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Simulation Techniques for Multidisciplinary Problems
in Vehicle System Dynamics
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SUMMARY

Simulation in vehicle system dynamics has its historical origin in the analysis of the purely mechan-
ical behaviour using mechanical multibody system models. In multibody dynamics very efficient
numerical methods for the evaluation and for the time integration of the equations of motion are
available. These methods have been extended step-by-step to more complex engineering systems
that may contain, e.g., flexible bodies and mechatronic or adaptronic devices. Multidisciplinary
problems like the interaction of mechanical and hydraulic components or the interaction of vehi-
cle dynamics and aerodynamics are handled conveniently by co-simulation techniques. The pres-
ent paper summarizes some of these recent extensions of classical multibody dynamies such as
multifield problems in the simulation of adaptronic devices, advanced models of contact mechan-
ics and coupled problems including multibody dynamics, aerodynamics and structural mechanics.

Keywords: multidisciplinary problems, mechatronics, coupled systems, dynamical simula-
tion, multibody dynamics.

I INTRODUCTION

The increasing integration of mechanical, hydraulic and electronic components in
engineering systems is accompanied by a close integration of the industrial design
processes. There is a need for industrial simulation tools for such mechatronic sys-
tems, or more generally for multidisciplinary problems in vehicle system dynamics.
These tools and simulation techniques are strongly influenced by the well established
ideas, methods and software of multibody dynamics [1].
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The classical topic of interest in multibody dynamics are systems of rigid bodies
being connected by joints and force elements like springs and dampers [2]. The equa-
tions of motion are given by

M(q)q(t) = f(t.q.q.A) = GT(t,q) X, (1a)
0=g(t.q) (1b)

with ¢ denoting the position coordinates of all bodies. M (g) is the generalized mass
matrix and f the vector of applied forces. Joints decrease the number of degrees of
freedom in the system and may result in constraints (1b) that are coupled to the
dynamical equations (1a) by constraint forces — G\ with Lagrange multipliers A and
G(t, ) := (dglagq)(t, q). Very efficient numerical methods for the evaluation and for
the time integration of (1) have been developed and implemented in industrial multi-
body simulation tools like ADAMS, SIMPACK or DADS, see [1, 3, 4].

Already in the early days of multibody dynamics these methods have been
extended to more general mechanical systems that contain e.g. flexible bodies or
force elements with internal dynamics [5]. Sophisticated modal reduction techniques
are used to consider the elastic deformation of flexible bodies, see Section 2.1.

More complex multidisciplinary problems arise from the coupling of mechanical,
hydraulic and electronic components in mechatronic devices. Formally, these systems
are beyond the area of application of (flexible) multibody system simulation pack-
ages, but hydraulic and electric system components may be added straightforwardly
as force elements with internal state variables as long as they are described by
continuous-time differential equations. Recently, the methods of classical multibody
dynamics have been extended to multifield problems in the simulation of adaptronic
system components, see Section 2.2. Furthermore, advanced contact models have
been developed that allow the efficient simulation of contact problems in a multibody
system framework, see Section 2.3.

On the other hand discrete time components like digital controllers may slow down
the simulation drastically since all numerical methods of classical multibody dynam-
ics are tailored to equations of motion that are continuous in time. In the simulation
of systems with discrete controllers the equations of motion (1) have to be extended
to a mixed system with the continuous part

M(q)§(t) = f(t.q.4. X e.m) — GT(t.q,c,ma) A,
é(t) = d(t,q. 4.\ ¢,y , (2a)

0=g(t,q.cm,)
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for t € [T,, T,+] and discrete state changes at t = T,,;:
Tu+l = k(Tn-Q-]vQ(TH-}-I}- d(Trl-{'—l)-A(’I'u+1)vC(Tn-I-]Jrrnrrtl—]s s 17':1—!) . {Zb)

The continuous state variables ¢(f)and the discrete state variables r, stand for internal
states of force elements as well as for the state variables of time continuous/time dis-
crete mechatronic devices.

Mixed time continuous/time discrete systems are well known from other areas of
technical simulation such as circuit simulation or chemical engineering. In the numerical
solution of (2) classical time integration methods for continuous systems (1) are com-
bined with updates of the discrete state variables r, at the sampling points ¢ = T,, [6].
This approach has been implemented in the industrial simulation package SIMPACK
[4, 7). The solver for the continuous part has to be adapted to handle the frequent dis-
continuities efficiently [4, 8].

As a by-product this algorithm may be extended to a co-simulation interface for the
simulation of multidisciplinary problems including multibody dynamics, see Section 3.
A typical example is the consideration of aerodynamic effects in vehicle simulation
by coupling a computational fluid dynamics tool with a multibody system tool, see
Section 3.2.

Applied to the simulation of the dynamical interaction between vehicles and large
elastic structures, co-simulation proved to be substantially more convenient and more
efficient than classical techniques from flexible multibody dynamics [9]. In Section 3.3
simulation results are presented for two trains passing each other while crossing a
bridge.

2 EXTENSIONS OF CLASSICAL MULTIBODY SIMULATION TOOLS

Multibody dynamics has its origin in the analysis of systems of rigid bodies. Even for
complex multibody system models the simulation time on PC hardware is often close
to real time. Therefore not only simulations but also parameter variations and the opti-
mization of system parameters may be performed in reasonable computing time.

Special modeling techniques have been developed to achieve a similar numerical
efficiency also for more complicated engineering systems including even multidisci-
plinary effects. In this section we study the (global) elastic deformation of bodies in
a flexible multibody system (Section 2.1), the coupling of mechanical and electric
fields in the simulation of adaptive structures (Section 2.2) and advanced models for
the efficient consideration of local effects in the contact area between two bodies that
come into contact (Section 2.3).
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2.1 Flexible multibody systems

In mechanical systems with lightweight components the elastic deformation of
these bodies may not be neglected. It is supposed that the elastic deformation is small
w. . t. a moving frame of reference that follows the gross motion of such a flexible
body. Then it is possible to describe the deformation w. r. t. this frame of reference by
linear theory of elasticity.

Typically the elastic effects are considered only in the frequency range up to
50 ... 100 Hz such that a modal approach is very attractive [10]. Then the displace-
ment field may be expressed as

u==®q, &)

with the modes & and position coordinates g,(¢) that represent the elastic deformation
w. I. t. the moving frame of reference. Eigenmodes or more sophisticated mode shapes
[11] are obtained from a preceding finite element analysis of the flexible body.

The equations of motion of flexible multibody systems, i.e. systems with at least
one flexible body, are obtained similarly to (1) from the principles of classical
mechanics [10]. They get the form

M, M.\ [d\ _ _ .,
(Mcr M, )(q) =f(t.9.4.0)-G"(t.q9)A, (4a)

0=g(tq) (4b)

with a vector g :=(g,, g.)" of position coordinates that describes the positions g, of the
rigid bodies and the moving frames of reference and the elastic coordinates g, from
(3). The elastic deformation and the motion of the frame of reference are coupled by
the right hand side of (4a) and by the off-diagonal blocks M,,, M,, of the mass
matrix.

Today the simulation of flexible multibody systems is a standard technique that is
as efficient and robust as the simulation of classical rigid body systems [10].

2.2 Multibody systems with active components

Adaptive or smart structures are mechatronic devices, which allow modification of
the properties and the response of elastic structures exposed to varying stimuli and
environmental conditions. Particularly the compensation of the structural instability
of lightweight vehicle components is one key field of application.
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Fig. 1. Multibody systems with active components: Piezoelements.

The most promising way to achieve this purpose requires the integration of actua-
tors and sensors as a constitutional part of a flexible component. Such build-in
devices provide the base for the application of adequate signal processing and con-
trolling techniques.

There is a wide range of supposable physical effects and corresponding material
compositions. Piezoceramics proved to be an appropriate class of materials to reduce
structural excitations actively. Therefore they may be used to enlarge the range of
application of lightweight components.

Three main characteristics can be attributed to piezoelectric transducters: a) piezo-
electric materials generate an electric field when subjected to mechanical strain (sen-
sor effect); b) if an electric field is applied to them a deformation results (actuator
effect); c) as a distinct feature piezoelectric actuators and sensors may be used as dis-
tributed devices.

These properties reveal that a multidisciplinary approach makes sense, which com-
bines the description of the elastic displacement field and the electrostatic field.

The formulation is based on a constitutive equation, which describes the lin-
earised relationship between the mechanical variables strain S and stress T and the
electrical terms displacement D and field strength E by defining appropriate material

constants [12]:
T c —eT s
()=(c7)(5) 2

The field equations are developed by means of Jourdain’s principle of virtual power.
Therefore the right hand sides of Eqgs. (6) represent the integrals over all applied outer
force and charge loads acting on volumes or boundaries. The variables v and a stand
for the absolute velocity and acceleration respectively. The terms O, and ¢ denote the
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applied charges and their electric potential. Furthermore (5) is used to eliminate the
dependent variables T and D pointing out the coupling of mechanical and electric
field by material description [13]:

/ 507 0a + 687 (cS — eTE) dV = / ST fy dV + }5 5T 5 dB, (63)
- \‘_-':}f.—" “ -

/JET (eS+eE) dV = y(a.,.aqw dB. (6b)
S !

The resulting partial differential equation is discretised in space by a modal approach
with a small number of eigenfunctions to impose high numerical efficiency. Therefore
modes P have to be selected to describe the spatial distribution of the displacement
field. The Green strain tensor S is now capable for calculation by means of the dif-
ferential displacement-strain operator £, see (7a).

The scalar electrical potential field ¢ is handled in analogous manner by the selec-
tion of appropriate mode shapes @,. The negative gradient operation then yields the
electric field vector E. The discrete, only time dependent electric variable u,, can be
interpreted physically as the electric voltage applied to the electrodes of the piezoce-
ramic devices [14]:

u=¢Ql‘! S:{C¢}Q€=BQ!‘1 (Ta)
v =Pou,, E =(-V®,)u, = Byu,. (7b)

In discretised form Eqs. (6) are formulated using a 2 X 2 block matrix K. The
electromechanical coupling matrix K, and the electric capacity matrix K, arise out
of the evaluation of the following only volume dependent integrals, a methodology
which is already well known from the definition of the mechanical stiffness matrix
Kgy [15):

K, = /BTCB dv, Ky, = /Bf,"st v, K, =/BTeTB,;, dv .

The classical equations of motion have to be extended by adding the product of the
applied voltage vector u,, with the coupling matrix K, clearly demonstrating the use
of the piezoceramic as a structural actuator:

( M, M) (c}',-) N ( h.-) 0 (8a)
Mer Mee q:e - h(' N (vanw) )
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Qo =K1 g, + Kppis,. (8b)
The sensor equation (8b) is needed to calculate the electric quantities, e.g. the elec-
tric charges Q,, if the piezoceramic components are used as sensors or are part of
arbitrary electric circuits.

The verification example in Figs. 2 and 3 shows a slider crank mechanism moving
with constant rotational velocity and exposed to a large axial force. Piezoceramic

N\

Fig. 2. Slider crank mechanism: Model setup.
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Fig. 3. Slider crank mechanism: Excitation of the first eigenmode, mechanism with pi

(solid line) and without piezoelements (dotted line).
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actuators are mounted in central position on both sides of the slider. The piezoceram-
ics are part of a serial vibration circuit, consisting of capacity, inductivity and resist-
ance. The resonance frequency of the circuit was adjusted to the lowest natural
frequency of the slider to achieve passive damping. The time plot compares the
undamped behavior of the sliders first eigenmode to the damped one.

The comparison shows that piezoelectric devices are in principle well capable of
reducing structural vibrations. For efficient use active control of the piezoelectric
devices has to be set up. In [16] a railway carbody with piezoceramic patches has been
considered. The positions of all patches and the control parameters are optimized to
achieve desired damping characteristics.

2.3 Advanced contact models in multibody dynamies

The contact between bodies involves their macroscopic relative motion and the micro-
scopic effects in the contact area. A contact model has to combine multibody dynamics
with contact mechanics. In the equations of motion (1) the contact between bodies
results either in an applied contact force fin (1a) or in a constraint (1b) with a corre-
sponding constraint force as contact force.

In multibody dynamics there are well approved and numerically efficient contact
models for standard configurations like bodies with primitive surface geometry [17]
or bodies with smooth, convex surfaces [4, 18]. The latter approach is based on the
determination of potential contact points by algebraic auxiliary conditions (1b). It is
in general not suitable for non-convex body surfaces that may result in discontinuous
and non-unique movements of the contact point. Moreover, the definition of contact
forces by unilateral constraints and impact hypotheses, unilateral spring-damper force
elements or Hertzian contact cannot provide the desired modeling quality of real col-
lision processes.

In this section two alternative contact models are introduced. Based on the classi-
cal rigid body contact model a quasi-elastic model has been developed for the wheel-
rail contact. A more general approach represents all body surfaces by polygonal
surfaces and uses contact elements for the computation of the contact forces.

Rigid and quasi-elastic contact model The most simple contact model is the rigid
contact between two bodies. Here the undeformed surfaces of both bodies are sup-
posed to be in contact without penetrating each other. To formulate these two condi-
tions analytically the surface of the first body is parametrized by surface coordinates
§ € § C R For all points P(s) on the surface of the first body the distance function
A(s; ) is defined as the distance of P(s) to the surface of the second body, measured
in the direction of the outer normal in P(s). The distance function A depends on the
relative position and orientation of both bodies and is determined by the position
coordinates ¢ of the multibody system.
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The two bodies do not penetrate each other iff
A(s;9) =0, (s €3).
The two bodies are in rigid contact iff the contact condition

0 = min A(s; q) =: 7(q) ©)

is satisfied. This contact condition y(g) = 0 is part of the constraints (1b).
If both bodies are in contact then there is at least one contact point P(s*) that is
characterized by

Als":q) = min A(s;q) = 0.

For convex bodies with smooth surfaces s* depends continuously on ¢ and (9) defines
a smooth constraint (1b). In general, however, the contact point P(s*) does not always
depend continuously on g, but it may “jump”. As a result y(q) is only continuous but
not differentiable and the equations of motion (1) do not have a continuous solution
(g, q), see [19].

In the quasi-elastic contact model [19] the rigid body contact condition (9) is for-
mally regularized by

0=—-vln (ﬂ exp(—%‘;‘l(s; q))ds / /Sds) =:v,(q) (10)

with a small parameter v > 0. Similar to a full elastic contact model the quasi-elastic
contact condition (10) considers function values A(s; g) for all points P(s) in the contact
area between the two bodies. The resulting constraint -y,(g) = 0 is smooth for bodies
with smooth surfaces. For v — 0 the regularized function v,(g) converges pointwise
to y(q).

From the practical point of view condition (10) is too complicated and the evalua-
tion of vy, is very time consuming. Nevertheless it is used successfully for modeling
the wheel-rail contact. In this special application the symmetry of wheel and rail may
be exploited to simplify (10) substantially [20, 21]. This quasi-elastic contact model
is part of the key features of SIMPACK Wheel/Rail.

Polygonal contact model The quasi-elastic model is one of the highly efficient,
accurate and validated methods that have been developed for a special contact prob-
lem. For the representation of general contact mechanics we propose a polygonal
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contact model that is more flexible. It is based on the representation of body surfaces
by polygonal surfaces which can be exported conveniently from CAD and VR software.

Instead of the analytical relations of classical contact mechanics the polygonal con-
tact model uses collision detection algorithms similar to VR applications. These algo-
rithms are applied to all relevant pairs of polygonal body surfaces in the MBS model.
Based on the relative position and orientation of both bodies the collision detection
algorithm checks if the surfaces intersect. Furthermore all intersection lines are
obtained (if there are any).

In principle this problem could be solved by testing all possible pairings of poly-
gons of the surfaces for intersection, but this fairly simple method has complexity
O(n?) with n denoting the number of polygons. Even for quite small surfaces of some
hundred polygons the resulting calculation effort is not acceptable. Collision detec-
tion based on hierarchical bounding volumes [22] operates considerably more effi-
ciently without loss of accuracy.

In a pre-processing step before the first collision analysis a binary tree of bound-
ing volumes is generated for every surface. These bounding volumes consist of iden-
tically oriented cuboids. The root element is defined such that it contains the whole
surface. The children of the lower levels are obtained by continued subdivision of
their parents, see Figure 4. In the end the cuboids of the leaf elements enclose single
polygons of the surface.

5
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Fig. 4. 2D example for a bounding volume hierarchy.
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Then the collision detection starts with the consideration of the bounding volumes
in their actual relative position and orientation, going ahead from the roots to the leafs.
Cuboids of child elements are only analysed if their parents intersect, and the quite
costly intersection test of polygons [23] is performed for intersecting leaf elements
only. Depending on the contact state this method may speed up collision detection by
several orders of magnitude [22].

If the collision detection algorithm indicates that two bodies of the multibody sys-
tem are in contact then the contact forces between both bodies have to be determined.
Finite element discretizations can be used for the very accurate computation of con-
tact forces, but their numerical effort exceeds by far the range of classical multibody
system simulations [24]. In practical applications there is an urgent need for more
efficient methods which may be less accurate. Contact element methods are charac-
terized by regularly arranged elastic contact elements in the contact area.

Postulating rigid bodies covered by elastic layers leads to the simplest Mattress
model which can be imagined as unilateral springs attached to the bodies’ surfaces
[25]. The Influence function method [26] approximates the bodies by elastic half-
spaces. It represents the next step concerning modeling quality as well as numerical
effort. Here adjacent contact elements influence each other resulting in the consider-
ation of shearing stresses.

These contact element methods can also be applied to the tangential contact prob-
lem such that the friction forces may be obtained [25]. As soon as the stresses of the
contact elements are known, they can easily be summed up to obtain the resulting
forces and torques that are part of the term f(...) in the equations of motion (1).

3 CO-SIMULATION FOR MULTIDISCIPLINARY PROBLEMS

Today efficient and well approved monodisciplinary simulation tools are readily avail-
able in all practically relevant fields of application. But multidisciplinary effects involve
different subjects of physics and are often beyond the range of application of these clas-
sical tools. In many cases they may be handled conveniently by the coupling of two or
more already existing spezialized simulation tools. In Section 3.1 some basic ideas and
problems of these co-simulation (or simulator coupling) techniques are summarized.
Two practical applications are considered in more detail in Sections 3.2 and 3.3.

3.1 Basic principle

Most multidisciplinary problems have a clear modular structure that may be adopted
in the simulation using for each subsystem its own simulation tool for model setup
and time integration [27]. Well established standard software tools are used for the
individual subsystems. In this manner the subsystems are integrated by different time
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integration methods such that each of these methods can be tailored to the solution
behaviour of the corresponding subsystem (co-simulation).

The communication between subsystems is restricted to discrete synchronization
points 7,,. In each subsystem all necessary information from other subsystems has to
be provided by interpolation or-if data for interpolation are not yet available — by
extrapolation from ¢ < 7, to the actual macro step T, — T)4,.

From the viewpoint of a multibody system tool the coupling variables to other
simulation tools may be considered as a special type of discrete variables r,, in (2): In
the multibody system tool the values of the coupling variables r, are kept con-
stant during the whole macro step 7, — T,.,. For all other simulation tools in the
co-simulation environment the update formula (2b) involves the time integration from
the synchronization point # = 7}, to the synchronization point f = T, to get r,,, -

Co-simulation techniques are convenient but they may suffer from numerical insta-
bility. Furthermore, interpolation and extrapolation introduce additional discretiza-
tion errors. Careful choice of the macro stepsize H := T,,, — T, is needed. In typical
standard applications stability and accuracy may be guaranteed if H is in the range
between 0.1 ms and 10 ms.

For certain classes of coupled problems the instability phenomenon has been
analysed in great detail. Several modifications of the co-simulation techniques
help to improve their stability, accuracy and robustness also for larger macro stepsizes
[27, 28].

3.2 The interaction of vehicle dynamics and aerodynamics

Traditionally, aerodynamic effects in vehicle dynamics have been considered by aero-
dynamic coefficients. But a much more detailed analysis of this multidisciplinary
coupled system gets possible if a multibody system code is coupled with a solver
from computational fluid dynamics (CFD). Such strategy is capable to describe vir-
tually every unsteady aerodynamic phenomenon and to take into account the recipro-
cal interaction between mechanical and aerodynamical system.

A new application field for this coupled approach is the behaviour of ground vehi-
cles under unsteady aerodynamic loads, for example due to the interaction with other
vehicles. Such problems can not be handled by the conventional approach based on
aerodynamic coefficients. The typical case of two high speed trains passing by each
other is presented below.

The flow around high speed trains in absence of cross wind can be assumed to be
inviscid and irrotational, leading to a linear aecrodynamic model. Such a flow model
is called potential flow and is widely used in aircraft aerodynamics. Its discretized
numerical formulations, the panel methods [29, 30], lead to small computational
effort and other benefits compared to nonlinear aerodynamic models.
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A potential flow can be described by the Laplace equation by introducing a scalar
field function @:

V20 =0 (11)

whereby potential function and velocity field are directly connected:

u=Vao. (12)

The boundary condition for the flow only requires that the normal component of the
relative velocity on the vehicles walls (), vanishes, i.e. that the normal component
of the absolute velocity u is equal to the velocity of the wall v:

Vo -n=v(q) n on 0y (13)

which shows that the potential & must depend on the velocity of the vehicles 4.
Using Green's formula Eq. (11) can be rearranged to obtain an expression for the
potential & as integral on the vehicles walls 3¢} of a source distribution o divided by
the norm of the position vector . A doublet distribution, which arises in the general
formulation, is not necessary for the case of ground vehicles because no special con-
ditions, such as the Kutta-condition, have to be satisfied.
Since () depends on the vehicles position, ¢ depends on g as well:

cb(r.q.q)=$fm a%ds. (14)

The source distribution o on €} is unknown and has to be determined using the
boundary condition (13). When o has been computed, & and « can be derived using
(14) and (12).

The Bernoulli Equation can now be applied to obtain the pressure field:

od  |ul®  p _ px : (15)
= +—2—+5_ 5 =const = p(r,q.q,1).

It is finally possible to compute the resulting flow force Ly, and torque Mg,
related to the origin O:

Lyow(q.q,t) = - / p-nds, (16a)

J ISty
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Fig. 5. Passing manoeuvre on open track. Model setup in co-simulation CFD-MBS, shading accord-
ing to pressure distribution.

M|‘|0W{q1‘jtt)=_[ ?‘X:n-nds (Iﬁb)
a0y

which couple the flow equations (11) and (13) with the multibody system equations (1).
The used panel method adopts a discretization of the surface integral in (14). The
finite surface elements are called panels and on each of them the source distribution
@; is supposed to be constant. The boundary condition (13) leads to an algebraic
linear system whose unknown vector is the discrete source distribution o; and whose
dimension is thus the number of panels. Eq. (15) has also to be discretized: pressure
distribution and forces (16) can be finally obtained on a discrete time axis.

In order to minimize the computational effort the number of “acrodynamic” time
steps must be minimized. The panel method allows very large time steps compared to
the multibody system part. Furthermore, the flow and driving dynamics are quite
weakly coupled. For these reasons a co-simulation technique has been implemented.
In each macro step 7, — 7,4, Eq. (15) is discretized once using the macro step-size
H as timestep. The flow field is thus resolved only at the syncronization points T, and
kept frozen between them. In this way sufficiently accurate results are obtained as can
be seen from additional numerical tests with halved macro stepsize. The multibody
system part of the coupled problem is solved by a standard integrator for multibody
dynamics with stepsize and order control.

The simulation of a wide range of typical driving manoeuvres (passing on open
track and at tunnel entrance, tunnel run-in and run-out, etc.) has been performed, see
Figure 5 for a characteristic example. One of the most interesting results is that small
disturbances leading to partial unloading of wheels can considerably amplify the
dynamical response of the vehicles to the impulsive aerodynamical loads. This effect
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Fig. 6. Lateral displacement of the first wheelset for a sy rical passing vre on open

track.

is strongly influenced by various factors, e.g. the phase gap between disturbance and
excitation. Figure 6 shows such a typical situation: a small, low frequency perturbation,
which could be caused by cross wind or track irregularities in a real environment, lets
the displacement of the wheelset (thick line) reach much larger values than in the
ideal case (dashed line).

Performed co-simulations also pointed out that, even if the unsteady aerodynamic
loads can exert very large influence on the driving dynamics, the effects of the induced
vehicle motion on the surrounding flow, i.e. of the multibody variables on the aero-
dynamic variables, is of some influence only when the fundamental frequency of the
transient loads approaches the lowest natural frequencies of the car motion. In the
case of symmetrical passing manoeuvres this condition is satisfied at very small driving
velocities, which are of no technical interest because at low speed the transient loads
have small amplitude. Furthermore the vehicle motion causes modifications in the
aerodynamic forces which induce in turn no significant alteration of the mechanical
behavior, e.g. of the lateral displacement of the wheelsets. The influence can be thus
neglected for all studied cases.

3.3 Dynamical interaction between rail vehicle and
elastic guideway for trains crossing a bridge

High speed trains or heavy trucks crossing a bridge induce loads on the elastic struc-
ture and may damage the bridge. Computer based simulations are used in the design
and optimization of improved vehicle suspensions to reduce the risk of damage (the
“road-friendly truck™) [31]. Furthermore, the simulation results show the influence of
vehicle—guideway interaction on vehicle dynamics.
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The dynamical interaction of vehicles and elastic bridges or, more generally, the
interaction of multibody systems and large elastic structures is a multidisciplinary
problem that involves both multibody dynamics and structural mechanics.

In principle, the coupled problem could be handled as flexible multibody system
but a huge number of eigenmodes would be necessary to resolve local effects in the
elastic structure. On the other hand the reference configuration of bridges is inertially
fixed in contrast to the moving frame of reference in flexible multibody dynamics. For
both reasons the co-simulation approach is an interesting alternative that is in the
present application not only more convenient but also more efficient than the meth-
ods from flexible multibody dynamics [9].

The vehicle is modeled in the industrial multibody system tool SIMPACK result-
ing in equations of motion of the form (1). The industrial finite element package
NAS-TRAN is used for the modeling of the bridge:

My + Dy + Kjyw = ph(F(f,q, q./\)} (17

Here M, Dy, K, denote mass, damping and stiffness matrix. The load vector pb is
determined by the forces F (t, ¢, ¢, \) that depend on the state (g, g, A) of the multi-
body model and represent tyre forces or wheel-rail contact forces.

In the framework of co-simulation the multibody model could be coupled directly
to this finite element model (17) with n,=~15,000 degrees of freedom. But modal
reduction with the 7,~100 eigenmodes ¢; in the frequency range between 0 Hz and
40 Hz gives nearly identical simulation results and reduces the numerical effort dras-
tically [9]. After modal reduction the equations of motion may be decoupled into the
system

myi; + djt; + kjw; = @] py(F(t,q,¢. M), (i=1,...,m)  (18)

that may be solved very efficiently in each macro step using semi-analytical methods [32].

In the beginning of each macro step the force terms F (¢, g, g, \) are transferred to
the elastic structure. In Stage | these loads are used in the time integration of (18).
The resulting elastic deformation w of the bridge is added to the track irregularities
in the multibody system tool. In Stage 2 of the macro step the equations of motion (1)
are integrated for 1 [T, T,,+] using standard methods from multibody dynamics. This
co-simulation algorithm is stable and sufficiently accurate if the macro stepsize H is
in the range of 1.0ms.

As a typical result Figure 7 shows the vertical displacement of the bridge at the fixed
position x, = 28.0m. In this manoeuvre two trains pass each other on the bridge. The
first train reaches x;, after 2.63s and the second train after 7.06s. At both time
instances the elastic deformation reaches a local maximum.
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Fig. 7. Vertical displacement of a bridge with two trains passing each other.

In the simulation a Pentium ITI PC was used with sophisticated nonlinear multi-
body system models for both trains (n, > 100). The coupled simulation was per-
formed in 580's cpu-time compared with a cpu-time of 295 for the pure multibody
simulation of the two vehicles [9]. The co-simulation approach allows an efficient
dynamical simulation of this complicated multidisciplinary engineering problem.

SUMMARY

Multibody system simulation tools provide a powerful basis for the simulation of
multidisciplinary problems in the field of vehicle system dynamics. Main strategies
are the extension of existing multibody tools and the coupling with other simulation
tools via co-simulation interfaces.

Recent extensions of classical multibody system simulation tools are modal reduc-
tion techniques for distributed physical phenomena in multifield problems, advanced
contact models and solvers for the efficient time integration of mixed continuous/dis-
crete systems. Multibody system tools are not longer restricted to the classical field
of (flexible) multibody dynamics but may be used as well in the simulation of com-
plex mechatronic devices.

Special techniques have been developed and implemented to improve the efficiency
and the numerical stability in the co-simulation of multidisciplinary effects in coupled
mechanical systems. Combining the panel method with a multibody system model
the influence of aerodynamics on vehicle dynamics was studied. Co-simulation was
also used successfully in the analysis of the dynamical interaction between high speed
trains and elastic guideways. These complex practical applications illustrate that
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multidisciplinary problems involving multibody dynamics, aerodynamics and struc-
tural mechanics may be solved efficiently by the coupling of simulation techniques
from these different fields of technical simulation.

The stepwise extension of well established specialized simulation tools and their
coupling by co-simulation will definitely be one of the future trends in the develop-
ment of simulation methods and simulation software.
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