weights for tk > t1:
{

x
(j)
u (tk−1) , w

(j)(tk−1),

{{

x
(j,a)
VT,i(tk−1) , w

(j,a)
i (tk−1)

}Np,j,i(tk−1)

a=1

}N(tk−1)−1

i=0

}Ns

j=1

;

Initial prior information: xu(t0) for tk = t1;

Output:

States and weights for tk ≥ t1:
{

x
(j)
u (tk) , w

(j)(tk),

{{

x
(j,a)
VT,i(tk) , w

(j,a)
i (tk)

}Np,j,i(tk)

a=1

}N(tk)−1

i=0

}Ns

j=1

;

1 if tk = t1 then

2 Initialization using xu(t0), z(t1) and σ2
z(t1);

3 for j = 1 : Ns do

4 Draw x
(j)
u (tk) ∼ p

(
x
(j)
u (tk)|x(j)

u (tk−1) ,u(tk)
)
;

5 if New MPCs detected then

6 Initialize new sub-PFs;

7 if Tracking of MPCs lost then

8 Delete corresponding sub-PFs;

9 for i = 0 : N(tk)− 1 do

10 for a = 1 : NP,j,i(tk) do

11 Assign x
(j,a)
VT,i(tk) = x

(j,a)
VT,i(tk−1);

12 Calculate w
(j,a)
i (tk) = w

(j,a)
i (tk−1) p

(
zi(tk)|x(j)

u (tk) ,x
(j,a)
VT,i(tk)

)
;

13 Calculate total sub-PF weight: tj,i = SUM[{w(j,a)
i (tk)}NP,j,i(tk)

a=1 ];

14 w(j)(tk) =
∏N(tk)−1

i=0 tj,i;

15 Resample using Algorithm 10;

16 Calculate MMSE x̂(tk) according to (4.29);
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4.3 Channel-SLAM Implementation

Algorithm 9 provides the pseudo-code of Channel-SLAM, which is executed at every

time instant tk ≥ t1 with the estimates z(tk) ,σ
2
z(tk) obtained from KEST and the

control input u(tk). During the initialization, at time instant tk = t1, the particles

{x(j)
u (t1)}Ns

j=1 of the super-PF are initialized according to prior information xu(t0). The

particles {x(j,a)
VT,i(t1)}

NP,j,i(t1)
a=1 of the sub-PFs are initialized depending on x

(j)
u (t1) and the

measurements d̂i(t1) and θ̂i(t1) for the i-th MPC. A grid is used to initialize the states

of x
(j,a)
VT,i(t1) with a = 1, . . . , NP,j,i(t1) of the j-th sub-PF associated to the i-th MPC.

Whether a linear antenna array or a single receiving antenna is used, the initialization

is done differently:

• Linear antenna array

The positions r
(j,a)
VT,i(t1) of the particles {x(j,a)

VT,i(t1)}
NP,j,i(t1)
a=1 are distributed such

that

0 ≤ ‖r(j,a)VT,i(t1)− r(j)
u (t1)‖ ≤ d̂i(t1) + ∆d , (4.39)

with spacing ∆d, hence, there are Nd,i = ⌊ d̂i(t1)
∆d

⌋+ 1 grid points and

θ̂i(t1)−K · σθ,i(t1)

≤ arccos





(

r
(j,a)
VT,i(t1)− r

(j)
u (t1)

)

· v(j)
u (t1)

‖r(j,a)VT,i(t1)− v
(j)
u (t1)‖ · ‖v(j)

u (t1)‖



 ≤ (4.40)

θ̂i(t1) +K · σθ,i(t1) ,

with spacing ∆θ, resulting in Nθ,i = ⌊2K·σθ,i

∆θ
⌋ + 1 grid points, where K denotes

an empirical constant value. The additional propagation distance is d
(j,a)
VT,i(t1) =

d̂i(t1) − ‖r(j,a)VT,i(t1)− r
(j)
u (t1)‖, where we inherently assume bu(t1) = 0 for the

initialization. Hence, the total number of particles during initialization can be

calculated as

Nt(t1) =

Np∑

j=1

N(t1)−1
∑

i=0

NP,j,i(t1) = Np

N(t1)−1
∑

i=0

Nd,i ·Nθ,i. (4.41)

• Single receiving antenna

The positions r
(j,a)
VT,i(t1) of the particles {x

(j,a)
VT,i(t1)}

NP,j,i(t1)
a=1 are distributed on a grid

inside a circle around r
(j)
u (t1) with radius d̂i(t1)+∆d such that (4.39) with spacing

∆d holds. The number of grid points NP,j,i(t1) can be estimated by the Gauss’s

circle problem [Har15]. The additional propagation distance is d
(j,a)
VT,i(t1) = d̂i(t1)−
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‖r(j,a)VT,i(t1)− r
(j)
u (t1)‖, where we inherently assume bu(t1) = 0 for the initialization.

Hence, the total number of particles during initialization can be calculated as

Nt(t1) =

Np∑

j=1

N(t1)−1
∑

i=0

NP,j,i(t1) . (4.42)

For each particle j of the super-PF, the receiver state x
(j)
u (tk) is drawn according to

the transition models described in Section 4.2.4. Additionally, an individual MPC may

not always be visible while the receiver is moving. Hence, new MPCs appear or existing

MPCs disappear after a certain time during the receiver movement. Hence, Channel-

SLAM determines at each time instant whether the number of estimated MPCs has

changed. In case that new MPCs have been detected, new sub-PFs are added and

initialized using (4.39) and (4.40) (cf. Line 6 in Algorithm 9). In case that MPCs dis-

appeared the corresponding sub-PFs are removed (cf. Line 8 in Algorithm 9). Neither

KEST nor Channel-SLAM consider re-tracking of previous MPCs. Hence, if the track-

ing of a MPC has been lost and might be regained, the corresponding VT is initialized

without any prior information. According to (4.13) the state xVT,i(tk) is time-invariant,

hence each sub-PF assigns the states of the VTs with x
(j,a)
VT,i(tk) = x

(j,a)
VT,i(tk−1) and cal-

culates the weight w
(j,a)
i (tk) using (4.45). Thereafter, the weight w(j)(tk) is calculated

using (4.27) (cf. Line 14 in Algorithm 9). Afterwards, the particles of the sub-PFs

and super-PF are resampled. To prevent degeneration, resampling is performed at

each time instant. Algorithm 10 shows a pseudo-code of the derived resampling algo-

rithm for Channel-SLAM. The resampling algorithm for Channel-SLAM is based on

the systematic resampling algorithm [Kit96]. Please note that Algorithm 10 is split

into two parts: Part I shown on Page 55 and Part II shown on Page 56. Similarly

to Algorithm 9, the Channel-SLAM resampling algorithm consists of a superordinate

and subordinates resampling algorithms. First, the estimated sampled CDF of the

super-PF is constructed, presented by a vector cp with length Np and element [cp]j
with j = 1, . . . , Np. According to the estimated sampled CDF of the super-PF, the

sub-PFs are eliminated or resampled. The particles of the super-PF with index f

are assigned to the resampled particle index j for the assignment of the receiver state

(cf. Line 10 in Algorithm 10). Afterwards, the (f, i)-th sub-PF is resampled with

i = 0, . . . N(tk) − 1 using a systematic resampling algorithm, where cb represents the

estimated sampled CDF of the (f, i)-th sub-PF.

As mentioned before, whenever a new MPC is tracked, many particles are initial-

ized to cover all possible VT positions in each sub-PF. However during the receiver

movement many particles of the sub-PFs are resampled at the same grid point because

the states of the VTs xVT,i(tk) are time-invariant. In order to reduce the number of
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particles, we limit the number of resampled particles per grid point to Nm (cf. Line 20

in Algorithm 10). The number of particles per grid point are counted by the function

Bin (·) (cf. Line 24 in Algorithm 10). In order to include the weight of the reduced

number of particles, the weight is updated if the particles per bin exceed Nm (cf.

Line 28 in Algorithm 10). Afterwards the states of the VTs x
(j,a)
VT,i(tk) are drawn using

a Gaussian-Kernel (cf. Line 29 in Algorithm 10). The Gaussian-Kernel has a low

bandwidth which does not influence the grid based reduction method.

Algorithm 10: Resampling algorithm for Channel-SLAM (Part I)

Input:

States and weights:
{

x
(j)
u (tk) , w

(j)(tk),

{{

x
(j,a)
VT,i(tk) , w

(j,a)
i (tk)

}Np,j,i(tk)

a=1

}N(tk)−1

i=0

}Ns

j=1

;

Output:

Resampled states and weights:
{

x̃
(j)
u (tk) , w̃

(j)(tk),

{{

x̃
(j,a)
VT,i(tk) , w̃

(j,a)
i (tk)

}Np,j,i(tk)

a=1

}N(tk)−1

i=0

}Ns

j=1

;

1 Initialize the CDF for super-PF: [cp]1 = w(1)(tk);

2 for j = 2 : Ns do

3 Construct CDF for super-PF: [cp]j = [cp]j−1 + w(j)(tk);

4 f = 1;

5 Draw starting point: [up]1 ∼ U [0, N−1
s ];
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Algorithm 10: Continued from Page 55, Resampling algorithm for Channel-

SLAM (Part II)

6 for j = 1 : Ns do

7 [up]j = [up]1 +N−1
s · (j − 1);

8 while [up]j > [cp]f do

9 f = f + 1;

10 Assign:
{

x̃
(j)
u (tk) , w̃

(j)(tk)
}

=
{

x
(f)
u (tk) , 1/Ns

}

;

11 for i = 0 : N(tk)− 1 do

12 Initialize the CDF for (f, i)-th sub-PF: [cb]1 = w
(f,1)
i (tk);

13 for a = 2 : NP,i,f (tk) do

14 Construct CDF for sub-PF: [cb]a = [cb]a−1 + w
(f,a)
i (tk);

15 g = 1, ar = 1;

16 for a = 1 : NP,f,i(tk) do

17 [ub]a = [ub]1 + 1/NP,i,f (tk) · (a− 1);

18 while [ub]a > [cb]g do

19 g = g + 1;

20 if Bin
(

x̃
(j,ar)
VT,i (tk)

)

≤ Nm then

21 Assign: x̃
(j,ar)
VT,i (tk) = x

(f,g)
VT,i(tk);

22 Assign: w̃
(j,ar)
i (tk) = 1/NP,j,i(tk);

23 ar = ar + 1;

24 Bin
(

x̃
(j,ar)
VT,i (tk)

)

= Bin
(

x̃
(j,ar)
VT,i (tk)

)

+ 1;

25 Update number of particles: NP,j,i(tk) = ar;

26 for a = 1 : NP,j,i(tk) do

27 if Bin
(

x̃
(j,a)
VT,i(tk)

)

> Nm then

28 Update weight: w̃
(j,a)
i (tk) = w̃

(j,a)
i (tk) · Bin

(

x̃
(j,a)
VT,i(tk)

)

/Nm;

29 Draw x̃
(j,a)
VT,i(tk) = x̃

(j,a)
VT,i(tk) + ε with ε ∼ N

(

0, σ
(j)
K,i(tk)

)

;
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4.4 Channel-SLAM in Logarithm Domain

As mentioned in Section 3.4.6, computing the weights in log-domain can provide more

accurate results and a more stable implementation. Hence, the RBPF of Channel-

SLAM can be transferred to compute all steps in the log-domain using the Jacobian

logarithm [EPG94,KB90,RVH95]. From (4.19), we obtain

p

(
xu(tk)|z(t1:k) ,u(t1:k)

)
≈

Ns∑

j=1

eŵ
(j)(tk) δ

(
xu(tk)− x(j)

u (tk)
)
, (4.43)

with the log-weights ŵ(j)(tk) using (3.36). By transferring (4.27) and (4.45) to the

log-domain, we obtain

ŵ(j)(tk) ∝ ŵ(j)(tk−1) + ln
(
p

(
z(tk)|x(j)

u (tk) , z(tk−1)
))

= ŵ(j)(tk−1) +

N(tk)∑

i=1

ln





NP,i,j(tk)∑

a=1

eŵ
(j,a)
i (tk)





= ŵ(j)(tk−1) +

N(tk)∑

i=1

Jacob
(
{ŵ(j,a)

i (tk)}NP,i,j(tk)
a=1

)
, (4.44)

using the Jacabian logarithm of Algorithm 6 and with the log-weights

ŵ
(j,a)
i (tk) , ŵ

(j,a)
i (tk−1) + ln

(

p
(
zi(tk)|x(j)

u (tk) ,x
(j,a)
VT,i(tk)

))

, (4.45)

of the sub-PFs at time instant tk. According to Section 3.4.6 and [GZJ18] all steps

of the PF can be calculated in log-domain including weight normalization, resampling

and point estimations in a straightforward manner.

In [GZJ18], we show an example of Channel-SLAM where we clearly observe a

higher accuracy using the RBPF implementation in the log-domain if the width of the

likelihood distribution is too small in comparison to the width of the prior distribution.

However, in the considered scenarios of Chapter 5 and Chapter 6, the proposed RBPF

implementation in log-domain does not improve the performance. Hence, we do not

consider the RBPF implementation in log-domain in the following.





Chapter 5

Theoretical Performance Evaluations

In this chapter, we evaluate the performance of Channel-SLAM based on simulations.

The first part of this chapter describes the derivation of the PCRLB for Channel-

SLAM. To verify the position accuracy, the second part compares the performance

of Channel-SLAM to the PCRLB and to four state-of-the-art algorithms based on a

simulated scenario.

5.1 Posterior Cramér-Rao Lower Bound

The PCRLB is the theoretical performance bound of an unbiased sequential Bayesian

estimator [TMN98,VTB07] and can be calculated by the inverse of the posterior infor-

mation matrix J(tk), with

Ex(tk)

[

(x̂(tk)− x(tk)) (x̂(tk)− x(tk))
T
]

= M(tk) � J(tk)
−1 , (5.1)

where Ea [·] stands for expectation with respect to p
(
a
)
. The inequality in (5.1) means

that the difference M(tk) − J(tk)
−1 is a positive semi-definite matrix. The posterior

information matrix J(tk) can be calculated recursively according to [TMN98,VTB07,

SS16], with

J(tk) = D22(tk)−D21(tk) (J(tk−1) +D11(tk))
−1 D12(tk) , (5.2)

where

D11(tk) = −Ex(tk−1),x(tk)|u(tk)

[

∆
x(tk−1)

x(tk−1)
ln p
(
x(tk)|x(tk−1) ,u(tk)

)]

, (5.3)

D21(tk) = −Ex(tk−1),x(tk)|u(tk)

[

∆
x(tk−1)

x(tk)
ln p
(
x(tk)|x(tk−1) ,u(tk)

)]

= D12(tk)
T , (5.4)

D22(tk) = −Ex(tk−1),x(tk)|u(tk)

[

∆
x(tk)
x(tk)

ln p
(
x(tk)|x(tk−1) ,u(tk)

)]

− Ex(tk),z(tk)|u(tk)

[

∆
x(tk)
x(tk)

ln p
(
z(tk)|x(tk)

)]

, (5.5)
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where ∇a stands for the first-order partial derivatives with respect to a and ∆b
a stands

for the second-order partial derivatives with ∆b
a , ∇a∇T

b . To calculate the PCRLB,

we combine the time-invariant transition model for the VTs xVT(tk) as introduced in

(4.13) and the transition model of the receiver of (4.34) as

x(tk) =




Au(tδ, φ̇(tk)) 0

0 I





︸ ︷︷ ︸

A(tδ,φ̇(tk))

x(tk−1) + nt(tk) , (5.6)

with the identity matrix I, the zero matrix 0 and the transition noise nt(tk) ∼
N (0,Q(tδ)) with covariance matrix

Q(tδ) =




Qu(tδ) 0

0 0



 , (5.7)

where Qu(tδ) is defined in (4.37). In case of the linear transition model of (5.6) and

Gaussian distributed transition noise, we obtain for (5.3), (5.4) and (5.5)

D11(tk) = A(tδ, φ̇(tk))
TQ(tδ)

−1A(tδ, φ̇(tk)) , (5.8)

D12(tk) = −A(tδ, φ̇(tk))
TQ(tδ)

−1 , (5.9)

D22(tk) = Q(tδ)
−1 +C(tk) , (5.10)

where C(tk) relates the PCRLB to the measurement model, with

C(tk) = Ex(tk),z(tk)|u(tk)

[

∆
x(tk)
x(tk)

ln p
(
z(tk)|x(tk)

)]

= Ex(tk)|u(tk)

[

Ez(tk)|x(tk),u(tk)

[

∆
x(tk)
x(tk)

ln p
(
z(tk)|x(tk)

)]]

, (5.11)

where the term inside the outer expectation is the classic Fisher information matrix

[VTB07,Rao45,Cra16,Cra46]. Substituting (5.8), (5.9) and (5.10) into (5.2), we get

J(tk) = C(tk) +
(

Q(tδ) +A(tδ, φ̇(tk))J(tk−1)
−1A(tδ, φ̇(tk))

T
)−1

, (5.12)

using the matrix inversion lemma. The recursion (5.12) involves computations with the

initial posterior Fisher information matrix J(t0) calculated from the prior information

p

(
x(t0)

)
with

J(t0) = −Ex(tk)

[

∆
x(t0)
x(t0)

ln p
(
x(t0)

)
)
]

. (5.13)

As mentioned before, the matrix C(tk) of (5.11) relates the PCRLB to the mea-

surement at time instant tk. In order to calculate C(tk), we consider both levels, i.e.

the signal parameter estimation and Channel-SLAM. In general, a two level approach
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performs either equally or worse than an estimator which jointly combines both lev-

els. Thus, the derived PCRLB is based on a theoretical joint approach and considers

therefore the best possible estimator. Using al(θi(tk)) = e−j2πfcτi,l(tk) where τi,l(tk) is

the delay of the i-th MPC for the l-th antenna element l = 1 . . . L, we obtain from

(2.5) the signal received by the l-th antenna at time tk as

yl(tk, τm) =

N(tk)−1
∑

i=0

αi(tk) e
−j2πfcτi,l(tk) s(τm − τi(tk)) + n(τm) . (5.14)

According to the system model in (4.17), the delay τi,l(tk) of the i-th MPC is

τi,l(tk) =
(

‖d̃VT,i,l(tk)‖+ dVT,i(tk)
) 1

c
+ bu(tk) (5.15)

and

d̃VT,i,l(tk) = rVT,i(tk)−
(

ru(tk) +
vu(tk) · (l − 1) · d

‖vu(tk)‖

)

, (5.16)

where d defines the spacing between adjacent antennas. From (5.14), the discrete

channel transfer function in dependence on x(tk) can be written as

µ(ωm, l;x(tk)) =

N(tk)−1
∑

i=0

αi,l(tk)e
−j(2πfc+ωm) τi,l(tk) , (5.17)

where fc is the carrier frequency, ωm defines the discrete circular frequency at index

m = 0 . . .M − 1 and αi,l(tk) the complex amplitude of the i-th MPC.

Finally, we obtain for (5.11)

C(tk) = Ex(tk)|u(tk)

[

2 ℜ
{(

∇x(tk)µ(x(tk))
)H

R(tk)
−1
(
∇x(tk)µ(x(tk))

)}]

, (5.18)

see [Kay93,RAG04,VTB07], where R(tk) = σ2
nI is the covariance matrix, ℜ{·} denotes

the real part and

µ(x(tk)) = [µ(ω0, 1;x(tk)), . . . , µ(ω0, L;x(tk)),

. . . , µ(ωM−1, 1;x(tk)), . . . , µ(ωM−1, L;x(tk))]
T .
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The derivatives of µ(x(tk)) with respect to the receiver position ru(tk), velocity

vu(tk), clock bias bu(tk), i-th VT position rVT,i(tk) and corresponding additional dis-

tance dVT,i(tk) are

∇
ru(tk)µ(x(tk)) =

N(tk)−1
∑

i=0

{

j(2πfc + ωm)αi,l(tk)e
−j(2πfc+ωm)τi,l(tk)

c · ‖rVT,i(tk)− (ru(tk) +
vu(tk)·(l−1)·d

‖vu(tk)‖
)‖

· d̃VT,i,l(tk)

}

,

(5.19)

∇
vu(tk)µ(x(tk)) =

N(tk)−1
∑

i=0

{

j · (l − 1) · d · (2πfc + ωm)αi,l(tk)e
−j(2πfc+ωm)τi,l(tk)

c · ‖rVT,i(tk)− (ru(tk) +
vu(tk)·(l−1)·d

‖vu(tk)‖
)‖

×
(

I

‖vu(tk)‖
− vu(tk) · vu(tk)

T

‖vu(tk)‖3

)

· d̃VT,i,l(tk)

}

, (5.20)

∇bu(tk)µ(x(tk)) =

N(tk)−1
∑

i=0

−j(2πfc + ωm)αi,l(tk)e
−j(2πfc+ωm)τi,l(tk) , (5.21)

∇
rVT,i(tk)µ(x(tk)) =

−j(2πfc + ωm)αi,l(tk)e
−j(2πfc+ωm)τi,l(tk)

c · ‖rVT,i(tk)− (ru(tk) +
vu(tk)·(l−1)·d

‖vu(tk)‖
)‖

· d̃VT,i,l(tk) , (5.22)

∇dVT,i(tk)µ(x(tk)) = −j(2πfc + ωm)αi,l(tk)e
−j(2πfc+ωm)τi,l(tk)

1

c
. (5.23)

5.2 Evaluations Based on Simulations

We evaluate the performance of Channel-SLAM for an artificial two dimensional sce-

nario with a static physical transmitter, a moving receiver, a reflecting surface and a

scatterer, shown in Fig. 5.1. Based on simulations, the position precision of Channel-

SLAM is evaluated and compared to the derived PCRLB. Fig. 5.1 shows two tracks:

Track I indicated in blue is simulated using the Gaussian-Transition-Model with σ2
qu

=

0.1
[
m2

s3

]

. For Track I, the receiver is equipped with a 3-element linear antenna array

aligned to the direction of movement with an element-spacing of 0.5λ, where λ is the

wave length. Track II indicated in cyan is simulated using the IMU-Transition-Model

described in Section 4.2.4 with σ2
qu

= 0.01
[
m2

s3

]

, where the IMU is modeled as a random

generator and the motion indicator is set to m(tk) = 1. Track II is simulated for a

receiver equipped with the aforementioned 3-element linear antenna array and with a

single receiving antenna.

The receiver is moving on both tracks for 20 s with a system sampling interval

of tδ = 0.1 s. During the receiver movement, the LoS path between the physical

transmitter and the receiver is present for tk ≤ 10 s and has a normalized amplitude

of 1. For 10 s < tk ≤ 20 s, the LoS path between the physical transmitter and the

receiver is not received anymore. Please note, the simulations show by a simplified
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Figure 5.1. Simulated scenario with a fixed physical transmitter, a moving receiver, a

reflecting surface and a scatterer. The figure shows two different tracks, in blue Track

I for Gaussian-Transition-Model and in cyan Track II for IMU-Transition-Model, where

the crosses indicate the receiver position at tk = 10 s. The signal reaches the receiving

antenna via five different propagation paths: the LoS path for 0 s ≤ tk ≤ 10 s, a reflected

path, a path which is scattered, a path which is first reflected and afterwards scattered and

a path which is scattered and afterwards reflected. The figure shows also the theoretical

and virtual propagation paths for a receiver at the end of Track I.

scenario that even when the LoS path is not present anymore, Channel-SLAM is able

to estimate the receiver position using MPCs. Additional to the LoS path, the signal

reaches the receiving antenna via four different propagation paths at each time instant

tk during the whole receiver movement: a reflected path with normalized amplitude of

1/2 associated to VT1, a scattered path with normalized amplitude of 1/3 associated to

VT2, a path which is first reflected and afterwards scattered with normalized amplitude

of 1/4 associated to VT3 and a path which is first scattered and afterwards reflected with

normalized amplitude of 1/6 associated to VT4. The band-unlimited CIRs for each time

instant tk are bandlimited to a bandwidth of 100MHz and transmitted on a carrier

frequency of fc = 1.51GHz. The simulations are performed for different signal-to-noise-
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Figure 5.2. Examples of the estimation results obtained by KEST for the estimated

propagation distances and AoAs as a function of the receiver traveled time for SNR =

24dB for Track I in Fig. 5.2a, Fig. 5.2b and Track II in Fig. 5.2c, Fig. 5.2d both using

a linear antenna array. The black lines indicate the theoretical propagation distances and

AoAs of the GLoS path and paths of VT1, VT2, VT3 and VT4.

ratios (SNRs) which are calculated as SNR = ‖Ỹ(tk)
2‖

LM σ2
n
, where ‖Ỹ(tk)‖2 is the power of

all paths’ contributions Ỹ(tk), see (2.5). Additionally, we add an artificial clock bias

to verify the clock bias estimation capabilities. As mentioned in Section 4.1, the VT

position of the reflected signal path is determined by mirroring the physical transmitter

position at the reflecting surface, indicated by VT1 in Fig. 5.1 with dVT,1(tk) = 0.

The position of the scatterer is equivalent to the position of both VT2 and VT3 with

dVT,2(tk) = ‖rt − rs‖ = 8.6m and dVT,3(tk) = ‖rVT,1 − rs‖ = 22.1m, respectively.

The position of VT4 can be determined by mirroring the location of the scatterer at

the reflecting surface with the additional propagation distance dVT,4(tk) = dVT,2(tk).
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Fig. 5.1 visualizes the theoretical and virtual propagation paths for a receiver at the

end of Track I.

During the simulations, KEST is used with a fixed model order of N(tk) = 5 for

0 s ≤ tk ≤ 10 s andN(tk) = 4 for 10 s < tk ≤ 20 s. Fig. 5.2 shows two examples of KEST

results for SNR = 24 dB with the estimated propagation distances and estimated AoAs

as a function of the receiver traveled time for Track I in Fig. 5.2a and Fig. 5.2b, and

for Track II in Fig. 5.2c and Fig. 5.2d for a receiver equipped with the aforementioned

linear antenna array. The figures indicate by the black lines the theoretical propagation

distances and AoAs. At time instant tk = 14.2 s the delay of the propagation paths

associated to VT3 and VT4 are equal for Track I and at time instant tk = 16.2 s for

Track II. However, because of different amplitudes, phases and AoAs of these MPCs,

KEST is able to track both MPCs separately, see also [JWFP12]. In case of using only

a single receiving antenna, the accuracy of the delay estimation would be reduced.

Especially, when the delays of the MPCs associated to VT3 and VT4 are equal, the

estimation error is in the order of 10 cm for a SNR = 24 dB.

Channel-SLAM is evaluated for five different cases summarized in Table 5.1. The

cases are denoted by (a)-(e) and correspond to the sub-figures (a) - (e) in Fig. 5.5,

Fig. 5.6, Fig. 5.7, Fig. 5.8 and Fig. 5.9. For the initialization of Channel-SLAM, we

use prior information p
(
xu(t0)

)
which includes a two-dimensional uniform distribution

of 1m width centered around the starting position for ru(t0). Additionally, the speed

vector ‖vu(t0)‖ is initialized using a uniform distribution between 0m/s and 2m/s and

a uniform direction of 60◦ width around the true moving direction. Please note that

an unknown starting position and direction or larger initial uncertainties may result

in a biased and rotated coordinate system for the estimation. For ∆d,∆θ, K, we use

empirical values as ∆d = 0.5m,∆θ = 0.5◦, K = 5. In the cases (a),(b),(c), we consider

for conveniences the first propagation path i = 0 as the LoS path, indicated by VT0 in

Fig. 5.1 with a known fixed position rVT,0(tk) = rt and dVT,0(tk) = 0. As mentioned

in Section 1.4, the heading changes enable that Channel-SLAM operates without the

prior information on the physical transmitter position. Thus, in the cases (d) and

(e), the position of the physical transmitter is estimated by Channel-SLAM as the

position of VT0 using the KEST estimates of the first propagation path. If Channel-

SLAM has no prior information on the physical transmitter position, the coordinate

system has to be defined by the prior information on the initial receiver position and

speed. Thus, for the cases (d) and (e), the moving direction is assumed to be known to

define the coordinate system. Unless otherwise noted, the simulations are performed

using Ns = 6000 particles in the super-PF, whereas the number of particles for the

sub-PFs for each propagation path with i = 0, . . . , 4 is different depending on the
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Table 5.1. Description of five different cases for the Channel-SLAM evaluations.

(a) Track I - Linear Antenna Array

Channel-SLAM uses the KEST estimates of Track I where the receiver

is equipped with the 3-element linear antenna array, uses the Gaussian-

Transition-Model and has prior information on the physical transmitter po-

sition.

(b) Track II - Linear Antenna Array

Channel-SLAM uses the KEST estimates of Track II where the receiver is

equipped with the 3-element linear antenna array, uses the IMU-Transition-

Model and has prior information on the physical transmitter position.

(c) Track II - Single Receiving Antenna

Channel-SLAM uses the KEST estimates of Track II where the receiver is

equipped with the single receiving antenna, uses the IMU-Transition-Model

and has prior information on the physical transmitter position.

(d) Track II - Linear Antenna Array - NLoS

Channel-SLAM uses the KEST estimates of Track II where the receiver is

equipped with the 3-element linear antenna array, uses the IMU-Transition-

Model and has no prior information on the physical transmitter position.

(e) Track II - Single Receiving Antenna - NLoS

Channel-SLAM uses the KEST estimates of Track II where the receiver is

equipped with a single receiving antenna, uses the IMU-Transition-Model and

has no prior information on the physical transmitter position.
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estimated delay and AoA of each propagation path. Additionally, the simulations are

performed using the Channel-SLAM implementation with the dynamical adaptation

of the number of particles as introduced in Section 4.3 in Algorithm 10. We limit the

number of particles per bin to Nm = 30 and the grid size to ∆d = 0.5m. Later in this

section, we show that the dynamical adaption does not affect the position accuracy.

Furthermore, we draw for each simulation run randomly a clock bias. Please note, the

clock bias can be estimated only for the cases (a) - (c) and VT0 is only estimated in

(d) and (e), hence, the sub-figures (a) - (c) in Fig. 5.5, Fig. 5.6 and Fig. 5.9 do not

show the curve for VT0 and (d) - (e) do not show the curve for the clock bias.

−50

−25

−25

0

0

25

25

50

50

x [m]

y
[m

]

Receiver pos.
VT1 pos.
VT2 pos.
VT3 pos.
VT4 pos.

(a) Initialization

−50

−25

−25

0

0

25

25

50

50

x [m]

y
[m

]

(b) 67 s

−50

−25

−25

0

0

25

25

50

50

x [m]

y
[m

]

(c) 134 s

−50

−25

−25

0

0

25

25

50

50

x [m]

y
[m

]

(d) End of the track at 20 s

Figure 5.3. Four different time instants of the estimations of Channel-SLAM for Track

I if a linear antenna array is used, i.e. case (a).

Fig. 5.3 and Fig. 5.4 illustrate the PF estimations of the receiver position and VT

positions of Channel-SLAM by four different time instants for case (a) in Fig. 5.3 and
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(d) End of the track at 20 s.

Figure 5.4. Four different time instants of the estimations of Channel-SLAM for Track

II if a single receiving antenna is used, i.e. case (c).

for case (c) in Fig. 5.4. Fig. 5.3 and Fig. 5.4 indicate similar to Fig. 5.1 by the magenta

cross the position of VT1, by the black circle the position of VT2 and VT3, and by the

cyan circle the position of VT4. Additionally, Track I is indicated in Fig. 5.3 in blue and

Track II is indicated in cyan in Fig. 5.4 with the corresponding ground truth positions

indicated by the blue and cyan crosses. The PF estimations of the VT positions

are indicated by different colors. The black triangles show the corresponding MMSE

estimates of the VT positions for tk > t1. Additionally, the green circles indicate the

PF estimations of the receiver position and the red plus indicates the MMSE estimate

of the receiver position. Fig. 5.3a shows the initialization, according to the delay

and AoA measurements, all possible VT positions are initialized on a grid around the

receiver position. The position of a VT is ambiguous because a distinction between
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Table 5.2. Four different algorithms to compare to Channel-SLAM.

Alg. I Positioning algorithm with perfect knowledge of all VT positions rVT,i(tk)

and additional propagation distances dVT,i, with 0 = 1 . . . 4, including

the physical transmitter position. This algorithm can be seen as a lower

bound for Channel-SLAM.

Alg. II Positioning algorithm using only the reflected and the LoS signal, assum-

ing prior information on the physical transmitter position and perfect

knowledge of the geometry, hence, the knowledge of the states of VT0

and VT1. This reflects algorithms in [LMLW15,MWK14]. For tk > 10,

the algorithm uses only the reflected path for positioning.

Alg. III Positioning algorithm which considers the first arrived propagation path

as the LoS path and assuming the prior information on the physical

transmitter position. Hence, the algorithm interprets the second propa-

gation path (scattered path) as the LoS path for tk > 10 and represents

a multipath mitigation algorithm similar to [CFPFR09].

Alg. IV Positioning algorithm using only the LoS path and assuming the prior

information on the physical transmitter position. For tk > 10, the al-

gorithm estimates the position using the prediction model. Therefore,

the algorithm could be described as a multipath mitigation algorithm

including an ideal NLoS detection.

propagation paths arriving from the left and the right of the linear antenna array is

not possible. During the receiver movement, the uncertainty on the estimated VTs’

positions reduces. At the end of the track we obtain for the receiver and VT positions

accurate position estimates. If a single receiving antenna is used as illustrated in

Fig. 5.4, the VT positions are initialized on a grid with spacing of 0.5m in a circular

area around the starting position with the radius of the estimated delay, see Fig. 5.4a.

During the receiver movement, the uncertainty on the estimated positions of the VTs

reduces. However, after tk = 67 s, there are still ambiguities on the position estimates

of the VTs on the left and on the right of the receiver for VT2, VT3 and VT4. Because

of the direction changes of the receiver, the ambiguity in the VT positions can be solved

and we obtain an accurate position estimate at the end of the track.

To see the positioning performance of Channel-SLAM in relation to other algo-

rithms, we compare Channel-SLAM to four different algorithms named as Alg. I to

Alg. IV described in Table 5.2. Similarly to Channel-SLAM, these algorithms use

the delays and AoAs of the estimated MPCs provided by KEST as input, use the
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same transition model, assume the same prior information on the receiver position and

velocity, and are implemented using PFs with Ns = 6000 particles. In contrast to

Channel-SLAM, we assume for Alg. I to Alg. IV that the receivers are synchronized

to the physical transmitter, i.e. the clock biases are zero.

Fig. 5.5, Fig. 5.6, Fig. 5.7, Fig. 5.8 and Fig. 5.9 summarizes the evaluations. As

mentioned before, the sub-figures hold for the 5 cases (a) to (e) according to Table 5.1.

Fig. 5.5 shows the root mean square errors (RMSEs) of the estimated positions

of the VTs, receiver positions and clock biases as a function of the receiver traveled

time. The RMSE of the estimated receiver position is calculated as RMSEu(tk) =
√

E{‖ru(tk)− r̂u(tk)‖2}, of the estimated i-th VT position as

RMSEVT,i(tk) =
√

E{‖rVT,i(tk)− r̂VT,i(tk)‖2} and of the clock bias estimation times

the speed of light in meters as RMSEb(tk) =

√

E{‖bu(tk)− b̂u(tk)‖2} · c. Whereas the

solid lines indicate the RMSE for the simulations, the dashed lines indicate the corre-

sponding curves calculated using the PCRLB. The vertical dashed line indicates the

time when the LoS path is not received anymore.

Overall we can conclude that in all figures the RMSEs for the estimated VT posi-

tions follow a similar shape: At the starting position, Channel-SLAM and the PCRLB

are based on the same prior information. During the receiver movement the position

estimates of the VTs converge and hence, the RMSEs decrease. The PCRLB shows

the theoretical performance bound which has lower RMSEs than the PF estimations.

However, the PCRLB and PF estimations follow a similar shape. Because the positions

of VT2 and VT3 are identical, the curves for the PCRLBs of these VTs are equiva-

lent. Additionally, the parameter estimations of VT2 and VT3 are more accurate than

for VT1 and VT4, because VT2 and VT3 are closer to the track than VT1 and VT4,

hence, the delays and AoAs are changing more significantly. As mentioned before, we

can observe the convergence of the position estimations of VT2 and VT3 by the fast

drop after 7.5s for the linear antenna array and 9s for the single receiving antenna.

Additionally, without the prior information on the physical transmitter position, the

position accuracy is slightly decreased, however, we are still able to obtain a position

estimation error at the end of the track lower than 1m when a single receiving antenna

is used. Please note, the clock bias can be estimated only if the position of the physical

transmitter position is known. In the cases where the physical transmitter is unknown,

the clock bias is estimated inherently in the additional distance dVT,i(tk) of all VTs

and cannot be resolved.
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Figure 5.5. RMSEs of the estimated receiver positions, VT positions and clock biases as

a function of the receiver traveled time for cases (a) - (e) see Table 5.1. The dashed lines

represent the corresponding curves calculated by the PCRLBs. Additionally, the vertical

dashed line indicates the time when the LoS component is lost. Please note, the clock bias

can be estimated only for the cases (a) - (c) and VT0 is only estimated in (d) and (e).
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Fig. 5.6 shows the RMSEs as a function of the SNR for the receiver and VT positions

at the end of the track, i.e. tk = 20 s. Similar to Fig. 5.5, the solid lines indicate the

RMSEs for the simulations and the dashed lines indicate the corresponding curves

calculated using the PCRLB. For low SNRs, it is difficult for KEST to accurately

estimate all five MPCs because of the measurement noise. The non-accurate CIR

estimations of KEST causes directly estimation errors on the VT and receiver positions

of Channel-SLAM. Hence, the position estimation errors of the receiver position and

VTs increases for low SNRs. For higher SNRs, the RMSEs of VT2 and VT3 are close

to the curves for the PCRLB. In all evaluations, the position accuracy increases with

the SNR. As mentioned before, the positions of VT2 and VT3 are identical and can

be estimated more accurately than the positions of VT1 and VT4. We can observe

that the prior information on the physical transmitter position is not essential for

Channel-SLAM if an IMU is used. Even without the prior information on the physical

transmitter position accurate position estimation is possible. The physical transmitter

position can be estimated as a VT with a position error below 0.04m if a linear antenna

array is used and 0.3m for a single receiving antenna for SNRs ≥ 12 dB. By using a

linear antenna array, we observe a strong dependency of the accuracy on the SNR. For

the cases (a), (b) and (d) the position estimation accuracy increases significantly for

SNRs ≥ 12 dB. This effect is not visible in the PCRLB and is most likely caused by

estimation errors of KEST. By using a linear antenna array, the positioning accuracy

increases by a factor of 10 compared to a single receiving antenna. However, we are still

able to obtain a position accuracy at the end of the track below 1m for SNRs ≥ 16 dB

even if the physical transmitter position is unknown.
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Figure 5.6. RMSEs of the estimated receiver positions, VT positions and clock biases

as a function of the SNR for cases (a) - (e) see Table 5.1. The dashed lines represent

the corresponding curves calculated by the PCRLBs. Please note, the clock bias can be

estimated only for the cases (a) - (c) and VT0 is only estimated in (d) and (e).
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Fig. 5.7 shows the RMSEs as a function of the receiver traveled time for Channel-

SLAM and Alg. I - IV. The vertical dashed line indicates the time when the LoS path is

not received anymore. Additionally, we compare in Fig. 5.7 the RMSEs of two Channel-

SLAM implementation, using the dynamical adaptation of the number of particles as

introduced in Section 4.3 in Algorithm 10 referred to as Dynamic-Channel-SLAM and

without dynamical adaptation referred to as RBPF-Channel-SLAM. At the starting

time, the RMSE for all algorithms are similar because of the same prior information.

Alg. I can be interpreted as a lower bound and estimates the receiver position with the

lowest RMSE. Alg. II shows similar results, as long as the LoS path prevails. When the

LoS path is absent, the RMSEs increase because the number of transmitters reduces

to one. Estimating the receiver positions with only one propagation path, like Alg.

III and Alg. IV, the worst position accuracy is obtained compared to Alg. I, Alg. II

and Channel-SLAM. Furthermore, we see that we obtain similar RMSEs for Dynamic-

Channel-SLAM and RBPF-Channel-SLAM. However, if we have a look on the number

of used particles, as shown in Fig. 5.8, we see a major computational performance

gain of Dynamic-Channel-SLAM compared to RBPF-Channel-SLAM. Fig. 5.8 shows

the total number of particles Nt(tk) calculated according to (4.42) for Np = 6000

as a function of the receiver traveled time. At the beginning, both Channel-SLAM

algorithms are initialized with the same number of particles. As soon as the receiver

is moving, the estimations of the VT positions converge resulting in a reduction of the

number of particles for Dynamic-Channel-SLAM. Especially at the end of the track,

Dynamic-Channel-SLAM uses 5 times less particles than RBPF-Channel-SLAM if a

linear antenna array is used and 35 times less particles if a single receiving antenna is

used.

Fig. 5.9 shows the RMSEs for the receiver and VT positions at the end of the tracks,

i.e. tk = 20 s, as a function of the number of particles in the super-PF. As mentioned

before, the number of particles for the sub-PFs for each MPC with i = 0, . . . , 4 is

different depending on the estimated delay and AoA of each MPC and dynamically

adapts during the receiver movement. The more particles for the super-PF are used,

the higher the accuracy of Channel-SLAM: For the case (a) - (d), the receiver positions

can be estimated in average with RMSEs lower than 0.3m with Ns > 2000. For the

case (e), the receiver position can be estimated in average with a RMSE lower than

2m with Ns > 2000.
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Figure 5.7. RMSEs of the estimated receiver positions as a function of the receiver

traveled time for different algorithms, see Table 5.2, and cases (a) - (e), see Table 5.1.

The vertical dashed line indicates the time instant when the LoS path is lost.
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Figure 5.8. Total number of particles Nt(tk) as a function of the receiver traveled time

for Dynamic-Channel-SLAM and RBPF-Channel-SLAM for cases (a) - (e) see Table 5.1.

The vertical dashed line indicates the time instant when the LoS path is lost.
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Figure 5.9. RMSEs of the estimated receiver positions, estimated VT positions and

estimated clock bias as a function of the number of particles at the end of the track at

tk = 20 s for cases (a) - (e) see Table 5.1. Please note, the clock bias can be estimated

only for the cases (a) - (c) and VT0 is only estimated in (d) and (e).





Chapter 6

Performance Evaluations

This chapter describes the performance evaluation of Channel-SLAM based on three

different measurement campaigns. The first measurement campaign considers an in-

door scenario where the receiving antenna is mounted on a model train described in

Section 6.2. The second and third measurement campaigns explore a walking pedes-

trian carrying a single receiving antenna and an IMU. In the second measurement

campaign described in Section 6.3, the pedestrian walks outdoors in front of a hangar

with metallic doors. The hangar acts as a reflecting surface for the radio signal. In the

third measurement campaign described in Section 6.4, the pedestrian enters a building,

walks inside the building and leaves the building afterwards.

6.1 Measurement Equipment

The measurement campaigns are conducted using the MEDAV RUSK-DLR broadband

channel sounder. The channel sounder consists of a physical transmitter and a receiver

to sound the wireless channel. In the following we describe the channel sounder based on

the configuration used for the measurement campaigns in this work. For further details

about the channel sounder and different configurations or applications see e.g. [Leh05,

Jos13,Wan15]. To sound the channel, the channel sounder uses a single-input single-

output (SISO) mode [TLRT05]. Hereby, the physical transmitter emits a multitone

spread spectrum signal with N = 1281 sub-carriers with equal gains spaced by f∆ = 1
Tp

at a carrier frequency of fc = 1.51GHz and bandwidth B = 100MHz. This transmitted

signal is similar to an orthogonal frequency-division multiplexing (OFDM) signal and

is periodically transmitted with a period duration of Tp = 12.8µs. In all considered

measurements, the physical transmitter is static in its position and emits the multitone

signal with a power of 100mW. On the receiver side, the CIR snapshots are repeatedly

79
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Table 6.1. Channel sounder settings

Parameter Value

Measurement type SISO

Carrier frequency 1.51GHz

Bandwidth B 100MHz

Number of sub-carriers N 1281

Sub-carrier spacing ∆f 78.125 kHz

Transmit power 100mW

Signal period Tp 12.8µs

Measurement rate Tg 1.024ms

Transmitter antenna Omni-directional (V-polarized)

Receiver antenna Omni-directional (V-polarized)

ADC 8bit, 320MHz

measured in a time grid of Tg = 1.024ms. In the following sections, we describe two

different receiver-setups which are used in the measurement campaigns.

6.1.1 Moving Model Train

Fig. 6.1 shows the first measurement setup with a static physical transmitter and a

mobile receiver. To prevent time drifts during the measurements, the physical trans-

mitter and the receiver are connected to the same rubidium clock, see Fig. 6.1a. The

receiving antenna is mounted on an experimental platform realized using a model train

which moves on a model railroad track, see Fig. 6.1b. To prevent wheel slipping, the

model train is driven by a cogwheel. Additionally, the model train is equipped with

a rotary encoder which counts the number of motor turns and generates 500 impulses

per motor turn which are stored simultaneously with the captured CIR snapshots. The

number of motor turns corresponds linearly to the traveled distance of the mobile plat-

form. By storing the number of motor turns synchronously with the measured CIR

snapshots, we obtain the ground truth of the receiver for each captured CIR snap-

shot [Jos13,Wan15]. To measure the track layout and physical transmitter location

the tachymeter TPS1200 from Leica Geosystems AG was used, which has an accuracy

in subcentimeter domain. Hence, the traveled distance can be exactly mapped onto a

three dimensional coordinate and results in a precisely measured position for each CIR

snapshot. As mentioned before, the channel sounder is used in SISO mode, hence, we
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(a) Block diagram of the measurement setup with a static physical transmitter and a mobile receiver

where the receiving antenna is mounted on a model train. Transmitter and receiver use the same

rubidium clock for synchronization.
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encoder

(b) The model train used as a mobile platform with the receiving antenna mounted on top.

Figure 6.1. Measurement setup using a model train.
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do not have a linear antenna array as used in Section 5.2. However, with the accurate

knowledge of the traveled distance, it is possible to form virtually a linear antenna

array from the time-variant measurements, see [WJ12b]. In the considered measure-

ments in Section 6.2, the model train travels with a speed of roughly 0.05m/s resulting

in a spatial distance between two adjacent CIR measurements of 0.0512mm. We form

a 3-element linear antenna array with an element-spacing of 0.3λ with the wave length

λ = 1/fc.

6.1.2 Walking Pedestrian

Fig. 6.2 shows the second measurement setup with a static physical transmitter and a

pedestrian, where the receiving antenna is mounted on a pole attached on the backpack

of the pedestrian. Additionally, the pedestrian is equipped with a hand-held equipment

including a Xsens IMU (MTI-G-700) and a laptop which stores the IMU measurements.

In order to obtain the ground truth of the receiver movement, a prism is mounted

next to the antenna at the pole above the pedestrian. The prism is tracked by the

aforementioned tachymeter which sends the measured coordinates to the laptop that

records the coordinates simultaneously with the IMU measurements. To synchronize

all devices, the laptop is additionally connected by cable to the channel sounder. Thus,

we are able to obtain the ground truth of the receiver for each captured CIR snapshot.

Although, the synchronization between the IMU and the channel sounder might be

in the ms scale only, the influence on the position estimation is negligible because

of the low pedestrian speed of around 0.7m/s. Similar to the measurement setup in

Section 6.1.1, the physical transmitter and the receiver are connected to the same

Rubidium clock to prevent time drifts during the measurements.
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Figure 6.2. Block diagram of the second measurement setup with a static physical trans-

mitter and a pedestrian. The pedestrian carries the receiving antenna which is mounted

on a stick next to a prism for measuring the ground truth of the moving receiver. The

pedestrian holds a hand-held device which consists of an IMU and a laptop. For synchro-

nization, physical transmitter and receiver use the same rubidium clock.
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6.2 Moving Model Train - Indoor Measurements

In this section, we evaluate Channel-SLAM in an indoor environment, indicated in

Fig. 6.3 where we consider similarly to the simulations in Section 5.2 a LoS to NLoS

transition. The transmit antenna was located in the lobby of the office building as

visualized by the red diamond in Fig. 6.3, and the receiving antenna was mounted on

the model train, see Section 6.1.1. The model train was running on the pre-measured

track with a length of 23m as indicated by the blue line in the office building, starting

in the lobby and entering the meeting room after 14m with a travel speed of 0.05m/s.

Fig. 6.4 visualizes the antenna platforms on the left, the lobby on the upper right

and the meeting room on the lower right. The left figure shows in the foreground the

receiving antenna mounted on the top of the experimental platform on a height of

1.2m and in the background the transmit antenna mounted on a tripod with the same

height.

Fig. 6.5 shows the recorded CIRs as a function of the receiver traveled distance,

where the color indicates the received power. The vertical dashed lines in Fig. 6.6

and Fig. 6.7 indicate the traveled distance when the receiver is entering the meeting

room (cf. Fig. 6.3) and the black line indicates the GLoS path length. Fig. 6.6 and

Fig. 6.7 show the estimated propagation distances and AoAs of KEST as a function of

the receiver traveled distance. Only MPCs which are visible to the receiver for more

than 5m of movement are visualized. As shown in Fig. 6.6 and Fig. 6.7, many MPCs

can be tracked for several meters of receiver movement. Channel-SLAM considers an

underdetermined system, therefore, long tracked MPCs are preferable. Hence, for the

evaluations, Channel-SLAM only uses those MPCs which are visualized in Fig. 6.6 and

Fig. 6.7. Channel-SLAM could use all detected MPCs, however, this would increase

the computational complexity. The LoS path is visible to the receiver until the receiver

enters the meeting room. Due to limited bandwidth and MPCs that are close to the

LoS path, KEST is not able to resolve all MPCs properly. Hence, the KEST estimation

of the LoS path length is not identical to the GLoS path length.

Similarly to the simulations in Section 5.2, prior information on xu(t0) has been

used. We apply a uniform distribution of 1m width around the starting position ru(t0)

and a uniform distributed speed between 0m/s and 0.2m/s for ‖vu(t0)‖ while the

speed direction is drawn from a uniform distribution of 60◦ width around the moving

direction. For the evaluation, Channel-SLAM usesNs = 6000 particles in the super-PF.

We limit the number of particles per bin to Nm = 30 and the grid size to ∆d = 0.5m.

For notational conveniences, the first propagation path, i.e. i = 0, is considered as the

LoS path to the physical transmitter and, therefore, the position rVT,0(tk) = rt is equal
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Figure 6.3. Measurement scenario with a static physical transmitter and a moving re-

ceiver. The receiver is moving on the track as indicated in blue, starting in the lobby

and entering after 14m the meeting room. The green and cyan lines indicate the receiver

position estimations of Channel-SLAM for two independent runs based on the same mea-

surement data. Additionally, the PDFs of two estimated VT positions are shown, see also

Fig. 6.6 and Fig. 6.7.

to the physical transmitter position and dVT,0(tk) = 0. Compared to the simulations

in the previous section, the number of tracked MPCs changes, hence, the number of

sub-PFs changes accordingly. The number of used MPCs and respectively the number

of VTs changes between 2 at the starting point and up to 7 at the end of the track.

In Fig. 6.3, we show by the green and cyan lines two examples of the MMSE point

estimates of the receiver position for two different PF evaluations based on the same
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Figure 6.4. Measurement scenario: the left figure shows in front the receiving antenna

mounted on the top of the experimental train and in the background the transmit antenna

mounted on a tripod. The left figure shows the lobby on top and below the meeting room

with the pre-measured tracks.

measurement data. Estimations with PFs include randomness, hence, even based on

the same measurement data, the MMSE estimates differ for each evaluation unless the

number of particles is infinite. Additionally, Fig. 6.3 visualizes two VTs that result

from a reflected and scattered propagation path:

• On the left side of Fig. 6.3, the position of the VT occurring due to a reflection is

displayed together with the estimated PDF obtained from Channel-SLAM for a

receiver travelled distance of 8m. The black triangle denotes the calculated VT

position based on the calculated propagation path indicated by the grey dashed

lines. Fig. 6.6 and Fig. 6.7 compares additionally the delay and AoA estimate of

KEST to the calculated theoretical delay and AoA indicated by the dashed lines.

The theoretical delays and AoAs are calculated based on the known physical

transmitter and receiver positions as well as on the room-layout measured by the

tachymeter.

• On the right side of Fig. 6.3, the position of the VT occurring due to scattering

is displayed together with the estimated PDF from Channel-SLAM for a receiver

travelled distance of 23m. The VT is located at the edge of the entrance to

the meeting room and corresponds, therefore, most probably to a scattered path
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Figure 6.5. Recorded CIRs as a function of the receiver traveled distance. The vertical

black dashed line indicates the traveled distance at which the mobile receiver enters the

meeting room. The black solid line indicates the GLoS path length.

which explains the rather low received power for that MPC. Again, the theoretical

delay and AoA of the MPC is visualized in Fig. 6.3, Fig. 6.6 and Fig. 6.7 as dotted

lines.

Please note, by using a linear antenna array, two hypotheses of the VT position, on

both sides of the linear antenna array are equally likely as long as the receiver moves

along a straight line. Neither Channel-SLAM nor KEST can resolve the ambiguity.

Hence, Channel-SLAM estimates the position of the VT on both sides of the antenna

array that is aligned to the moving direction of the receiver. However, as long as

the receiver moves on a straight track, both hypotheses do not influence the receiver

position estimation. By turning, the ambiguity can be solved if the LoS path is present

and the physical transmitter position is known. Therefore, for the considered reflected

signal in Fig. 6.3, Fig. 6.6 and Fig. 6.7, the ambiguity problem can be solved because

the receiver turns at the receiver traveled distance between 5m and 10m.

Because Channel-SLAM uses a PF, each evaluation result includes randomness. We

performed 200 independent evaluations using Channel-SLAM based on the same mea-

surement data visualized by the estimated CIRs in Fig. 6.6 and Fig. 6.7. In Fig. 6.8,
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Figure 6.6. Estimation results of KEST for the estimated propagation distances of the

CIR as a function of the receiver traveled distance. Only MPCs that are visible to the

receiver for more than 5m are shown. The vertical black dashed line indicates the trav-

eled distance at which the mobile receiver enters the meeting room. The black solid line

indicates the GLoS path length, the black dashed line the theoretical propagation distance

associated to a reflected path and the black dotted line the theoretical propagation distance

associated to the scattered path shown in Fig. 6.3.

the green curve shows the average RMSEu(tk) for all evaluations and time instants.

The vertical dashed line indicates the traveled distance when the receiver is entering

the meeting room. Because of the initialization of the receiver position using prior

information, the position error at the beginning of the track is rather low. Afterwards,

the RMSEu(tk) is varying between 0.6m and 1.1m. Nevertheless, an average position

accuracy below 1.1m can be achieved within this indoor scenario. Similarly to Sec-

tion 5.2, Fig. 6.8 shows also the RMSEs of Alg. III and Alg. IV. The description of

Alg. III and Alg. IV can be found in Table 5.2. At the starting time, all algorithms

perform similarly because of the same initialization. Because Alg. III and Alg. IV use

only one MPC for positioning, the uncertainty increases during the receiver movement.

After the LoS path is not received anymore, we obtain a better position estimation

accuracy with Alg. III than with Alg. IV. Even if Alg. III uses the wrong MPC as the

LoS path, the positioning estimation accuracy is higher than using only the transition

model like Alg. IV.
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Figure 6.7. Similar to Fig. 6.6, the figure shows the estimation results of KEST for the

estimated AoAs of the CIR as a function of the receiver traveled distance.
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Figure 6.8. RMSEu(tk) as a function of the receiver traveled distance for Channel-

SLAM, Alg. III and Alg. IV, see Table 5.2. The vertical black dashed line indicates the

traveled distance at which the mobile receiver enters the meeting room.
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Figure 6.9. Measurement scenario: the measurements were conducted in front of a

hangar with metallic doors.

6.3 Walking Pedestrian - Outdoor Measurements

In this section, we evaluate the derived algorithm based on channel measurements on an

airfield in front of a hangar and chain-link fences, shown in Fig. 6.9. The measurements

use the setup as described in Section 6.1.2, with a single static physical transmitter

and a walking pedestrian. Fig. 6.10 shows the scenario by a top view with the physical

transmitter position in red, the track in blue, the starting-position in green and the

end-position in magenta. The pedestrian moves on the indicated track of Fig. 6.10 for

155s (distance of 111m) in front of a hangar with metallic doors. During the whole

pedestrian movement, the LoS path between the physical transmitter and the receiver

is present.

Fig. 6.11 shows the recorded CIRs and Fig. 6.12 the estimation results of KEST

for the CIR as a function of the pedestrian moving time, where the color indicates the

received power. In Fig. 6.12, we extracted only long visible MPCs from the KEST

estimates. The black circled line in Fig. 6.12 indicates the GLoS path length, which

matches perfectly to the KEST estimates for the first path. Additionally, other MPCs

are tracked by KEST for a long time. The metallic doors of the hangar act as a

reflecting surface for the transmitted wireless signal. Hence, we can obtain the po-

sition of VT1 by mirroring the physical transmitter position at the reflecting surface

as mentioned in Section 4.1. Additionally, the chain-link fences indicated by Fence 1,

Fence 2, Fence 3 act as reflecting surfaces. Hence, we obtain VT2, VT3, VT4 by mir-

roring the physical transmitter position at Fence 1, Fence 2 and Fence 3 as indicated

in Fig. 6.10. The positions of the hangar, Fence 1, Fence 2 and Fence 3 are measured
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Figure 6.10. Measurement scenario with a static physical transmitter and a moving

receiver (pedestrian). The pedestrian moves on the blue track for 155 s, in total 111m.

The starting-position and end-position are indicated by the green and magenta circles.

The metallic doors of the hangar and the chain-link fences act as reflecting surfaces for

the transmitted wireless signal.

using the tachymeter, thus, we are able to calculate the positions of VT1, VT2, VT3

and VT4 according to Section 4.1. Based on the calculated VT positions, we are able

to determine the theoretical propagation distances between these VTs and the walking

pedestrian for all time instants. We can see that the theoretical propagation distances

indicated by the black lines in Fig. 6.12 match to the KEST estimates.

The evaluations are performed using Ns = 2000 particles in the super-PF, whereas

the number of particles for the sub-PFs for each MPC is different depending on the

estimated delay of each MPC. For the initialization of Channel-SLAM, we use prior

information p

(
xu(t0)

)
. The prior information includes the starting position and moving

direction, whereas the speed is initialized using a uniform distribution between 0m/s

and 1m/s. We limit the number of particles per bin to Nm = 30 and the grid size to

∆d = 1m. We compare Channel-SLAM with and without the prior information on the

physical transmitter position. With the prior information on the physical transmitter
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Figure 6.11. Recorded CIRs as a function of the pedestrian moving time in seconds.
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Figure 6.12. Estimation results of KEST for the CIR as a function of the pedestrian

moving time in seconds where only long tracked MPCs are visualized. Additionally the

calculated propagation distances of the GLoS path and paths of VT1, VT2, VT3 and VT4

are shown.
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position, the first propagation path, i.e. i = 0, is considered as the LoS path to the

physical transmitter and, therefore, the position rVT,0(tk) = rt is equal to the physical

transmitter position and dVT,0(tk) = 0. If Channel-SLAM has no prior information on

the physical transmitter position, Channel-SLAM estimates the position of the physical

transmitter as a VT. During the pedestrian movement, the number of tracked MPCs

changes which results in removing and initialization of sub-PFs during the movement.

Additionally, because Channel-SLAM does not consider re-tracking of previous MPCs,

e.g. the MPCs of VT1 and VT3 which are tracked multiple times, are initialized

without any prior information. We set the continuous-time process noise intensity

to σ2
qu

= 5 · 10−4 m2

s3
and we perform 200 independent PF evaluations based on the

same measurement data. For the evaluations we add an artificial clock bias to the

measurements to verify the clock bias estimation capabilities.

Fig. 6.13 shows the enlarged measurement scenario with estimated PDFs for the

physical transmitter, VT1, VT2 and the pedestrian positions. Whereas the PDFs of

the physical transmitter, VT2 and pedestrian positions are the estimation results at the

end of the track, the estimated PDF of VT1 is the estimation results when the tracking

of the MPC is lost, i.e. after 75s. We see that especially the positions of both, the

physical transmitter and VT2 can be estimated with a low uncertainty. Additionally,

Fig. 6.13 shows two examples of the MMSE point estimates of the receiver position

with and without prior information on the physical transmitter position indicated in

red and in green.

Fig. 6.14 shows the RMSEs of the estimated pedestrian positions as a function of

the pedestrian moving time with and without the prior information on the physical

transmitter position. Additionally, Fig. 6.14 shows the RMSE of Alg. I with perfect

knowledge of the VT positions, see Table 5.2 for details about Alg. I. The measurement

scenario considers only reflections, thus, Alg. I is equivalent to Alg. II. Because

of the initialization of the receiver position using prior information, all algorithms

perform similarly at the beginning of the track where the position error is rather low.

Afterwards, the RMSEu(tk) is varying between 0.6m and 5m. Alg. I can be interpreted

as a lower bound and estimates the receiver position with the lowest RMSE. Between

70s and 90s of the receiver movement, Alg. I has a slightly higher RMSE which

might be due to the non-perfect reflecting surfaces, KEST estimation errors or small

inaccuracies in the calculations of the VT positions. Furthermore, we see that we obtain

similar RMSEs with and without the prior information on the physical transmitter

position. Similar to the simulations, we can conclude that Channel-SLAM does not

require the prior information on the physical transmitter position if an IMU is used.
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Figure 6.13. Enlarged measurement scenario of Fig. 6.10 with the ground truth of the

track in blue. The figure shows two examples of the MMSE point estimates of the receiver

position with the prior information on the physical transmitter position in green and with-

out in red. The starting-position and end-position are indicated by the green and magenta

circles. Additionally, the figure shows the estimated PDFs for the physical transmitter,

VT1, VT2 and pedestrian position.
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Figure 6.14. RMSEu(tk) as a function of the pedestrian moving time for Channel-SLAM

with and without the prior information on the physical transmitter position. Additionally,

Alg. I is shown which assumes perfect knowledge of the VT positions and physical trans-

mitter position, see Table 5.2 for details about Alg. I. The measurement scenario considers

only reflections, thus, Alg. I is equivalent to Alg. II.
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6.4 Walking Pedestrian - Indoor Measurements

This section evaluates Channel-SLAM based on channel measurements with a single

static physical transmitter and a walking pedestrian (see Section 6.1.2) as shown in

Fig. 6.15 outside and inside an office building. The pedestrian moves on the blue track

for 522 s, starts at the parking lot, enters the building, walks down two corridors, walks

inside the meeting room and leaves the building to the parking lot. The starting-

position is indicated by the green circle, the end-position by the magenta circle and

the physical transmitter position by the red circle. In the following, we divide the

track into different track-sections (TSs), see Table 6.2. To measure the position of

the receiver, the tachymeter was located in the lobby where the prism of the walking

pedestrian is in LoS conditions to the tachymeter in the TSs I, II, IV, VI, VII and VIII.

For the corridor parts, TS III and TS V, the prism of the walking pedestrian is in NLoS

conditions. In order to obtain the ground truth of the moving pedestrian in TS III and

TS V, we measured ground truth points (markers) in these TSs in advance. Whenever

the pedestrian walks on such a marker, it is recorded in the data capturing software

running on the laptop. By using these ground truth points we obtain an accuracy of

the pedestrian location in the order of 20cm. The pedestrian moves with a constant

speed, except between the time instants 210s and 265s, and between 375s and 395s,

where the pedestrian was standing.
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Figure 6.15. Measurement scenario with a static physical transmitter and a moving

receiver (pedestrian). The pedestrian moves on the blue track for 522 s: starts at the

parking lot (indicated by the green circle), enters the building, walks down two corridors,

walks inside the meeting room and leaves the building back to the parking lot (end-position

indicated by the magenta circle). The track is divided into different TSs, see Table 6.2

Table 6.2. Description of the different sections of the track

Track-section (TS) Beginning at Description

I tk = 0 s Outdoor

II tk = 42 s Lobby

III tk = 73 s Right corridor

IV tk = 213 s Lobby transition

V tk = 295 s Left corridor

VI tk = 384 s Short lobby passage

& meeting room

VII tk = 470 s Lobby

VIII tk = 498 s Outdoor
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Fig. 6.16 shows the recorded CIRs as a function of the receiver traveled time, where

the color indicates the received power. Many MPCs are closely spaced regarding their

delays, nevertheless for some parts of the track it is possible to determine the evolution

of different MPCs. The figure shows periods with high power, when the receiver is

in the lobby close to the physical transmitter, and periods with low power when the

LoS path is blocked or attenuated by walls, e.g. outdoors or inside the corridors.

Fig. 6.16b shows the estimation results of KEST for the CIR as a function of the

receiver traveled time, where only the MPCs of KEST which are tracked for more

than 3m of the receiver movement are shown. Many MPCs can be tracked for several

seconds of receiver movement. The black line in Fig. 6.16b shows the GLoS path.

For TS I, the LoS path between the physical transmitter and the receiver is present.

However, the signal of the LoS path is attenuated by the coated window. In TS I,

the pedestrian walks towards the physical transmitter, thus, the delay of the LoS path

decreases. Other MPCs behave similarly, indicating that their corresponding VTs are

located in moving direction. When entering the lobby (TS II) the received power

increases and drops again by the time entering the first corridor (TS III). During the

time the pedestrian walks in the right corridor, one MPC with a slightly larger delay

than the calculated GLoS, which is probably caused by a diffraction at the entrance

door of the corridor. Furthermore, for this part of the track, also a signal most probably

reflected at the end of the corridor is received. By leaving the corridor to the lobby,

the received power rises again (TS IV). However, the LoS path is tracked inaccurately

during the crossing of the lobby, which might be caused by the limited bandwidth and

closely spaced MPCs. During the time the pedestrian walks in the left corridor (TS

V), the LoS path is blocked and MPCs which are most likely caused by reflections

on the right wall of the lobby are tracked by KEST. After shortly passing the lobby,

the pedestrian enters the meeting room (TS VI). Although several MPCs are present,

KEST is only able to track MPCs for a short period of time caused by dense multipath

components (DMCs). Finally, the pedestrian leaves the meeting room and the building

through the lobby (TS VII) back to the parking lot (TS VIII).
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(a) Recorded CIRs as a function of the receiver traveled time in seconds.
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(b) Estimation results of KEST for the CIR as a function of the receiver traveled

time. Only MPCs that are visible to the receiver for more than 3m are shown.

Figure 6.16. Recorded CIRs and estimation results of KEST. The black line indicates

the GLoS path. The vertical dashed lines indicate the different TSs, see Table 6.2.
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Figure 6.17. Visualization of the particle filter estimation of the receiver position for

three different time instances: tk = 0 s (initialization), tk = 42 s and tk = 148 s. The

green circles indicate the particle states of the receiver positions, the red circles the MMSE

estimates of the receiver positions and the blue crosses the ground truths.

Similarly to the measurement evaluation in Section 6.3, prior information on xu(t0)

has been used. We apply a uniform distribution of 1m width around the starting

position ru(t0) and a uniform distributed speed between 0m/s and 0.2m/s for ‖vu(t0)‖
while the speed direction is assumed to be known. For the evaluation, Channel-SLAM

uses Ns = 2000 particles in the super-PF. We limit the number of particles per bin

to Nm = 30 and the grid size to ∆d = 0.5m. Additionally, for the evaluations of

Channel-SLAM, we do not assume any prior information on the physical transmitter

position, i.e. Channel-SLAM estimates the position of the physical transmitter as a

VT.

Fig. 6.17 illustrates different time steps of the position estimation. For simplicity

we show only the estimations of the receiver position. We show by the green circles

the particle states of the receiver positions, by the red circles the MMSE estimates of

the receiver positions and by the blue crosses the ground truths. During the receiver

movement the uncertainty on the estimated pedestrian position increases.

Fig. 6.18 shows the RMSE of the estimated receiver position as a function of the

receiver traveled time. We performed 200 independent runs of the PF implementation

of Channel-SLAM based on the same measurement data. Because of the initialization
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Figure 6.18. RMSEu(tk) as a function of the receiver traveled time in seconds. The

vertical dashed lines indicate the different TSs, see Table 6.2.

of the receiver position using prior information, the position error at the beginning of

the track is rather low and increases up to 6m when the pedestrian is inside the right

corridor. Afterwards, the error decreases and varies between 1m and 4m. During the

time when the pedestrian walks inside the meeting room (TS VI) the error grows again

up to 6m most likely caused by MPCs which have a short life time. To further decrease

the positioning error, additional sensors like using signals of GNSSs as proposed in

[GPU+17a] or mapping algorithms as proposed in [GMU+16,GMP+16] could be used.





Chapter 7

Conclusion and Future Work

In this thesis a novel algorithm referred to as Channel-SLAM is introduced which allows

positioning of moving receivers using wireless radio signals. Channel-SLAM requires

only one physical transmitter in operation and exploits multipath propagation for po-

sitioning. Thus, Channel-SLAM stands for a paradigm shift in radio based positioning

where multipath propagation has so far been considered as harmful for precise posi-

tioning. We presented a Bayesian formulation and particle filter (PF) implementation

of Channel-SLAM and applied Channel-SLAM to measurement data. Using Channel-

SLAM on the measurement data shows that accurate position estimation is possible

by exploiting multipath propagation even without the prior information on the phys-

ical transmitter position. To the knowledge of the author, this is the first time that

the possibility of using multipath propagation for positioning without prior informa-

tion such as room-layout or fingerprinting database has been shown. We believe that

Channel-SLAM is a suitable technique for applications for global navigation satellite

system (GNSS) denied areas such as inside buildings. Furthermore, the work in this

thesis opens the door for precise positioning without prior information on the physical

transmitter position.

The main contributions of this thesis are as follows:

• We proposed a novel transition model to describe each multipath component

(MPC) as a line-of-sight (LoS) path being emitted from a virtual transmitter

(VT) with unknown position. Hence, a specific detection of different propagation

phenomena such as reflection, diffraction or scattering is not necessary. The VTs

are inherently time synchronized to the physical transmitter and static in their

positions with an additional constant propagation distance.

• We derived a novel algorithm based on recursive Bayesian filtering for Channel-

SLAM. Channel-SLAM estimates the receiver position and the positions of the

103



104 Chapter 7. Conclusion and Future Work

VTs simultaneously. Hence, received MPCs increase the number of transmit-

ters enabling positioning when the number of physical transmitters is insufficient

or resulting in a more accurate position estimate. Additionally, the approach

does not require any prior information such as a room-layout or a database for

fingerprinting.

• We introduced two different implementations of Channel-SLAM: The first im-

plementation of Channel-SLAM considers a receiver equipped with a linear an-

tenna array. In addition to the estimated delays, Channel-SLAM uses angle of

arrival (AoA) measurements to improve the positioning accuracy. The second

implementation of Channel-SLAM fuses heading information coming from an in-

ertial measurement unit (IMU) with the estimated MPC parameters. By using

the heading information, Channel-SLAM requires only an initial prior informa-

tion on the receiver position and moving direction to define the coordinate system.

Thus, prior information on the physical transmitter position is not necessary and

is estimated like a VT.

• Channel-SLAM is derived based on Rao-Blackwellization, where the state space

is partitioned into subspaces. The algorithm allows to use different numbers of

particles in each particle filter associated to a VT. The number of particles are

dynamically adapted during runtime which enables a major performance gain in

terms of computational effort.

• To verify the position accuracy of Channel-SLAM, a posterior Cramér-Rao lower

bound (PCRLB) is derived which incorporates heading information. Based on

simulations, the accuracy of Channel-SLAM is compared to the derived PCRLB.

The evaluations show that accurate position estimation is possible when MPCs

are used even without the prior information on the physical transmitter position.

• Channel-SLAM is evaluated based on three measurement campaigns covering

indoor and outdoor scenarios. Using Channel-SLAM on measurement data shows

that accurate position estimation is possible by exploiting MPCs.

The thesis focuses on Channel-SLAM, derives the algorithm and provides perfor-

mance results. Ongoing research, beyond the results included in this thesis are:

• Channel-SLAM assumes the knowledge of the starting position to fix the coor-

dinate system. In outdoor environments this knowledge can be obtained from

GNSS. Preliminary research was done in [GPU+17a] to fuse Channel-SLAM

with GNSS pseudoranges. Future research might exploit multipath propagation

of GNSS signals for positioning.
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• Channel-SLAM estimates the position relatively, hence, errors are cumulative

and the growth in uncertainty is unbounded over time. First results published

in [GMU+16] describes an algorithm to generate a map of the visited areas. The

algorithm estimates the situation when the receiver revisits an area to correct

estimation errors. Future research could go towards merging several maps of the

visited areas collected by one or more receivers.

• The presented Channel-SLAM implementation does not consider retracking of

previous MPCs or VTs. Hence, if the tracking of a MPC has been lost and might

be regained, the corresponding VT is initialized without any prior information.

Thus, first research was done in [GMP+16,UGJD17] to extend Channel-SLAM,

to estimate, map and reuse previous estimated VT states. Especially, first results

presented in [UGJD17] show that reusing VTs increases the position accuracy.

Further work in multipath assisted position may be pursued:

• The derived model for Channel-SLAM assumes a static two dimensional envi-

ronment. Dynamic scatterers like in a car-to-car scenario are not included. Fur-

thermore, Channel-SLAM assumes that the signal is reflected on a plain surface.

Future work could consider MPCs which interact with uneven, curved surfaces

and moving objects. Additionally, Channel-SLAM might be extended to consider

three dimensional environments.

• We propose in this thesis a two level approach: on the first level, the multipath

parameters for each MPC are estimated based on the received wireless signal

by Kalman enhanced super resolution tracking (KEST); on the second level,

Channel-SLAM estimates the receiver and VT states based on the estimated

MPCs. Future research could jointly combine both levels, in order to further

improve the position accuracy.

• Channel-SLAM uses solely the heading information of the IMU to solve ambigui-

ties and improve the position accuracy. Theoretically, the inertial measurements

allow to compute continuously position and attitude for inertial navigation by

numerical integrations. Further extensions of Channel-SLAM could use more

information provided by the IMU.





Appendix A

Inertial Measurement Units

A.1 Introduction

Today many smartphones feature a micro-electro-mechanical system (MEMS) IMU.

An IMU is an electronic device that provides inertial measurements by using a com-

bination of accelerometers and gyroscopes. The accelerometers measure the linear

accelerations and the gyroscopes measure the turn rates. Numerical integrations of the

inertial measurements allow to compute continuously position and attitude for inertial

navigation: double integrating the acceleration yields to the position change; integrat-

ing the turn rate yields to the attitude change. IMUs are classically built as mechanical

devices which consist of precision mechanical gyroscopes and accelerometers used in

e.g. airplanes. In recent years, MEMS IMUs became popular with sub-cm size. How-

ever, compared to the mechanical IMUs, MEMS IMUs are not able to provide the same

precision or long term stability [Woo07]. Because the position calculation involves dou-

ble integrations, even small measurement errors quickly cause a drift in the position

solution which makes the position solution unreliable over time.

The inertial measurements are provided from the IMU with respect to the sensor

alignment [Woo07] i.e. the body frame (b-frame). In order to obtain the inertial

measurements, a transformation from the b-frame to the navigation frame (n-frame)

is necessary introduced in Section A.2. In our application, the position of the IMU

is assumed as constant with respect to the receiving antenna. Thus, we are able to

calculate the coordinate transformation matrices during a calibration phase.
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Figure A.1. IMU coordinate systems.

A.2 Inertial Navigation

In order to use the inertial measurements, transformations between different coordinate

systems are necessary [Jek01] as shown in Fig. A.1. The accelerations are measured

with respect to the b-frame, whereas the gyroscope senses the angular rates of the

b-frame with respect to the inertial frame (i-frame) in the b-frame. The b-frame gen-

erally refers to the device to be navigated and is centered at the measurement device

where the axes are aligned with the device axes. If the center of gravity is not cor-

rectly aligned with the axes, a transformation from the sensor frame to the b-frame is

necessary. The i-frame has its origin at the center of the earth and is fixed, i.e. it does

not rotate with the earth.

To estimate the heading, we need to transfer the measurements to the n-frame.

As shown in Fig. A.1 on the right, the n-frame is also centered at the measurement

device, but the axes are pointing towards north, east and up directions and serves as a

reference frame for the attitude. The rotation from the n-frame to the b-frame depends

on the heading and pitch of the IMU and is given by

Rn→b(tk) = R3(ψ(tk))R2(θ(tk))R1(φ(tk)) , (A.1)

with the rotation matrices R1, R2 and R3 around the x-, y- and z-axis. Roll φ(tk),

pitch θ(tk) and yaw ψ(tk) angles refer to rotations around the x, y and z axes.
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As mentioned before, the time-discrete accelerometer measurements aaab(tk) are pro-

vided in the b-frame and can be modeled according to [Jek01,Hen15], with

aaab(tk) = Rn→b(tk) aaan(tk) + bbbb(tk) + g








− sin(θ(tk))

cos(θ(tk)) sin(φ(tk))

cos(θ(tk)) cos(φ(tk))








+ ǫǫǫb(tk) , (A.2)

with the rotation matrix Rn→b(tk), the acceleration in the n-frame aaan(tk), the grav-

itational acceleration g, the accelerometer biases bbbb(tk) and the measurement noise

ǫǫǫb(tk).

The gyroscope measures the angular rates ωωωb
ib(tk) of the b-frame with respect to

the inertial i-frame in the b-frame, where the relations are given by

ωωωb
ib(tk) = Rn→b(tk)ωωω

n
in(tk) +ωωωb

nb(tk) + bbbbωib
(tk) + ǫǫǫbωib

(tk) , (A.3)

where ωωωn
in(tk) are the angular rates in the n-frame with respect to the i-frame, bbbbωib

(tk)

are the gyroscope biases and ǫǫǫbωib
(tk) denotes measurement noise [Hen15, Jek01]. The

term ωωωn
in(tk) describes the rotation of the n-frame with respect to the i-frame depending

on the geographical latitude ν(tk), the rates ν̇(tk), λ̇(tk) of latitude and longitude, and

the angular velocity of the earth ωe with

ωωωn
in(tk) =








(λ̇(tk) + ωe) cos(ν(tk))

−ν̇(tk)
−(λ̇(tk) + ωe) sin(ν(tk))







. (A.4)

The angular rates of the b-frame with respect to the n-frame

ωωωb
nb(tk) are related to the time derivative of the Euler angles [Jek01] by

ωωωb
nb(tk) =








1 sin(φ(tk)) tan(θ(tk)) cos(φ(tk)) tan(θ(tk))

0 cos(φ(tk)) − sin(φ(tk))

0 sin(φ(tk))/ cos(θ(tk)) cos(φ(tk))/ cos(θ(tk))















φ̇(tk)

θ̇(tk)

ψ̇(tk)







. (A.5)

The basic relation is given by (A.3) and (A.5), however, the knowledge of the initial

roll and pitch angles, i.e. the tilted position of the device as well as the sensor biases

are essential, which can be determined if the device is static, see Section A.3.
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A.3 Preprocessing

The purpose of the preprocessing procedure is to obtain the heading changes φ̇(tk)

during runtime based on the acceleration and turn rate measurements from the IMU.

In our considered scenario, the position of the IMU is assumed as constant with respect

to the receiving antenna. Therefore, we are able to calculate the coordinate transfor-

mation matrices during a calibration phase at the beginning during a static phase. For

a static IMU, the accelerations in the n-frame aaan(tk) in (A.2) are zero. While in theory

an object could move at a constant velocity without undergoing any acceleration or

turning, this is highly unlikely in reality. Especially when considering pedestrian ap-

plications, movements will always cause shaking and vibration of the IMU. Neglecting

sensor noise and biases, we only measure the acceleration due to the gravitational force

of the earth. In this case, pitch θ(tk) and roll φ(tk) of the device can be determined by

θ(tk) = − sin−1

(
abx(tk)

‖aaab(tk)‖

)

, (A.6a)

φ(tk) = sin−1

(

−aby(tk)
(‖aaab(tk)‖ cos(θ(tk))

)

, (A.6b)

where aaab(tk) =
(
abx(tk), a

b
y(tk), a

b
z(tk)

)T
is the measured acceleration in the b-frame

[Ped13]. As mentioned before, for simplicity we assume that the IMU has a constant

tilt during the measurements. In practical applications, the sensor orientation has to be

estimated continuously [FON08]. If θ(tk) and φ(tk) are estimated during the calibration

phase, the heading change φ̇(tk) can be calculated from (A.5) during runtime.

A.4 Movement Detection

As mentioned before, we use the IMU measurements to obtain information if the IMU is

in motion or static. We use a thresholding technique proposed in [SGGO05] to detect

quasi-static states of the IMU based on the accelerometer and gyroscope measure-

ments. This is particularly effective since we assume that the IMU has a constant tilt

during the measurements. However, difficulties arise in selecting the optimal threshold

value, which can vary between users, surfaces, etc. Especially, for an unconstrained

smartphone, the freedom of movement might additionally affect the property of the

accelerometer and gyroscope measurements and mistakenly trigger the threshold. De-

tecting levels of activity is a widely spread research topic and further information can

be found in e.g. [SGGO05,RM00,FNRA10,KWM11,AGO+12,BH13].



Appendix B

Derivation of the Weight Update Equation

for Channel-SLAM

In the following we derive the weight update equation of (4.20) for the approximations

of (4.19), see also [AMGC02,RAG04]. According to [AMGC02], the posterior density

p
(
xu(t0:k)|z(t1:k) ,u(t1:k)

)
can be approximated as

p
(
xu(t0:k)|z(t1:k) ,u(t1:k)

)
≈

Ns∑

j=1

w(j)(tk) δ
(
xu(t0:k)− x(j)

u (t0:k)
)
, (B.1)

with the weight update

w(j)(tk) ∝
p
(
x
(j)
u (t0:k)|z(t1:k) ,u(t1:k)

)

q

(
x
(j)
u (t0:k)|z(t1:k) ,u(t1:k)

) , (B.2)

where the particles x
(j)
u (t0:k) are drawn from the importance density

q
(
x
(j)
u (t0:k)|z(t1:k) ,u(t1:k)

)
. Seeing it from an iterative perspective, at each time in-

stant tk, we have an approximation for p
(
xu(t0:k−1)|z(t1:k−1) ,u(t1:k−1)

)
where we want

to approximate p

(
xu(t0:k)|z(t1:k) ,u(t1:k)

)
with a new set of particles. If we chose the

importance density that

q
(
xu(t0:k)|z(t1:k) ,u(t1:k)

)
(B.3)

= q

(
xu(tk)|xu(t0:k−1) , z(t1:k) ,u(t1:k)

)
· q
(
xu(t0:k−1)|z(t1:k−1) ,u(t1:k−1)

)
,

we can argument that we obtain the particle states

x
(j)
u (t0:k) ∼ q

(
xu(t0:k)|z(t1:k) ,u(t1:k)

)
from the existing particle states x

(j)
u (t0:k−1) ∼

q

(
xu(t0:k−1)|z(t1:k−1) ,u(t1:k−1)

)
with the new particle states

x
(j)
u (tk) ∼ q

(
xu(tk)|xu(t0:k−1) , z(t1:k) ,u(t1:k)

)
.
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In order to calculate the weight update equation (B.2), we factorize

p

(
xu(t0:k)|z(t1:k)u(t1:k)

)
with

p

(
xu(t0:k)|z(t1:k)u(t1:k)

)
(B.4)

=
p

(
z(tk)|xu(t0:k) , z(t1:k−1) ,u(t1:k)

)
· p
(
xu(t0:k)|z(t1:k−1) ,u(t1:k)

)

p

(
z(tk)|z(t1:k−1)

)

=
p

(
z(tk)|xu(t0:k) , z(t1:k−1) ,u(t1:k)

)
· p
(
xu(tk)|xu(t0:k−1) , z(t1:k−1) ,u(t1:k)

)

p

(
z(tk)|z(t1:k−1)

)

×p

(
xu(t0:k−1)|z(t1:k−1) ,u(t1:k)

)

=
p

(
z(tk)|xu(t0:k) , z(tk−1)

)
· p
(
xu(tk)|xu(tk−1) ,u(tk)

)

p

(
z(tk)|z(t1:k−1)

)

×p

(
xu(t0:k−1)|z(t1:k−1) ,u(t1:k−1)

)

∝ p
(
z(tk)|xu(t0:k) , z(tk−1)

)
· p
(
xu(tk)|xu(tk−1) ,u(tk)

)

×p
(
xu(t0:k−1)|z(t1:k−1) ,u(t1:k−1)

)
.

Please note, p
(
z(tk)|xu(t0:k) , z(tk−1)

)
= p
(
z(tk)|xu(t0:k)

)
, however, because of the cal-

culations in Section 4.2.2, we are not doing this simplification here. With (B.3) and

(B.4), the weight update equation of (B.2) is

w(j)(tk) ∝ p
(
z(tk)|x(j)

u (t0:k) , z(tk−1)
)
· p
(
x
(j)
u (tk)|x(j)

u (tk−1) ,u(tk)
)

q
(
x
(j)
u (tk)|x(j)

u (t0:k−1) , z(t1:k) ,u(t1:k)
) (B.5)

×p
(
x
(j)
u (t0:k−1)|z(t1:k−1) ,u(t1:k−1)

)

q
(
x
(j)
u (t0:k−1)|z(t1:k−1) ,u(t1:k−1)

)

= w(j)(tk−1)
p
(
z(tk)|x(j)

u (t0:k) , z(tk−1)
)
· p
(
x
(j)
u (tk)|x(j)

u (tk−1) ,u(tk)
)

q
(
x
(j)
u (tk)|x(j)

u (t0:k−1) , z(t1:k) ,u(t1:k)
) .

Since, we are only interested in a filtered estimate p
(
xu(tk)|z(t1:k) ,u(t1:k)

)
, we obtain

for q
(
x
(j)
u (tk)|x(j)

u (t0:k−1) , z(t1:k) ,u(t1:k)
)
, q
(
x
(j)
u (tk)|x(j)

u (tk−1) , z(tk) ,u(tk)
)
where the

importance density becomes only dependent on x
(j)
u (tk−1), z(tk) and u(tk). Therefore,

from (B.5) we obtain

w(j)(tk) ∝ w(j)(tk−1)
p

(
z(tk)|x(j)

u (tk) , z(tk−1)
)
· p
(
x
(j)
u (tk)|x(j)

u (tk−1) ,u(tk)
)

q

(
x
(j)
u (tk)|x(j)

u (tk−1) , z(tk) ,u(tk)
) , (B.6)

where the posterior filtered density is approximated as stated in (4.19).
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Notation and List of Symbols

Notation

Throughout the thesis, the following notation is used:

• (·)T and (·)H stand for matrix (or vector) transpose and conjugate transpose,

respectively.

• All vectors are interpreted as column vectors.

• Matrices are denoted by bold capital letters and vectors by bold small letters.

• [A]l,m represents the element in row l and column m of matrix A and [x]l denotes

the l-th element of vector x.

• ‖A‖2 =∑l

∑

m | [A]l,m |2 represents the square of the Frobenius norm of A.

• diag[A1, . . . ,Ak] denotes the diagonal block matrix with the diagonal matrices

A1, . . . ,Ak and diag[a1, . . . , ak] denotes the diagonal matrix with the diagonal

elements a1, . . . , ak.

• a ∼ N (a;µa, σ
2
a) denotes a Gaussian distributed random variable a with mean

µa and variance σ2
a.

• U [0, N ] denotes the uniform distribution on the interval [0, N ].

• E [x] stands for expectation or sample mean of x and Ea [x] stands for expectation

of x with respect to p

(
a
)
.

• Ftk
{·} stands for the discrete-time Fourier transform with respect to tk and

F
−1
f {·} stands for the inverse discrete-time Fourier transform with respect to f .

• 1 : k stands for all integer numbers starting from 1 to k, thus 1, 2, . . . , k.

• ℜ{x} denotes the real part of x.
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• ∇a stands for the first-order partial derivatives with respect to a and ∆b
a stands

for the second-order partial derivatives with ∆b
a , ∇a∇T

b .

• x̂ denotes the estimation of x.

• ∝ stands for proportional.

• {x(i)}Ni=1 defines the set for x(i) with i = 1, . . . , N .
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