

ESROCOS: A ROBOTIC OPERATING SYSTEM FOR SPACE AND TERRESTRIAL

APPLICATIONS

M. Muñoz Arancón (1), G. Montano (2), M. Wirkus (3), K. Hoeflinger (4), D. Silveira (5), N. Tsiogkas (6), J. Hugues (7), H.

Bruyninckx (8), I. Dragomir (9), A. Muhammad (10)

(1) GMV Aerospace and Defence, Isaac Newton 11 PTM, Tres Cantos, 28760 Madrid, Spain, mmunoz@gmv.com
(2) Airbus Defence and Space Ltd, Gunnels Wood Road, SG1 2AS Stevenage, United Kingdom,

Giuseppe.Montano@Airbus.com
(3) Deutsches Forschungszentrum für Künstliche Intelligenz GmbH - Robotics Innovation Center, Robert-Hooke-Straße

1, 28539 Bremen, Germany, malte.wirkus@dfki.de
(4) Deutsches Zentrum für Luft - und Raumfahrt Ev, Linder Höhe, 51147 Köln, Germany, Kilian.Hoeflinger@dlr.de
(5) GMVIS Skysoft SA, Av. D.Joao II Lote 1.17.02, Torre Fernao Magalhaes 7°, 1998025 Lisboa, Portugal, Daniel

daniel.silveira@gmv.com
(6) Intermodalics BVBA, Gaston Geenslaan 9, 3001 Leuven, Belgium, Nikolaos Tsiogkas

nikolaos.tsiogkas@intermodalics.eu

(7) Institut Superieur de l'Aeronautique et de l'Espace, Avenue Edouard Belin 10, 31055 Toulouse, France,

Jerome.HUGUES@isae-supaero.fr
(8) Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium, Herman.Bruyninckx@kuleuven.be

(9) Universite Grenoble Alpes, 700 Avenue Centrale, 38401 Saint Martin d’Heres, France, iulia.dragomir@univ-

grenoble-alpes.fr
 (10) VTT Technical Research Centre of Finland Ltd., Tekniikankatu 1, 33720 Tampere, Finland, ali.muhammad@vtt.fi

ABSTRACT

ESROCOS (http://www.h2020-esrocos.eu) is a

European Project in the frame of the PERASPERA

SRC, (http://www.h2020-peraspera.eu/), targeting the

design of a Robot Control Operating Software (RCOS)

for space robotics applications. ESROCOS goal is to

provide an open-source framework to assist in the

development of flight software for space robots,

providing adequate features and performance with

space-grade Reliability, Availability, Maintainability

and Safety (RAMS) properties. This paper presents

ESROCOS and summarizes the approach.

1. INTRODUCTION

In the industrial robotics domain, it is common practice

for robotics manufacturers to adapt proprietary Real-

Time Operating Systems (RTOS) regarding specific

functional and business demands. This results in the

development of non-standardized, proprietary solutions.

The space robotics industry has been following a similar

path, with the additional constraints imposed by the

operating environment and the particularities of each

mission, leading to minimal reuse across developments.

On the other hand, open-source robotics frameworks

such as ROS [1], ROCK [2] or GenoM [3] have

flourished in the academic world, enabling the growth

of reusable functional block libraries and allowing for

faster application development.

ESROCOS will provide an open-source robotics

framework designed from the beginning to support the

development of space robotics. ESROCOS will provide

the foundation of a robotics software development eco-

system not only relevant for the space industry, but also

fulfilling the requirements of other industries like

underwater, nuclear or medical robotics.

The paper is structured as follows: § 2 enumerates the

specific objectives and challenges, identified for the

project; § 3 describes the ESROCOS framework; and

§ Error! Reference source not found. informs on

project updates.

2. PROJECT OBJECTIVES AND CHALLENGES

In order to meet the goal of providing to the robotics

community an open-source framework that is the base

of future space robotics applications, the ESROCOS

project has defined several objectives:

1. Develop a space-oriented RCOS: the

development of ESROCOS follows the ECSS

standards [4,5,6] and hardware support (LEON

processor) on space RTOS (RTEMS [7]).

2. Integrate advanced modelling technologies:
ESROCOS will include a complete model-

based methodology, including robotic-specific

modelling semantics, and supporting the design

and integration of software components, as

well as the verification of the structural and

behavioural properties at system level. By

relying on formal verification and automatic

code generation, this methodology will help to

mailto:mmunoz@gmv.com
mailto:Giuseppe.Montano@Airbus.com
mailto:malte.wirkus@dfki.de
mailto:Kilian.Hoeflinger@dlr.de
mailto:daniel.silveira@gmv.com
mailto:nikolaos.tsiogkas@intermodalics.eu
mailto:Jerome.HUGUES@isae-supaero.fr
mailto:Herman.Bruyninckx@kuleuven.be
mailto:ali.muhammad@vtt.fi
http://www.h2020-esrocos.eu/
http://www.h2020-peraspera.eu/

reduce the number of defects that are

introduced in the software.

3. Focus on the space robotics community:
actors that have a leading role in state-of-the-

art robotics missions have participated in the

definition and review of the ESROCOS

requirements, ensuring that they are aligned

with the needs of current and future missions.

4. Allow for the integration of complex

robotics applications: ESROCOS will support

mixed-criticality applications using time and

space partitioning, which allows running

applications with different levels of quality on

the same on-board computer, ensuring no

propagation of failures among them.

5. Avoid vendor lock-in: ESROCOS will

integrate existing open-source tools as well as

new developments, and will be distributed as

open-source software to the robotics

community.

6. Leverage existing assets: instead of

attempting to develop a new framework from

scratch, ESROCOS builds on existing

technologies such as the TASTE framework

[8] developed and maintained by ESA and

partners. It will incorporate tools, libraries and

approaches from well-established robotics

software ecosystems such as ROCK and ROS.

7. Cross-pollinate with non-space solutions and

applications: the design of ESROCOS will

benefit from the experience gathered from the

nuclear robotics domain, with very stringent

RAMS requirements.

The development of ESROCOS is not an isolated

activity. The PERASPERA SRC has launched six

Operational Grants (OG), where each OG targets

different aspects of space robotics (software, [...]). The

OG's run in parallel and and are commonly coordinated

what is essential to ensure mutual success.

The following section presents the ESROCOS

framework, as well as the approach selected to

overcome these challenges and accomplish the project

objectives.

3. DESCRIPTION OF THE FRAMEWORK

3.1 Scope and workflow

ESROCOS is a framework for developing robot control

software applications. It includes a set of tools that

support different aspects of the development process,

from architectural design to deployment and validation.

In addition, it provides a set of core functions that are

often used in robotics or space applications.

The ESROCOS framework supports the development of

software following the ECSS standards. It does not by

itself cover all the development phases and verification

steps, but it facilitates certain activities and ensures that

the software built can be made compatible with the

RAMS requirements of critical systems.

The starting point of the workflow is the formal

modelling of the robot and the application. The model-

based approach facilitates the early verification of the

system properties, in particular for RAMS. The

modelling activities encompass the following aspects:

- The robot’s kinematics chain, in order to produce a

formal model of the robot motion, from which

software can be automatically generated.

- The hardware and software architecture of the

application, including non-functional properties

(real-time behaviour, resource utilisation, etc.).

The models allow for different analyses to verify the

non-functional properties of the system and iteratively

refine the system architecture. ESROCOS relies on both

existing and newly developed tools to support the

different modelling aspects.

The model of the application may include functional

building blocks, either provided by ESROCOS or

specifically generated from the models (e.g. a hybrid

dynamics instantaneous motion solver). This model can

then be used to automatically generate the software

scaffolding for the application, consisting of the

skeleton of the application components and the glue

code that enables the inter-component communication.

The application-specific behaviour is implemented and

integrated in this structure, making use of libraries to

support the required functionalities.

The application binaries can then be built and deployed

in a runtime platform. Distributed applications are

possible, with components running in separate nodes or

partitions.

ESROCOS can be used to model applications using

time and space partitioning (TSP), in order to build

mixed-criticality systems in which components with

different RAMS levels can safely coexist. These

applications can be deployed on a SPARC (LEON)

platform using the AIR hypervisor.

The communication between the application

components at runtime is enabled by the PolyORB-HI

middleware. ESROCOS will provide also bridge

components that enable the communication with

external middleware for ROS and ROCK. This will

allow the robotics engineer to use tools from these

ecosystems (data visualizers, simulators, etc.) for testing

and debugging the application. A selection of tools will

be provided ready to use with ESROCOS, with all the

required data types and interfaces. In addition,

middleware bridges will allow the user to integrate

existing software assets and run them together with

newly built software in a distributed environment.

The following sections explain in detail the main

elements of the ESROCOS framework.

3.2 Robot and software modelling tools

Kinematic chain models. ESROCOS includes tools to

formally model the kinematics and dynamics of ideal,

lumped-parameter robots of all possible configurations

(serial, mobile, parallel, hybrid, multi-DOF joints,

multi-articular actuation), with a structured set of

interdependent modelling languages: geometry (e.g.,

line, point, pose), kinematics (e.g., joint, link, inverse

dynamics, Jacobian, singularity), mathematical

representations (e.g., frame, quaternion), numerical

representations (e.g., homogeneous transformation

matrix, n-vector), digital representations (e.g., 16-bit

integers, IEEE floats), and physical dimensions (e.g.,

length, meter, energy, Joule). For all properties and

transformations that are physically relevant for robots

(e.g., forward kinematics, hybrid dynamics), code-

generators will be provided, that take a specification in a

formal modelling language as input, and generate code

with verifiable properties (e.g., no dynamic allocation).

Distributed real-time system models. ESROCOS

relies on the TASTE framework to model robotics

applications from a real-time software perspective.

TASTE is an open source framework that allows the

development of embedded, real-time systems. It relies

on technologies such as standardized modelling

languages (e.g., ASN.1 [9] and AADL [10]), code

generators and real-time systems, and allows for the

generation of application skeletons and the production

of the system executable. The designers implement their

embedded systems using a set of views, abstracting the

user from the implementation details of the underlying

platform (e.g., operating system, drivers) and

guaranteeing the fulfilment of real-time properties.

Model analysis and verification. The TASTE

framework supports the analysis of the real-time

behaviour and resource utilisation of the software.

ESROCOS will complement these capabilities with BIP

(Behaviour, Interaction, Priority) [11] formal models,

which offer additional possibilities to analyse the

software and verify properties at a behavioural level.

The verification and validation of TASTE models is

done with the BIP framework via a model translation

between the two formalisms. The BIP framework offers

several analysis tools: iFinder [12] verifies the

satisfaction of safety properties, SMC [13] evaluates a

system’s performance metrics, and user-

guided/automated simulation validates the given

requirements. The model translator, the simulator and

the SMC are being developed/expanded in the

ESROCOS framework to consider more complex

systems with hard real-time constraints, such as robot

controllers.

3.3 Runtime platforms

The ESROCOS framework supports the development of

applications for three target quality levels: laboratory,

high-reliability and space. Laboratory applications focus

on reduced development times with light quality

assurance activities. Space quality applications have

demanding RAMS requirements and must follow a

strict development process.

ESROCOS uses the TASTE toolset, which supports

different hardware and software platforms. For

laboratory applications, ESROCOS targets x86/Linux

systems and provides a set of tools for logging and data

visualization, among others, to facilitate the

development and debugging of applications. For space-

quality applications, the framework targets

SPARC/RTEMS systems and includes formal

modelling tools that enable correct-by-construction

software development and verification of RAMS

properties.

Space robotics applications are complex and they may

combine functions with different degrees of criticality

and real-time requirements. For instance, the functional

layer may rely on hard real-time control loops, while

higher-level functions may require a varying amount of

time and memory to complete an operation. In order to

safely support such diverging requirements, the

ESROCOS framework offers the capability to design

time- and space-partitioned systems using TASTE and

the AIR hypervisor of GMV Portugal.

The TSP concept, also known as Integrated Modular

Avionics, offers the possibility of integrating multiple

functions into partitions of the same set of physical

resources, allowing the aeronautical industry to manage

software growth in functionality and in efficiency.

Partitioning keeps applications from inadvertently

influencing each other by enforcing strict separation,

segregating computing resources in space and time.

The ESROCOS framework includes the AIR hypervisor

[14], it is an ARINC 653 compliant time and space

partitioned operating System that was originally based

on RTEMS technology.

3.4 Use Case Demonstration and Validation

The ESROCOS framework will be validated according

to the two reference scenarios defined by the

PERASPERA SRC as representatives of future space

robotics missions: a planetary exploration rover mission

and an in-orbit assembly mission. The ESROCOS

application will be deployed on a space-representative

on-board computer. For the orbital scenario, the

application will control a robotic arm and a camera,

perform Cartesian and joint space real-time motion

control, and acquire and display telemetry. For the

planetary scenario, the application will drive a rover

platform in Ackermann and point-turn modes, acquiring

images and platform telemetry during the traverse.

In addition, in order to demonstrate the benefits of the

ESROCOS framework for other critical robotics

applications beyond space systems, ESROCOS will be

validated in a nuclear robotics scenario. For the

validation in nuclear scenario the DTP2 platform of

ITER [15] is used.

4. FOLLOW UP

Updates on the activity can be found at the project’s

website (http://www.h2020-esrocos.eu). The ESROCOS

consortium plans to make the framework available

through GitHub (https://github.com/ESROCOS), once

the software reaches a sufficient level of maturity for

widespread usage.

5. REFERENCES

1. The Robot Operating System. Online at

http://www.ros.org

2. Robot Construction Kit. Online at http://rock-

robotics.org

3. Ceballos (2011), A., et al. GenoM as a robotics

framework for planetary rover surface

operations. ASTRA, 2011, p. 12-14.

4. European Cooperation for Space

Standardization (ECSS), Space Engineering:

Software. ECSS-E-ST-40C, 6-Mar-2009

5. European Cooperation for Space

Standardization (ECSS), Space Product

Assurance: Software Product Assurance.

ECSS-Q-ST-80C, 6-Mar-2009

6. European Cooperation for Space

Standardization (ECSS), Space Engineering:

Telemetry and Telecommand Packet

Utilization. ECSS-E-ST-70-41C, 15-Apr-2016

7. RTEMS. Online at: https://www.rtems.org/

8. Perrotin, M., Conquet, E., Dissaux, P.,

Tsiodras, T., Hugues, J. , The TASTE Toolset:

turning human designed heterogeneous

systems into computer built homogeneous

software. ERTS 2010, Toulouse (2010)

9. International Telecommunications Union,

Recommendation X.680-X.693 (08/2015):

Information Technology - Abstract Syntax

Notation One (ASN.1) & ASN.1 encoding

rules.

10. SAE International, Architecture Analysis &

Design Language (AADL), AS5506C

(18/01/2017).

11. A. Basu, M. Bozga, J. Sifakis (2006),

Modeling heterogeneous real-time components

in BIP, in SEFM ’06: Proceedings of the 4th

IEEE Conference on Software Engineering &

Formal Methods. Washington, DC, USA:

IEEE Computer Society, 2006, pp. 3–12.

12. Ben-Rayana S., Bozga M., Bensalem S.,

Combaz J. (2016), RTD-Finder: A Tool for

Compositional Verification of Real-Time

Component-Based Systems. In: Chechik M.,

Raskin JF. (eds) Tools and Algorithms for the

Construction and Analysis of Systems.

TACAS 2016. Lecture Notes in Computer

Science, vol 9636. Springer, Berlin,

Heidelberg

13. Nouri, A., Bensalem, S., Bozga, M. et al.

Statistical model checking QoS properties of

systems with SBIP. International Journal of

Software Tools for Technology Transfer

(2015) 17: 171.

14. C. Silva. Integrated Modular Avionics for

Space applications: I/O Module. Master’s

thesis, IST, October 2012.

15. ITER – the way to energy. Online at:

http://www.iter.org

ACKNOWLEDGEMENTS

We would like to thank the European Commission /

Research Executive Agency and the members of the

PERASPERA Programme Support Activity (ESA as

coordinator, ASI, CDTI, CNES, DLR and UKSA) for

their support and guidance in the ESROCOS activity.

The project has received funding from the European

Union’s Horizon 2020 research and innovation

programme under grant agreement No 730080.

Figure 1. Five-degrees-of-freedom CMM robot at the

DTP2 facility at VTT Tampere (bottom)

http://www.h2020-esrocos.eu/
https://github.com/ESROCOS
http://www.ros.org/
http://rock-robotics.org/
http://rock-robotics.org/
https://www.rtems.org/

