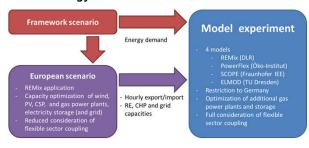
# Improvement of model-based energy systems analysis through model comparison and speed-up

Hans Christian Gils, Karl-Kiên Cao, Manuel Wetzel


# Model experiment on comparative modelling of Germany's electricity supply (RegMex project) [1]

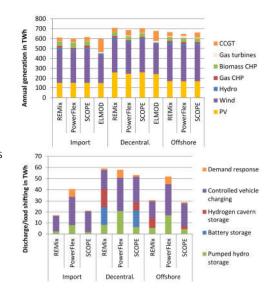
### Scope

- Definition of a standardized scenario framework
- Development of templates for increasing comparability of models and data
- Implementation of the model experiments and derivation of robust conclusions

# Technology data and scenario definition (Lead: WI) Experiment 1: Overall energy system (Lead: ISE) Experiment 2: Enhanced power system (Lead: ISE) Fraunhofer Wuppertal

### Methodology




- Analysis of the demand for flexibility options and their operation
- Focus: Power sector with links to heat and transport
- Hourly optimization for Germany in 2050
- Comprehensive harmonization of model input data
- Evaluation of three scenarios differing in supply and grid structure
- Detailed elaboration of the model differences

### Results

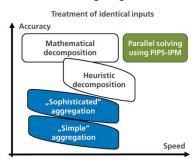
- Considered scenarios allow detailed evaluation of load balancing
- Robustness with regard to the aggregated use of controllable power plants and the sum of the other temporal load balancing
- High impact of cogeneration and electric vehicle modelling on operation
- Back-up demand overestimated without endogenous optimization
- Separate dimensioning of charging, discharging and storage unit advantageous

### Conclusions and outlook

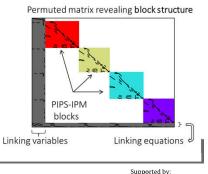
- Implementing a model experiment poses many challenges
- Identical parameterization reduces the differences in the results
- Deviations can be traced back relatively well to model differences
- Effects of individual differences cannot be quantified by approach
- Follow-up project with extended analysis to start soon



Comparison of annual power generation (above) and temporal balancing (below) in the three scenarios


### Methods to improve computing times in linear optimization energy system models (BEAM-ME project) [2]

### Scope


- Reduction of LP model solution time
- Evaluation of model-based and solver-based approaches
- Implementation of selected approaches into REMix
- Assessment of the transferability to six other models
- Publication of best-practice strategies

# Solver based Solver parameters Solver based Solver parameters Algorithm Meta-Heuristics related speed-up approaches Model-based Problem formulation Exact methods Model reduction and clustering Solving multiple, small problems Solving multiple, small problems

### Results and ongoing work



- Most promising model-based strategies so far
  - "Smart treatment" of temporal scale
  - Heuristics that allow for parallelization
- Enhancement of the open-source LP solver PIPS-IPM
- Identification of relevant problem block structures
- Model application on high performance computers
- Systematic analysis of scaling and parallel speed-up





References:
[1] Lechtenböhmer, S., Palzer, A., Pregger, T., Gils, H.C., Sterchele, P., et al.
Regildex - Modellexperimente und -vergleiche zur Simulation von Wegen zu einer
vollständig regenerativen Energevensorgung : Schlüssbericht\*

Contact: Dr. Hans Christian Gils | DLR, Institute of Engineering Thermodynam Energy Systems Analysis | Phone +49 711 6862-477 | hans-christian.gils@dir.c