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Die Vorteile von Faserverbunden, wie die Anpassbarkeit an Bauteillasten, ihr hoher Integrationsgrad bei der 
Herstellung oder auch die Möglichkeiten zur Funktionsintegration, scheinen Grid-Architekturen vereinen zu 
können. In der vorliegenden Dissertation wird ein Anisogrid-Struktur-Konzept unter den Gesichtspunkten für zivile 
Flugzeugrumpfstrukturen entwickelt, analysiert und getestet. 

Das Konzept besteht aus integral gefertigten Rippen unterschiedlicher Orientierungen (spiral und radial), einer 
lasttragenden Haut und speziellen Interface-Lagen, welche die Rippenstruktur und die Haut verbinden. Als 
Fertigungskonzept ist ein voll automatisierter Prozess zur Verarbeitung von Prepreg-Halbzeugen erarbeitet 
worden, welcher die hohen Qualitätsansprüche berücksichtigt. 

Da für die spezielle Struktur der sich kreuzenden Rippen und dem angedachten Fertigungsprozess nur begrenzte 
Materialuntersuchungen bekannt sind, werden statische Druck- und Zugtests auf Element-Ebene durchgeführt 
und Steifigkeit- wie auch Festigkeitskennwerte sowie das generelle Versagensverhalten bestimmt. 

Darauf bezugnehmend erfolgt ein Vergleich der dreieckigen Anisogrid- mit der aktuellen rechteckigen 
Versteifungs-Architektur auf Paneel-Ebene. Diese strukturmechanische Untersuchung wird gezielt auf den 
Einfluss der Schrägstellung der Steifen reduziert und Paneele unter axialem Druck, reinem Schub und Druck-
Schub-Kombinationen ausgelegt. 

Mit einem Paneeltest unter Axialdruck kann die Funktionstüchtigkeit des Strukturkonzeptes, die erarbeiteten 
Materialeigenschaften sowie das spezielle Nachbeulverhalten einer Anisogridstruktur bestätigt werden. 
Abschließend wird unter Berücksichtigung einer Konzept-Weiterentwicklung eine Perspektive der grundlegenden 
Bauweise aufgezeigt. 
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The advantages of composite materials, with their specific load adaptable properties and their high degree of 
integration in terms of one-shot manufacturing and function integration; grid structures seem to combine all of 
these. In this dissertation, an Anisogrid structure concept is developed, analysed and tested under consideration 
of the requirements for civil primary airframe structures. 

The developed Anisogrid structure concept consists of intersecting integral manufactured ribs with different 
orientations (helical, circumferential), a load-bearing skin and a special interface, connecting the grid structure 
and the skin. The manufacturing approach is based on prepreg material under consideration of full automation 
and high-quality assurance demands (Advanced Fibre Placement). 

In order to overcome the lack of available material properties in the special intersecting rib design, static 
compression and tension tests are performed and analysed to characterise the stiffness and strength properties 
as well as basic structural failure behaviour. 

In the next step, the triangular stiffened grid architecture is compared to the conventional rectangular stiffened 
structure in terms of minimum weight on panel level. In this structural-mechanical investigation, the focus is 
deliberately placed on the isolated effect of the skew of the stiffeners and performed under uniaxial compression, 
pure shear and the combination of both. 

Subsequently, the observed different buckling behaviour and the functionality of interface layers between the skin 
and the grid are validated by means of a compression panel test. With these test results, a perspective for this 
integral structural design concept is presented considering a specific further development step. 
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Abstract 

Composite materials, with their specific load adaptable properties, and their high degree of 
integration in terms of one-shot manufacturing and function integration. Grid structures 
seem to combine all these advantages. In this dissertation, an Anisogrid structure concept is 
developed, analysed and tested under consideration of the requirements for civil primary 
airframe structures. 

The developed Anisogrid structure concept consists of intersecting integral manufactured 
ribs with different orientations (helical, circumferential), a load-bearing skin and a special 
interface, connecting the grid structure and the skin. The manufacturing approach is based on 
prepreg material under consideration of full automation and high-quality assurance demands 
(Advanced Fibre Placement). 

In order to overcome the lack of available material properties in the special intersecting 
rib design, static compression and tension tests are performed and analysed to characterise 
the stiffness and strength properties as well as basic structural failure behaviour. 

In the next step, the triangular stiffened grid architecture is compared to the conventional 
rectangular stiffened structure in terms of minimum weight on panel level. In this structural-
mechanical investigation, the focus is deliberately placed on the isolated effect of the skew of 
the stiffeners and performed under uniaxial compression, pure shear and the combination of 
both. 

Subsequently, the observed different buckling behaviour and the functionality of interface 
layers between the skin and the grid are validated by means of a compression panel test. 
With these test results, a perspective for this integral structural design concept is presented 
considering a specific further development step. 
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Kurzfassung 

Die Vorteile von Faserverbunden, wie die Anpassbarkeit an Bauteillasten, ihr hoher 
Integrationsgrad bei der Herstellung oder auch die Möglichkeiten zur Funktionsintegration, 
scheinen Grid-Architekturen vereinen zu können. In der vorliegenden Dissertation wird ein 
Anisogrid-Struktur-Konzept unter den Gesichtspunkten für zivile Flugzeugrumpfstrukturen 
entwickelt, analysiert und getestet. 

Das Konzept besteht aus integral gefertigten Rippen unterschiedlicher Orientierungen 
(spiral und radial), einer lasttragenden Haut und speziellen Interface-Lagen, welche die 
Rippenstruktur und die Haut verbinden. Als Fertigungskonzept ist ein voll automatisierter 
Prozess zur Verarbeitung von Prepreg-Halbzeugen erarbeitet worden, welcher die hohen 
Qualitätsansprüche berücksichtigt. 

Da für die spezielle Struktur der sich kreuzenden Rippen und dem angedachten 
Fertigungsprozess nur begrenzte Materialuntersuchungen bekannt sind, werden statische 
Druck- und Zugtests auf Element-Ebene durchgeführt und Steifigkeit- wie auch 
Festigkeitskennwerte sowie das generelle Versagensverhalten bestimmt. 

Darauf bezugnehmend erfolgt ein Vergleich der dreieckigen Anisogrid- mit der aktuellen 
rechteckigen Versteifungs-Architektur auf Paneel-Ebene. Diese strukturmechanische 
Untersuchung wird gezielt auf den Einfluss der Schrägstellung der Steifen reduziert und 
Paneele unter axialem Druck, reinem Schub und Druck-Schub-Kombinationen ausgelegt. 

Mit einem Paneeltest unter Axialdruck kann die Funktionstüchtigkeit des 
Strukturkonzeptes, die erarbeiteten Materialeigenschaften sowie das spezielle 
Nachbeulverhalten einer Anisogridstruktur bestätigt werden. Abschließend wird unter 
Berücksichtigung einer Konzept-Weiterentwicklung eine Perspektive der grundlegenden 
Bauweise aufgezeigt. 
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“Do not fear failure but rather fear not trying.” 
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In space applications, carbon composites have been used for decades due to their 
extreme lightweight performance. Cylindrical structures like the airplane fuselage are found in 
similar size and also load, for example in shell structures or the interstages of big carrier 
rockets such as the Ariane, Proton or the Saturn. These shell structures are typically much 
more integrally manufactured and with the use of composites, a different kind of 
architecture, the so-called lattice structure, was invented in the US and Russia. Lattice or grid 
structures consist of a framework of stiffeners, called ribs, which intersect each other due to 
their different orientation. The high lightweight characteristics in combination with the high 
degree of integration and resultant low-cost manufacturing process also make the grid 
structures very interesting for airframes. 
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2 Research Hypotheses and Outline 

As the grid architecture is used successfully for aerospace structures, the main hypothesis is 
facing that such a concept is also intended to have high lightweight potential for airframe 
structures. One of the main challenges is the adaptation of such a concept to current 
laminate rules, which would significantly simplify needed certification processes. 

 Thesis 1: An Anisogrid concept with variable helical angle, interface layers and 
laminate stacking of cut and uncut layers combines the advantages of grid structures 
and fulfils main laminate requirements for airframes. 

As visualised in Figure 2, this concept builds the basis for the thesis and is developed and 
described in detail in Chapter 4. The structural mechanical potential of the stiffening 
architecture is of crucial interest. Out of literature sources, a number of examples are present 
showing the lightweight potential. This bias is proven for the concept with skin. To do so, 
suitable material properties are needed.  

Due to the specific concept design of cut and uncut layers in the intersections of the grid 
structure and resulting different laminate stackings in the plain rib and the knot area, the 
question arises as to which material properties need to be used for analysis in terms of 
stiffness and strength. In the literature, only limited results can be found and consequently, 
pure rib and knot element specimens are tested statically under tension and compression in 
Chapter 5.  

 Thesis 2: The material properties of the knot specimen are significantly reduced by the 
cutting concept in terms of stiffness and strength. 

For the potential analysis, the effect of skewing the stiffeners shall be investigated with 
respect to the minimum panel weight under given load cases. Motivated by the question of 
whether the Anisogrid stiffened panel design has an inherent, design based weight benefit, in 
Chapter 6 the concept is compared to a conventional Orthogrid stiffened panel design. To 
investigate the skewing effect separately, both stiffened panel designs will be analysed 
considering the same stiffener geometry, material and manufacturing concept.  

 Thesis-3: The triangular stiffened Anisogrid concept has an inherent weight benefit in 
comparison to the Orthogrid concept. 

The validation of the main concept features is based on a panel compression test and the 
results are described in Chapter 7. The aim is to validate fundamentally the functionality of 
the interface layers and the post-buckling behaviour of the triangular skin-bays. 

 Thesis 4: Anisogrid structures with interface layers are able to generate a reliable 
connection of the grid and skin, even during a deep buckling state. 

 Thesis 5: Anisogrid structures with triangular skin-bays show a post-buckling behaviour 
without mode-switches which is different to stiffened panels with rectangular  
skin-bays. 

As a result of these investigations, the advantages and drawback of the concept are listed 
and a perspective for the proposed design concept is given in Chapter 8. In the last chapter of 
this thesis, the results are summarised and next steps are formulated.  
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Figure 2: Thesis structure 
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In recent years the EADS CASA group in Spain also works on lattice structures for 
aerospace applications [17]. They investigate the design and the Advanced Fibre Placement 
manufacturing process. 

At the Technical University of Delft, fibre steering technique with the Automated Fibre 
Placement (AFP) process has been tested and analysed for grid structures. The fibre tows are 
steered by its half width around the intersection knot keeping a constant rib height and 
enabling usage of high fibre-volume-ratio. In view of these investigations and in cooperation, 
the NLR is also performing manufacturing trials and design concepts on panel level [10].  

3.1.4 Categorisation of Grid Terms and Definitions 

As a result of the literature review, the common definition of a grid structure and also 
categorisation of different grid types shall be summarised. 

A grid structure is typically understood as a global highly integrally manufactured stiffened 
structure. The most important point is that stiffeners of different orientation are present and 
that they intersect each other in some way, thereby building a stiff self-carrying and loadable 
plate or shell structure. The number of stiffener orientations can vary between two and four. 
The cross-section of the stiffeners can be monolithic, then typically called ribs, or of other 
shape. A skin can also be combined on one or both sides with the grid, whereby an open grid 
structure without skin is also typical in use. 

The categorisation of the grid structures in literature is carried out according to the 
quantity of stiffeners and, most of the time, by the angle at which the stiffener directions 
intersect each other. Typical grid structures are symmetrical, which means that e.g. 
equilateral or equal-sided triangles are formed for tri-directional grids. The following 
definitions are used quite commonly in literature (for illustration see Figure 8): 

 “Axial-/ Radial-grid”: is seen to be beneficial to define in particular for the tri-
directional grid types. Axial-grid means that the third rib direction (e.g. basis of the 
equal-sided triangle) is oriented along the main load or e.g. along the axis of a 
curved shell structure. Radial-grid means that the third rib direction is transverse 
oriented to the curvature of a shell. 

 “Orthogrid”: is a two-directional grid structure, in which the stiffeners are oriented 
in 0°/90° direction and a quadratic or rectangular cell is resulting. 

 “Isogrid”: is a tri-directional grid structure, whereby the triangular cell is 
equilateral, resulting in a stiffener angle of 60°. The isotropic in-plane properties 
leads to the “iso”-prefix [32]. 

 “Anisogrid”: is a tri-directional grid structure. In contrast to the Isogrid the angle of 
the helical ribs is adaptable between 0° and 90°. The term is used e.g. by Totaro 
[84] and De Nicola [15]. Particularly in this thesis, Anisogrid describes a radial-grid. 

  “Advanced Isogrid Structure” or “AGS”: is a tri-directional grid structure, in which 
the angle is variable and the triangular cell is typically equal-sided. The AGS term 
was introduced in the United States. AGS are mostly used as axial-grids. 

  “Lattice Structure”: this expression is mainly coined by Prof. Vasiliev and is related 
to tri-directional grid structures. The angle is variable. A triangular cell is also 
equal-sided, whether typically for lattice structures the circumferential ribs are 
split and diamond shaped cells result. Lattice structures are typically radial-grids 
and in some cases axial ribs are added. 
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 “Wafflegrid”: is a grid with four rib directions, whereby the wafflegrid has a fix 
helical angle of +/-45°. It is not very common as manufactured structure, but often 
used in design comparisons. 

 
Figure 8: Common grid types: Orthogrid (a), Radialgrid/Anisogrid (b),  

Axialgrid/AGS (c), Lattice Structure (d), Wafflegrid (e) 

3.2 Manufacturing of Grid Structures 

A well-proven manufacturing process is the wet-filament winding used by CRISM. Very large 
4 m diameter barrel structures as well as thin-walled beam structures are fabricated 
successfully and are in service today [89]. For the wet-winding process, dry fibre tows (glass, 
carbon or aramid) are pulled through a resin bath, impregnating the fibre tow with the matrix, 
and then wound on a mandrel. For the lattice structures, CRISM enhanced this process with 
silicone moulds containing the grooves for the ribs which is placed on the barrel-tool and 
wound around. Special developed resins enable, with their viscosity and pot life properties, 
that even large barrel sections can be wound, which is due to the size a time consuming 
process. As the whole section is wound with an endless fibre tow, the fibres are over-pressed 
at the rib intersections (the knots). The process reflects a real one-shot manufacturing 
meaning that barrel end rings, reinforcements for cut-outs or load introductions are 
fabricated in the same time within the rib structure. Due to the low costs of the raw materials 
and the high degree of automation it is a very cost efficient process. 

 
Figure 9: left: Wet-filament winding [88]; right: Prepreg winding Hybrid Tooling [33] 

Besides the wet-filament, a winding process with pre-impregnated tows (prepreg tows, 
typically called slit tapes today) was used in the United States for the manufacturing of rocket 
shrouds by Huybrechts et al. [32]. They developed different kinds of tools for this process 
such as the Hybrid Tooling and the Expansion Block process. In both tooling concepts, silicon 
rubber is also used as expansion material for compaction of the rib laminate but in a different 
amount for better control of the compaction forces. A similar process is used by the ICCI 
Company in Canada. 

a b c ed
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An AFP process with prepreg slit tapes, EADS CASA investigates in their studies. A 
difference is that they work with a high fibre volume content which why no over-pressing in 
the knot is suitable. Different variants for the intersections were investigated and as a 
compromise of manufacturing and structural mechanical reasons a thickening at the knot was 
chosen [17]. 

Totaro and De Nicola developed in recent years a dry-fibre placement process in 
combination with infusion at CIRA [15]. A multi-axis robot is used for fibre placement and 
resin infusion for matrix infiltration in combination with an out-of-autoclave approach, 
reducing the process costs. The mandrel is covered with a grooved silicon-rubber carpet in 
which is wound. With this process, an interstage structure including end rings and local 
reinforcement frames for cut-outs has been successfully wound and infused, resulting in 
satisfying and promising material properties [85]. 

3.3 Analysis Methods 

The analysis of grid structures can be divided into the analytical/semi-analytical methods 
(smeared stiffeners) and the numerical-based methods (discrete stiffeners). With the help of 
increasing calculation performance, the numerical methods are being used more and more, 
even in detailed models for optimisation purposes with multi-parameter problems. Classical, 
but highly efficient, are the analytical and semi-analytical-based methods for the sizing and 
optimisation of large design spaces and different architectures. The main sizing criteria are 
the global stability of the shell or the cylinder, the local stability of the stiffeners and, if 
applicable, the skin, and the strength in all elements. 

3.3.1 Smeared Methods for Stiffeners and Optionally a Skin 

The global description of the deformation and stability behaviour of a grid structure is carried 
out in many ways with the help of smeared approaches. In general, the smearing of the 
stiffeners into an unstiffened plate with uniform thickness is a suitable method shown by 
different researchers. The computation of the equivalent orthotropic plate stiffnesses enables 
efficiently the consideration of stiffeners with any orientation or grid pattern. With these 
equivalent stiffnesses, typically, a Rayleigh-Ritz energy based method as approximation 
procedure is used to calculate the global buckling loads of the panel. 

The basic smearing approach for Isogrid structures optionally with skin is described in the 
NASA Handbook from 1973 [53]. On the one hand the Isogrid is limited to equilateral triangles 
(60° stiffener angle) but also flanged ribs are considered, due to the focus to metallic 
structures. 

In 1984, Stroud et al. showed the evaluation of buckling load estimation with a smeared 
stiffness approach in comparison with finite element models in a NASA report [76] for uniaxial 
compression. He observed in some cases high overestimation of the smearing approach and 
concluded only limited utilisation of their smearing method.  

In 1986, Onoda used a sizing and optimisation approach for lattice structures without skin 
considering orthotropic shell properties [60]. Due to the symmetric rib structure without skin, 
the stiffness matrix simplifies strongly and besides other geometric variables he could 
consider the rib angle as sizing variable. 

In the early nineties, Chen developed an equivalent stiffness model for a grid with optional 
skin in the form of a Mindlin plate considering effects such as torsion, in-plane bending and 
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shear of the ribs [13, 14]. Chen used a finite element model for calculation of the shell 
deformations under uniaxial or also combined loads. With the stress and moment resultants, 
the stresses and local buckling were proven in all elements. He concluded high accuracy for 
the panel displacements and reasonable accuracy for the strains and stresses. 

 At nearly the same time, Jaunky et al. developed an advanced smearing approach with 
which the skin-stiffener interaction is considered [3, 40]. This is carried out by a more exact 
consideration of the neutral axis at the stiffeners’ position along the panel. They proved their 
approach with finite element models for axially, Orthogrid and tri-directional grid stiffened 
panels under uniaxial and combined load cases. A good correlation was summarised for global 
buckling in comparison to former approaches. 

Vasiliev et al. described their closed-form smearing approach 1999 for the tri-directional 
lattice structure [90]. Global and local buckling as well as strength criteria are considered. 
Different grid designs (lattice or Anisogrid layout) are taken into account by different K-values 
(end fixing constants) for the stiffener local buckling criterion. Totaro uses the same smearing 
approach, verifying the stiffener buckling criterion by finite element models, and adding a 
stiffness criterion to the analytical sizing process [84]. 

In the early 2000s, Kidane et al developed a general smeared model for determination of 
the global buckling load of symmetrical and unsymmetrical stiffened grid structures optionally 
with a skin [42, 43]. The global buckling load is determined by a Rayleigh-Ritz method wherein 
the total potential energy of the cylinder shell is composed of the strain energy and the work 
by the external force. 

3.3.2 Skin-Bay Buckling 

The buckling of isotropic flat triangular plates was investigated by Tan et al [79] with the help 
of a finite-element model, resulting in given buckling value tables for specific triangular 
shapes, loads and boundary conditions. Jaunky et al. [39] developed a method for general 
triangular plates with anisotropic material properties, different boundary conditions and 
loadings. The method is based on a Rayleigh-Ritz approach and variation formulation. 

In 2014, M. Weber presented a semi-analytical method, also based on a Ritz energy 
approach, to determine the local buckling value for rectangular, triangular, rhombic and 
hexagonal skin-bays [94]. In his method, he also implemented the consideration of 
anisotropic material properties and shell curvature. Particularly for the triangular skin-bays, 
Weber showed significant buckling value gain in comparison to rectangular skin-bays 
considering the same aspect ratio of unit cells. For high shell curvature, this increase is raised 
further. These impressive values support the expectation of higher weight-efficient Anisogrids 
in comparison to Orthogrid structures. On the other hand, it has to be taken into account that 
the same aspect ratio means the Anisogrid needs twice the stiffeners. On a global panel 
design, it is questionable as to whether the buckling value increase also results in 
corresponding panel weight benefits. 

3.3.3 Optimisation and Potential of Grid Architectures 

Reddy presented in 1985 a comparison of an Isogrid with Orthogrid structure with skin 
analysing two C130 fuselage load cases [65]. He calculated for both structures a 30% weight 
decrease in the metallic reference structure under consideration of global and local stability 
failure criteria. 
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At this point, it should be mentioned that the procedure of Klinzmann in comparing the 
same quantity of stiffeners is clearly comprehensible, because she is comparing two 
differentially manufactured structures. Different quantities of stiffeners mean directly 
different manufacturing and, in particular, assembly efforts and costs, which would be 
difficult to compare when they are not the same. For integrally manufactured concepts, this 
restriction is seen to be not as strong, as only the manufacturing time would be different to 
some extent. As a result, this restriction can be left open. 

3.4 Testing of Anisogrid Structures 

A first wide panel test program was summarised by Rehfield in 1980 [67]. Flat composite 
Isogrid panels as wide columns were tested in compression and besides the scattering of 
results due to manufacturing reasons the correlation with used analysis theory was satisfying. 

First tests on the damage tolerance of grid structures were performed and described by 
Reddy et al. 1983 [64]. Non-destructive buckling tests were performed on flat wide panel 
columns whereas the buckling resistance was measured and consequently, degraded in 
multiple test runs by destructive cutting of ribs. The comparison with finite element 
calculations was satisfying and a good structural damage tolerance was observed due to the 
occurring stress redistributions. 

In 2000, Kim [44] analysed and tested a cylindrical Isogrid shell with skin. The cylinder 
reached the numerical predicted failure/buckling load quite well. The critical failure mode was 
the stiffener buckling which resulted in a global buckling of the cylindrical shell. After several 
skin-stiffener separations the overall structure failure occurred. The local buckling of the 
stiffeners and the further loading capacity of the structure Kim described as post-buckling 
behaviour and stated a good damage tolerance of the structure. 

In 2002 Higgins et al [29] presented results of cylindrical axial-grid panel compression 
tests. A skin-bay buckling occurred and the relatively thick skin twisted the axial ribs whereby 
the final panel failure occurred as a result of rib-skin-separation. As the main focus area for 
further development, the improved joint failure prediction was determined amongst others. 
In 2005 and 2007, Biskner and Higgins [8, 9] showed their results on the reinforcement of a 
thin skin with lightweight foam to stabilise the skin-bay and the axial rib, and to prevent the 
most critical peel-off failure of skin and ribs. 

 Nicola et al tested two different manufacturing processes (wet-winding, prepreg winding) 
via compression test on element level [15] in 2009. Therefore they cut grid rib and knot 
specimens from the cylindrical structures. Due to the high fibre-volume-ratio of the prepreg, 
material built-up at the intersection area needed to be accepted. The results showed low 
stiffness and strength properties due to the misaligned fibres at the intersection. Tension 
properties have not been presented. 
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3.5 Semi-Monocoque Fuselage Design as State-of-the-Art Architecture 

The fuselage, as central element of the aircraft, has to fulfil multiple, often contrarian 
requirements. There is basically the bearing of ground and flight loads (mechanical and 
thermal), capabilities for handling damages of different sizes, crash demands, lightning strike, 
thermal and noise insulation, and also reparability and inspection possibility during service. All 
these demands should be realised with the lowest possible structural weight for 
corresponding aircraft performance and fuel efficiency. 

With increasing flight speeds, altitudes and cargo loads the change from wood to metal 
fuselages established in the first half of last century. Together with the change of material, 
the fuselage design also developed further. The framework truss designs were converted into 
shell constructions, whereby the longitudinal and transverse stiffeners were adopted and the 
skin replaced the diagonal beams or wires as shear element. Main reasons for the skin were 
the generation of a smooth aerodynamic outside surface and also the stressed skin which is 
increasing the structural efficiency. On the other hand the stressed stiff skin effected the 
change from statically determined to undetermined stiffened structures. As first step for 
dimensioning, the grid of longitudinal (stringers) and transverse stiffeners (frames) in addition 
with the skin were calculated as so-called shear field scheme, in German phrase 
“Schubfeldschema”. The stiffeners are sized to carry only normal loads and the skin the 
torsion/shear. However, with new failure modes of a now buckling skin e.g. under 
shear/torsion the quantity of stiffeners for stabilisation of the skin increased. As a result, the 
new demands required new sizing algorithms and methods and a lot of tests were performed 
to validate these new methods.  

Today, the semi-monocoque design still consists of a load-bearing skin, but considered for 
the whole spectrum of loads, stringers, stiffening the skin in longitudinal fuselage direction, 
and frames, stabilising the fuselage in circumferential direction (see Figure 11). This shell 
design, in German phrase “Schalenbauweise”, established to all civil passenger aircraft from 
single to long range aircraft with capacity of >50 passengers. Only the cockpit section is in 
many cases a monocoque structure consisting of a relatively thick skin, which is stiffened only 
by frames. For smaller aircraft in the size of business aircraft, Monocoque and also Sandwich 
fuselage designs are in service today.  

The frames fulfil multiple tasks in the fuselage. They provide the cross-sectional shape, are 
load application elements e.g. for the floor beam and hat track loads and work as zero-
deflection lines to increase global buckling capabilities of the barrel. In addition to the 
standard frames, there are also reinforced frames e.g. at the door surround structures or the 
wing box integration. 
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4 Anisogrid-Prepreg-Design-Concept 

Thesis 1: An Anisogrid concept with variable helical angle, interface layers and laminate 
stacking of cut and uncut layers combines the advantages of grid structures and fulfils main 
laminate requirements for airframes. 

As the main developments on the grid structures have been made in the last decades for 
spacecraft structures, these designs can be considered as a basis. Deriving from these 
spacecraft designs, the challenge for an airframe structure concept is which design details can 
be transferred, and which ones need to be adapted or completely renewed. The main 
difference between a spacecraft and an airframe structure is the completely different 
durability demands. Simplified, it can be said that the spacecraft structure needs to fly only 
once, with, incidentally, a maximum of reliability, whilst the airframe structure has to sustain 
a life cycle of 20 to 30 years with thousands of load cycles.  

To answer this question and to derive a suitable design concept, different structural levels 
are focused on in this chapter. In Section 4.1, the main aspects are explained which are 
evident for the integral concept. Subsequently, the design concept is developed in  
Section 4.2. In Section 4.3, the manufacturing concept is discussed in detail and in  
Section 4.4 specific design details are investigated. 

4.1 Design Aspects for the Anisogrid Design Concept 

Following, three main design aspects are examined: the manufacturing process, the 
intersection approach for the different oriented stiffeners and the interface of the rib 
structure with the skin. 

4.1.1 Manufacturing Process 

The prepreg Advanced Fibre Placement (AFP) process appears to fulfil the demands most 
beneficial of the presented processes in Section 3.2. Main advantage of the prepreg material 
are the highest quality assured properties due to the low tolerances in the prepreg 
production in terms of fibre-volume-ratio (FVR) scattering and fibre orientation deviation 
(under consideration of certified materials). As a result, prepreg processed parts are assuring 
very high material property tolerances of the cured part. The AFP process adds the 
advantages of a fully automated process which is quite established and proven now for 
aircraft production (Boeing 787 and Airbus 350 fabrication). As current AFP processes work 
mostly with unidirectional (slit-) tapes, also fabric or multiaxial tapes are in principle possible 
to process. Another and important difference of the AFP technique in comparison to e.g. the 
wet-filament winding process is seen in the flexibility to adapt locally the placed material. As a 
consequence, adaptable stiffener cross-sections and also more freedom for the placement 
path of the fibre are realisable since nearly no tension is arising in the tow during the AFP 
process. The tape is literally placed. At a winding process the needed and arising tension force 
in the tow limits the desired part geometry (e.g. needed convex curvature of fibre path) and 
bridging effects can occur. Bridging means that the tow is tensioned between the rib 
intersection points and a shell with more polygonal instead of a circle shape are fabricated. 
This effect becomes more critical the higher the ribs are. 

Main disadvantage of an AFP process with prepreg material is that it is an expensive 
manufacturing process due to the prepreg raw material itself and the high amount of 



Anisogrid-Prepreg-Design-Concept 

18 
 

required large production facilities means the AFP robot or gantry facility plus large scale 
autoclave. The wet-winding process and also the dry-fibre placement process in combination 
with an infusion process have way lower costs, due to the much lower raw material costs of 
the rovings and the resin in comparison to the prepreg tows or slit tapes. On the other hand, 
the risk of the Liquid Composite Moulding processes (LCM) and, in consequence, the risk of 
scrap rate or needed rework is increasing drastically due to the process complexity, the high 
amount of processed materials and the size of a panel or even barrel section. 

As a side note it shall be mentioned that the AFP material and process choice is, in 
general, also applicable to thermoplastic material. It is not the focus in this thesis but the pre-
conditioned raw material and placement process itself can be adapted to these needed 
process conditions. 

4.1.2 Grid Knots 

The grid structures are significantly characterised by the design at the knots of the 
intersecting ribs. It is apparent to be the challenge between the variety of fibre volume 
content and the change of the rib cross-section dimensions. 

A variety of the fibre volume content results when an over-pressing of layers in the knot is 
used. In this case, the plain rib between the knots features a relatively low FVR between 35% 
and 40%. At the rib knot the over-pressing causes the maximum possible fibre package 
between 70% and 75%. According to the plain rib fibre-volume-ratio relatively low stiffness 
properties are achieved for the overall rib-structure. This solution is typically used for the wet-
filament-winding process (lattice structures). The application of a low FVR together with over-
pressing is also imaginable for prepreg material, but has not been utilised so far according to 
the state of knowledge. 

For applications which require particular high stiffness properties, it is desirable to 
increase the FVR in the plain rib. As over-pressing in the knots is not suitable due to the high 
fibre package, the geometric variation of the rib cross-section can be used. In this case, two 
main ways are applicable: “thickening” the intersecting ribs at the knot into the height 
direction; or “widening” the knot into the rib width direction. Both kinds have the advantage 
that all fibres run through the knot and that the ribs have a high stiffness due to the high FVR. 
Disadvantages of the thickening method are seen that, depending on the rib height, high fibre 
waviness occur which reduces the strength properties. Additionally geometrical undefined rib 
surfaces occur with wide tolerances. For the widening, also, two ways are feasible: “steering” 
the tows by its half widths left and right beside the rib knot or “spreading” the tow at the 
point of the knot, which means spreading the tow in width direction. As a result, the height of 
the slit tape/tow is halved. Disadvantage of the steering are seen that in the steering areas 
before and after the knot fibre material is missing. In addition, the placement paths for the 
machine are quite complex and a tool with rib grooves seems to be impossible to use due to 
the necessary clearance for the placement head when it is turning along the fibre path. For 
the spreading of the tows, the main disadvantage is seen for the machine to realise the 
spreading of a tow on a small area in a continuous placement process. A weaving of the fibres 
would also occur even, that it might be not as much as it is expected for the steering method. 

An alternative for using material with high fibre volume content but without thickening or 
widening the knot area is to simply cut the layers before the knot (discontinuous rib layers). 
This solution has the main disadvantage of expected strength reduction but, on the other 
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Figure 16: Rib laminate in detail 

The interface layers do not only generate the connection of the ribs with the skin, but also 
help to fulfil the laminate rules in terms of adding layers with different orientation to the rib 
layers. Nevertheless, as laminate rules limit the maximum number of layers with the same 
orientation, additional layers are needed. This can be realised by the usage of so-called 
package layers for the rib structure laminate. It is intended that these package layers are 
prepared like typical slit-tapes but instead of containing only 0 degree layers, they also 
contain other orientations (see Figure 17). Another advantage of these package layers is the 
possibility to drastically increase the layup productivity, when multiple layers are placed in 
one step. The package layer thickness is investigated, in particular for the knot and rib 
specimens, under tension and compression in Chapter 4.  

 
Figure 17: Design of a so-called package layer built of multiple single plies 

The preparation of such package layers means an additional process step which the slit 
tape distributor needs to provide. At DLR laboratories, these layers are realised by the build-
up of a laminate plate with a multi-oriented stacking and the subsequent cutting of strips as 
desired for the rib width. A similar process is imaginable on an industrial scale, as 
unidirectional slit tapes are also produced like this today. The limit of slenderness has to be 
seen in the range between 3 and 4 mm. 

4.3 Manufacturing Process 

4.3.1 AFP Process 

An AFP process is intended to be used as explained in Subsection 4.1.1. The placement of the 
rib and the package layers respectively is seen to be state-of-the-art for current fibre 
placement machines. Typically, the machines place the tapes on flat or slightly curved (aircraft 
wing, fuselage) metal tools. The placement of the tapes into grooves has been carried out 
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metal tool in comparison e.g. to a partly elastic tool is expected that the occurring undercuts 
of the positive curved grid structure leads to a multi core design. Due to the height and the 
radial orientation of the ribs, the tool cores need draft angles on all sides. As a consequence, a 
probably complex multi-core tool is needed including a handling mechanism. 

As the manufacturing of high quality laminates depends strongly on the compaction and 
the avoidance of air pores, a tooling concept with expanding cores is proposed to use. In 
contrast to silicon rubber tools different thermal expansions coefficients of different metals 
are assumed to be exploited. Therefore the geometrical dimensions of the tooling is designed 
for the curing temperature and needs to be compensated (reduced) to the temperature, at 
which the material is placed into the mould.  

The placement of the aerodynamic and load-bearing skin laminate can be carried out 
optionally wet on the wet grid structure in a co-curing process or in a co-bonded step e.g. wet 
on the cured grid structure. 

4.4 Design Details 

Following, specific concept details are discussed such as the draft angle, the cut complexity at 
the rib knot and the fulfilment of main laminate rules. 

4.4.1 Draft Angle 

As described in Section 4.2, the sequential usage of interface layers over the rib height is 
resulting in draft angles for the rib flanks and also the rib feet. The draft angle depends on the 
thickness of one interface layer as well as on the number of rib layers, compare Figure 19. 

 
Figure 19: Resulting draft angle in the rib due to interface layers 

The draft angle can be increased by the usage of thicker interface layers, reduction of the 
number of rib layers, or increase of the number of interface layers. In classical injection 
casting techniques, draft angles of approximately 1 to 2 degrees are recommended. With an 
interface layer thickness of 0.25 mm and 2° draft angle, for example, a distance of the 
interface layers stacked into the rib laminate of 7.1 mm results. This value seems to be quite 
applicable for the concept.  
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4.4.3 Compliance with the laminate rules 

In general, it is certainly questionable as to which laminate rules have to be fulfilled by this 
kind of structure. Most of these rules are developed or result from investigations of typical 
composite laminates. A typical laminate is a shell structure, whereby the in-plane dimensions 
are much larger than the thickness dimension. The grid structure does not even fulfil this 
aspect. The ribs are stacked by a high number of narrow plies generating a narrow but thick 
cross-section (high stiffener slenderness), generating required bending stiffness.  

Meeting the laminate rules anyhow, different possibilities can be used and have been 
investigated. Following, main design guidelines are discussed for the concept [54]: 

 The guideline of symmetric and balanced laminates can be fulfilled particularly due 
to the high number of layers in the rib structure; sufficient variants in terms of 
stacking order should be realisable. 

 Minimum 10% of 0°, +45°, 90° and 135° shall be in the laminate: this rule can be 
fulfilled with the interface layers which are stacked into the rib laminate on the 
one hand. On the other hand the concept of using package layers which are pre-
conditioned slit tapes, also allows implementing other fibre directions into the rib 
laminate. These layers are increasing the crack growth resistance inside the rib 
laminate. As mainly the uncut layers in the knot are seen to generate the strength 
properties, the layers with different orientations can be integrated best into the 
cut layers; 

 Maximum 1 mm of layers on top of each other with the same fibre orientation: 
this requirement is indirectly limiting the thickness of the package layers, under 
consideration that all of the package layers shall have 0° orientation for maximum 
of strength in rib direction if they are uncut. As a result, the cut package layers 
should directly have a different oriented layer as a first and last ply. 

 45°/135° layer at the outside of the laminate: can be fulfilled with the interface 
layers, which will have as shear connection a high amount of 45°/135° layers 
anyway. 
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5 Determination of the Design Properties of Knots and Ribs 

The advantages of cutting a part of rib layers at the stiffener intersection knots, like the 
constancy of the rib cross-section and fibre-volume-ratio, are faced with the drawback that 
the cut load-bearing fibres are interrupted. This may lead directly to the assumption: 

Thesis 2: The material properties of the knot specimen are significantly reduced by the 
cutting concept in terms of stiffness and strength. 

With the help of static tension and compression tests, the lack of material data shall be 
overcome for the proposed concept with cut layers in the knot area. The test goal is to 
analyse the expected property reduction of knots in comparison to the undisturbed, plain 
ribs. Therefore, the specimens are of element size to contain the knot area of the Anisogrid 
concept.  

The rectangular ribs with their stacking in height are different to typical composite 
laminates. The layers are very narrow (thickness of the rib) but with a high laminate thickness 
(height of the rib). This kind of laminate is expected to be sensitive to edge effects, which 
reduces the material properties [49]. As a consequence, two additional specimen 
programmes are tested and compared to the rib and knot results.  

5.1 Test Setup 

The main question is whether uniaxial or multiaxial testing is most suitable in order to obtain 
the required properties. With uniaxial testing, the strength in only one rib direction is 
determined. A biaxial testing can e.g. be generated in such a way that two ribs are tested as 
an X-cross, whereby the loading is still uniaxial. In such a configuration, the in-plane strength 
properties of a lattice design could be tested and the properties in rib direction would be 
back-calculated. This procedure is seen to be adequate for wound structures because the 
knot as over-pressed area is of main interest. In the special case of the cut layers, the weakest 
point is not expected in the knot but in the cross-section directly before the intersection 
where the rib layers are cut. Resultantly, it is assumed that it is not a multiaxial loading in the 
knot but instead the pure uniaxial load in this weakest cross-section which causes the 
strength failure, and a uniaxial testing is seen to be preferable. Beneficially, this decision 
reduces the production effort of the knots and the evaluation of the test results as no back-
calculation has to be carried out. Subsequently, the ribs and knots are tested uniaxially, 
pulling or compressing in one rib direction, whereas the other rib directions are not loaded. 

As mentioned in the concept description, the thickness of the package layers is a design-
driving aspect as the placement productivity can be increased significantly. Under 
consideration of the laminate rules, the testing programme is set to be investigated with the 
maximum package layer thickness of 1 mm. In Section 5.4, this aspect is focused on again with 
thinner package layers. 

5.1.1 Standards and Geometry 

For both tests, tension and compression, different types of specimen geometries are defined. 
The selection depends on the possibly required testing method, the specimen laminate (UD, 
multiaxial), and used fibres (glass, carbon, aramid). A specimen geometry is found to be 
applicable for tension and compression for testing multiaxial laminates, so that the specimen 
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5.1.4 Analytical Load Calculation and Test Analysis 

Maximum Load calculation 

With the classical laminate theory (CLT), the stiffness matrix of the laminate can be calculated 
and a layerwise failure analysis performed. The global laminate properties are determined 
with the material properties of the single ply (data sheet information [27]) and the 
corresponding laminate stacking. Under a given external force, the global laminate strains are 
calculated and transformed into the strains of each single ply considering the ply angle and 
thickness. The resulting local strains respectively stresses in each ply are used to determine 
the fibre and matrix failure according to the Hashin 2D failure criteria [25]. There are a lot of 
failure criteria available for composites today. In general, it can be stated that most important 
for ply-based laminate analysis the usage of a physically-based or also called failure-type 
criterion is recommend, separating fibre and matrix failure (e.g. Hashin 2D, Puck, Cuntze 
Criterion) [71]. Out of these criteria, the Hashin 2D is selected since only unidirectional 
material properties are needed. Due to the pure uniaxial load in combination with only 0° and 
90° layer orientations in the specimens, the results obtained with different criteria are almost 
identical. Differences occur mainly for layers with orientations between 0° and 90°, as the 
failure envelopes are differing for the resulting multiaxial stress states. 

Calculation of maximum strength from test results 

The maximum strength σBten or σBcom is calculated with the fracture test force divided by 
the cross-section area of the specimen: 

����� =
��

�
 ( 1 ) 

Calculation of modulus of elasticity from test results 

The modulus of elasticity E is determined by calculating the slope of the stress-strain 
curve. This tangent modulus is the slope in one or between two points of the curve (a secant 
modulus is calculated between zero and one point of the curve). As a standard, the modulus 
of elasticity is calculated between 0.05% and 0.25% elongation of the specimen for tension 
and compression: 

� =
��.��% − ��.��%

��.��% − ��.��%
 ( 2 ) 

Determination of 1st standard deviation (SD) 

The standard deviation of test results shows the range, in which the results deviate from 
the average: 

� = �
1

�
�(�� − �̅)�

�

���

 ( 3 ) 

Even that the quantity of specimens for each kind of specimen and both loadings is quite 
low (between 4 and 6 values each) and statistics are not reasonably applicable, the standard 
deviation is used to give an impression of the scattering of the results. 
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5.2 Test Results 

In the following, the tensile and compression tests are presented, containing the results of 
over 70 specimens of element size. The full list of geometry measurements of all specimens is 
attached for tension in appendix A.2.1 and for compression in A.3.1. The determination of the 
exact dimensions per specimen is essential for further stress and modulus calculation, due to 
the used cross-section area.  

5.2.1 Tension 

The diagrams in Figure 26 show the stress-strain curves for the grid rib and knot (CC-3) 
specimens. The test results for the plate and laminate specimens are attached in A.2.2. 

 
Figure 26: left: Tensile stress-strain-curves of grid-rib specimens;  
right: Tensile stress-strain-curves of grid-CC3-knot specimens 

The grid-rib specimens have a typical brittle failure mode and the stress-strain-curves 
show a linear behaviour. Only the curve progression of Rib-1 is interrupted by a slight strength 
drop which indicates a major interlaminar fracture. In contrast to the rib specimens, the grid-
knots with the 1 mm-thick package layers have a distinctive successive failure behaviour. 
There are two major failure peaks observable before the maximum failure load occurs. 
Especially the first maximum failure stresses have, over all knot specimens, the same order of 
magnitude, which is unexpected. After analysis of the video data and comparison with the  
CC-1 and disturbed-plate specimens, it is assumed that these two peaks are the stresses 
occurring when the cut layers are separating from the layers of the other rib directions, first 
at one side of the knot and then at the other side. With the disturbed-plate specimen, it can 
be seen that all cut layers are separating at the same time and as a result, the second peak is 
not observable or it is lower than the first one (in A.2.3, two detailed stress-displacement 
curves are shown, including pictures of the specimen at different load levels). 

The stiffness of all specimens is quite similar in the linear elastic range, compare e.g. until 
2500 microstrains. The achieved average values for the modulus, failure stress and strains are 
listed for all specimens in Table 2. 
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A massive reduction of maximum tensile strength is seen for the disturbed-plate 
specimens and the grid-knot specimens. Especially the disturbed-plate specimens attain a low 
tensile strength of approx. 400 MPa. The grid-knot specimens achieved a slightly higher but 
still low tensile strength of approx. 480 MPa. The grid-knots with the higher cut complexity 
CC-3 attain negligibly higher strength and the scattering is also slightly lower/better. 
Nonetheless, for tension a higher cut complexity does not seem to justify the significantly 
higher manufacturing efforts.  

Overall, a strong reduction of tensile strength is observed for the knot specimens. 
Consequently, this strong reduction of the material strength has to be considered in sizing 
processes. Comparing to the calculated rib strength, this reduction correlates to the number 
of uncut layers in the knot (CC-3 - 32%, CC-1 – 31%).  

5.2.2 Compression 

The stress-displacement curves for the grid-rib and grid-knot specimens are shown in Figure 
29. The stress-strain curves for the plate and laminate specimens are given in the appendix 
A.3.2. 

 
Figure 29: left: Compression stress-strain-curves of grid-rib specimens;  
right: Compression stress-strain-curves of grid-CC3-knot specimens 

The grid-rib specimens as well as the grid-knot specimens have a brittle failure mode in 
compression (see Figure 29). A distinctive successive failure, which occurs for the knot 
specimens under tension, is not visible. All failure curves of the ribs show a quite similar 
stiffness in the elastic range, only the maximum compression stresses differ between the 
specimens. In contrast, the stress-strain curves of the grid-knot specimens vary quite strongly 
for elongations over 2000 microstrains. The average compression values of the moduli, failure 
stresses and strains are listed for all specimens in Table 3. 
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5.3 Visualisation of Stress Concentrations with Optical Measurements 

In a special series, the tension and compression grid-knot tests are additionally monitored 
with the DIC system, described in Subsection 5.1.2. Due to the narrow width but great 
thickness it can be nicely looked from the rib side “into” the rib laminate at the intersection. 
Therefore, the unloaded rib directions are shortened strongly to reduce the shadowed area. 
The coloured areas in Figure 32 and Figure 33 are the zones directly above the knot area. The 
pictures show different load states and the strain �� is visualised, which is the tension or 
compression direction respectively. 

The DIC optical measurements of a tension specimen are shown in Figure 32. The picture 
numbers reflect the load step. After picture number 60, the global failure occurred. Picture 
number 1 shows the unloaded specimen. It can be seen that even at state 50 the load 
distribution is quite homogeneous. Strain concentrations fade away within 3 mm. (compare 
with Figure 32). These strain concentrations, however, rise rapidly when the first failure 
occurs.  

The optical measurements of a compression specimen are shown in Figure 33. A similar 
deformation behaviour can be seen as for tension. First, the strain concentrations are limited 
to the area directly before the knot. With load increase, however, the strain concentrations 
propagate rapidly. 
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quite well with the 1.0 mm-thick layers used in the tests. In contrast, the fibre tensile strength 
of the uncut layers would be reached for the investigated cross-section dimensions at 48 kN 
tensile force. With the help of the diagram, a maximum thickness of package layers of approx. 
0.3 mm can be determined. 

In order to validate this result, a small testing programme of disturbed-plate specimens is 
produced, as the plate specimen are also the cheapest to manufacture and prepare. A 
package layer thickness of 0.25 mm is chosen as the next smaller thickness step, thereby also 
providing some reserve. 

For this small test series, 6 disturbed-plate specimens are produced as described in 
Subsection 5.1.3 with the same laminate stacking (66/0/33), whereby 33% of 0° layers are 
uncut and the rest are placed face-to-face in the centre of the plate (see Figure 24). 

In Figure 35, the stress-strain-curves for these specimens are plotted, including an 
example curve of the grid-knot and plate-knot specimens with 1 mm-thick package layers. 

 
Figure 35: Tension results for disturbed plate knot specimen with 0.25mm package layers 

It can be seen that the specimen with thin package layers also show a brittle failure 
behaviour like that of the ribs or the compression tests. The average maximum tensile 
strength of 380 MPa of the plate1-knot specimens increases to an average of 670 MPa. 

Comparing these results as strain values over the whole test programme, it can be stated 
that the maximum tensile strain of the uncut 0°-layers of approx. 14000 microstrains is 
reached for all specimen except for the grid-knot specimen and the plate-knot specimens 
with thick package layers (see Figure 36). The aspect that the fibre failure strain is reachable 
with an adapted package layer thickness leads to the assumption that the maximum tensile 
stress corresponds with the number of uncut layers or, as the width of the ribs is so narrow, 
directly to the number of uncut 0°-layers. 
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5.5 Discussion and Summary of the Test Results 

The static tests show, in general, similar results for tension and compression. The determined 
stiffness parameters for the grid-knot specimen attain a similar value to the grid-rib specimen. 
For sizing, a reduction of stiffness does not have to be considered. This result was initially not 
assumed but seems to be plausible due to the fact that the knot area is quite small compared 
to the overall specimen size. As long as there are no failures, such as matrix cracks at the cut 
layers in the knot specimen, the load distribution is relatively homogenous in the cross-
section. In contrast, as soon as the matrix interface starts cracking at the cut layers, strong 
load redistribution and concentrations arise at the uncut layers. Then only the uncut layers 
are carrying the load but with a much smaller cross-section; consequently, the stresses in 
these layers rise drastically. As a result, the knots (1 mm package layers) fail at a similar 
magnitude to the matrix failure calculated for a typical laminate.  

Considering the package layer thickness, it can be concluded that it is possible to calculate 
with the maximum fibre strength of the uncut 0°-layers in the knot. Besides the maximum 
fibre failure (FF), which reflects the maximum strength, the inter-fibre failure (IFF) criterion 
also needs to be investigated under consideration of the angle of the cut layers. As 
conservative approach, a 90° angle is seen as the most suitable to be used.  

The expected reduction of properties between all three kinds of specimens (laminate, 
plate and grid) can be noticed quite clearly. Especially all rib specimens show a step-by-step 
reduction for the modules and the strengths. The initial assumptions seem to be valid that 
edge effects reduce the properties for the first time (laminate to plate specimens), and the 
lower quality of the grid specimens does this in addition (plate to grid specimens). 

The investigation of different cut-complexities shows that under compression, the 
maximum strength correlates with higher complexity of the layer cutting. For the tensile 
strength and also for the stiffness (compressive and tensile), no significant difference is 
observed. However, it needs to be considered that the tests present only static results, and 
this effect is seen to be even more relevant for dynamic loadings because gaps and resulting 
pores are typically starting points for cracks. Resultantly, the proposed cut-complexity CC-2 is 
assumed to be a good compromise as regards avoiding gaps and limiting the placement head 
expenditure. 
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6 Investigation of Anisogrid Architecture on Panel Level 

The positive results regarding weight efficiency found in literature in Section 3.1 for grid 
structures in aerospace together with the high buckling values of triangular skin-bays, 
motivated the following hypothesis: 

Thesis 3: The triangular stiffened Anisogrid concept has an inherent weight benefit in 
comparison to the Orthogrid concept. 

In order to analyse this hypothesis for airframes, the semi-monocoque structure, as the 
state-of-the-art stiffening structure for aircraft, seems to be the right approach at first glance. 
However, the comparison of the integral Anisogrid stiffening architecture with the frame-
stringer-skin design would be quite difficult, because numerous constraints other than the 
pure panel-sizing ones focused on here lead to the final design of an aircraft. All these 
constraints, such as cabin integration, crash or secondary system demands, lead to a multi-
parameter optimisation problem, whereby most of the constraints are difficult to get. In 
addition, the focus of this work is to answer the question as to whether there is a weight 
potential only due to the skewing of the stiffeners. Consequently, it is preferable to avoid all 
other influencing factors, which means keeping the material, the design and manufacturing 
concept the same for this investigation. In this case, an Orthogrid structure seems to be the 
best variant for comparison with the Anisogrid design, as only the rectangular grid of 
stiffeners differs from the Anisogrid design. 

For the comparison of the weight of an Anisogrid versus an Orthogrid structure, both are 
sized under consideration of the same strength and stability sizing criteria in all elements. This 
investigation is assumed to be suitable for carrying out on a panel level with constant line 
loads as uniaxial compression or shear or as combined load case of compression with shear. 
The panel level has the advantage that it is big enough for all sizing criteria to be crucial for 
sizing but it can still be calculated with constant line loads for an investigation of specific 
effects. Moreover, a fuselage barrel is a set of different panels and a load case such as 
bending can be approximated in panel sections with constant line loads at the different 
positions of the barrel (top, bottom or side panels). 

The analysis of the most weight efficient structure is carried out in two stages. In  
Section 6.2 and 6.3, the two architectures are analysed separately to show important 
dependencies between the minimum weight and single variables. In Section 6.4, the 
comparison of the Anisogrid and Orthogrid is shown for the different load cases and load 
levels. 

6.1 Analysis Methodology 

For the examination of the two architectures on panel level, the load cases, panel geometry, 
design variables, material, sizing criteria and the evaluation/comparison criterion are 
explained in this chapter. 

6.1.1 Load Cases 

The panel loads in an aircraft fuselage vary strongly according to the position and the airplane 
manoeuvre. In general, the loads can be divided into symmetric and asymmetric load cases. 
Symmetric loads stress the fuselage symmetrically to its vertical centre plane (X-Z-plane). 
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6.1.3 Material 

In this investigation, orthotropic composite properties are used for the grid structure and, in 
principle, also for the skin, whereby only quasi-isotropic laminates are considered for the skin. 
To simplify the analytical dimensioning process, smeared stiffness values are the basis for 
sizing. Resultantly, only the thickness (of the ribs and skin) needs to be sized, instead of 
working with discrete laminate stackings, in which the quantity and the order must be taken 
into account. Due to the fundamental comparison of the architectures, this procedure is 
assumed to be valid at this design stage.  

Grid Structure 

In this investigation, an HT-fibre (High Tenacity) with Epoxy matrix is considered as basic 
material. This type is the most used high performance carbon fibre material due to its 
combination of stiffness and strength properties and fabrication costs. The Hexcel 8552/AS4 
[27] material is such a kind of CFRP-prepreg, which has also been used for testing the grid 
properties in Chapter 5. 

With the results found in the knot and rib tests, the stiffness of the plain rib and the 
strength of the knots are determined for the maximum axially reinforced laminate:  

Table 4: Material data for ribs made from prepreg with HT-fibre 

  Modulus 
Ex 

[GPa] 

Modulus 
Ey 

[GPa] 

Modulus 
Exy 

[GPa] 

Density 
ρ 

[g/cm³] 

70/10/10/10 – calc. CLT     

Average (25°C) 100 10 5.3 1.55 

     

The transverse laminate stiffness is neglected and set to the unidirectional value. 

Skin 

For the skin laminate, the same prepreg system is chosen as for the grid structure. The skin 
laminate is focused on quasi-isotropic layups to reduce the number of variables, on the one 
hand, but also because laminates with or with almost quasi-isotropic properties are typical for 
fuselage skins. Reasons are that there are numerous demands to the skin such as multi-axial 
loads, damage tolerance and fatigue demands, or bolted reparability. 

Table 5: Material data for the skin made from prepreg with HT-fibre 

  Modulus 
Ex 

[GPa] 

Modulus 
Ey 

[GPa] 

Modulus 
Exy 

[GPa] 

Density 
ρ 

[g/cm³] 

25/25/25/25 – calc. CLT     

Average (25°C) 52.5 52.5 20.0 1.55 
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6.1.4 Constraints - Sizing Criteria 

An analytical sizing tool is used for the panel dimensioning where the following criteria are 
implemented. In Subsection 6.1.6, the sizing tool/the algorithm is described in detail. 

Global Stability 

The failure due to loss of global stability is characterised by simultaneously buckling of the 
skin and stiffener. With the usage of a continuum model for the skin and the smeared 
stiffeners, the calculation of global stability is carried out for an unstiffened plate and with a 
Rayleigh-Ritz energy-based method. The usage of the continuum model is valid as long as the 
calculated buckling half-length is significant higher than the distance of the stiffeners. As rule 
of thumb the buckling half-length shall be longer than at least two or three times of the 
stiffener distance in each direction. Resultantly, a functional constraint is determined that the 
helical as well as axial stiffener distance is not allowed to exceed 250 mm. In particular for the 
shear load cases, it has to be expected that this constraint is reached during sizing. However, 
on the other hand, the results will not be valid inside the smearing approach. 

It shall be noted at this point that this model is not capable to generate results with very 
stiff single ribs dividing the panel in several single panels, such as e.g. frames are used for. 
Even when stiffeners are obtained by the sizing algorithm with high stiffness, the global panel 
stability is calculated for the whole panel, neither considering these local stiffening’s nor 
automatically separating the panel into smaller ones.  

In terms of panel size, it needs to be large enough so that the smearing approach is valid. 
This is the case when the panel is buckling in global mode over several stiffeners. On the 
other hand, the analytical computation time is increasing (due to the Ritz method for the 
buckling criteria) and the panel size should not be too large (it seems to be negligible but due 
to the large design space also the analytical computation time sums up to remarkable 
magnitude). Accordingly, a panel size of 2000 x 2000 mm is chosen for this study.  

Local Stability of the Ribs 

Local buckling of stiffeners is understood as deformation or buckling of the rib web/blade 
sideways, whereby the connection of the stiffener to the skin is still intact and in line. The 
stiffener web is considered as orthotropic plate stripe which is simply supported at three 
edges and one long free edge. For the determination of the buckling factor, an orthotropic 
simply-supported plate at all edges is calculated and multiplied by a ratio factor. In B.1.2 the 
basic analytical formulation is attached.  

Local Stability of the Skin 

As local stability failure of the skin, buckling inside one skin-bay is defined. The stiffeners 
generate the boundary conditions for the skin-bay. As basic approach, all edges of the skin-
bay are considered as simply-supported. Therefore, the stiffeners need to have sufficient 
bending stiffness. The additional support due to the torsional stiffness is in this case not taken 
into account. For the Orthogrid structure, the rectangular skin-bay is considered as 
orthotropic plate. In the case of biaxial compression loading, an exact closed-form analytical 
solution is available. For shear loads, a regression solution is used approximating more 
calculation intensive solutions. 

For the Anisogrid structure with triangular skin-bays, a criterion is available which bases 
on the NACA TN-3781. This fundamental criterion is harmonised with the help of results 
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derived in a wide finite element study. During this investigation, the published semi-analytical 
approach by M. Weber [94] was compared to the implemented method. Therefore, the 
Weber results are approximated by regressions functions and implemented into the analytical 
tool. The comparison of the two methods with FEM results show, that the Weber method is 
more accurate than the underlying analytical tool method for unstiffened single skin-bays. On 
stiffened panels, the available criterion in the analytical tool proved to give better correlation 
with FEM-results and is finally chosen for the following panel study. Results of the method 
comparison are attached in B.1.3. 

Material Strength 

For analysis of the static in-plane strength, it is established to use a maximum strain criterion 
in the pre-sizing process [5]. A layer-wise and failure-type strength analysis is not taken at this 
stage to reduce the number of sizing variables. An additional reason is that the margins shall 
be investigated and the separation of compression and shear is of special interest due to the 
specific load-case analysis instead of the separate investigation of fibre and inter fibre failure.  

The allowable strains are quite low and include reductions for material B-values, climate 
conditions and damage tolerance demands. With respect to the performed tests, following 
allowable strains are considered for the grid and skin: 

Table 6: Allowable strains 

 Anisogrid Orthogrid Skin 

Tension ≤ 4000 μm/m ≤ 4000 μm/m ≤ 4000 μm/m 

Compression ≤ 3000 μm/m ≤ 3000 μm/m ≤ 3000 μm/m 

Shear ≤ 5000 μm/m ≤ 5000 μm/m ≤ 5000 μm/m 

Overview of Sizing Criteria 

For the sizing process, the margins of all sizing criteria are determined depending on the 
present aircraft load levels. In the Certification Specification for passenger airplanes, two load 
levels are defined [12]: 

Limit Load (LL) – Maximum loads to be expected in airplane service 

Ultimate Load (UL) – Limit Loads multiplied by a factor of safety 

Any part of the airplane structure must be able to withstand its expected limit load 
without permanent deformation. The limit loads are determined from the flight and also 
ground loads of an aircraft. 

At least 1.5 of the limit load is used as the safety factor for all design criteria, whereby the 
specific load level for the calculation may deviate. For example, the load level differs between 
several fuselage positions at which local buckling can be allowed. Due to the linear analysis of 
the panel structures in this investigation, a no-buckling policy is pursued. 

6.1.5 Objective Function – Evaluation Criterion 

The design goal of the investigation is the minimisation of the weight-per-square-meter which 
is also used as evaluation criterion for the comparison of the Aniso- and Orthogrid structure. 
This criterion normalises the structure weight to equal in-plane-dimensions and means that 
the element weights of the unit cell are divided by the area of the unit cell. This approach 
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allows the comparison of different sizes of unit cells, which is seen to be evident for 
comparison with as few as possible geometric restrictions. 

Such a procedure can be questionable for differentially manufactured structures due to 
the direct consequences of the unit cell size on the quantity of stiffeners, which directly affect 
the assembly time and costs. For integrally manufactured structures, neglecting this 
restriction is assumed. There is undoubtedly a similar effect, but because no extra assembly 
steps are needed, the amount of material to be placed seems to be more important. 

There are other criteria for a design evaluation, such as the load divided by the stiffener 
distance or divided by the cross-section area, which are called e.g. “structural values” or in 
German phrase “Strukturkennwerte” by Wiedemann [96]. These approaches are, however, 
differing slightly. As the weight-per-square-meter criterion is comparing the minimum weight 
for structures sized under the same load, the load-per-area criteria are comparing the 
maximum load under the same mostly given structural weight. In this investigation, the load-
based method is chosen, because it is seen to be closer to a realistic sizing process for an 
application. 

6.1.6 Sizing Algorithm 

The procedure of the sizing algorithm is shown in Figure 41. In the beginning, it has to be 
defined the structural configuration, the material and the sizing criteria. The structural 
configuration is characterised by choosing the geometry, determining the loads or different 
load cases and defining the boundary conditions. For the material model, two main 
approaches can be considered, which are the use of smeared properties or the definition of 
discrete laminate stackings. It is also possible to combine these methods, which means to 
define discrete laminate stackings but calculating with derived smeared properties. As sizing 
criteria, it can be chosen out of global and local stability criteria, stress/strain criteria and 
stiffness/deformation or geometric requirements. 

In the second step, the parameters are defined which remain constant (constants) and 
which are sized (variables). By determining the interval and the step size for all variables, the 
design space is set. In this investigation, only geometric parameters are set as variables.  

 In the following analysis process, the algorithm is sorting all possible parameter sets by 
their weight or to be precise by their area weight in [kg/m²]. Subsequent, the margin of safety 
(MoS) of all sizing criteria are calculated step by step for the designs beginning with the 
lightest. As soon as all MoS of a design set are higher than Zero, the lightest design is found. 
Depending on the amount of sizing variables, several iteration loops are used to cover a large 
design space and finding the global weight minimum. Subsequently, the result is improved by 
refining the interval and step size for the variables. In the appendix B.2, the sizing process for 
the Anisogrid panel under compression is given exemplary. 
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Figure 41: Sizing Algorithm implemented in the sizing tool HyperSizer® 

 

6.2 Sizing Results for the Anisogrid-Panel 

In this section, the results of the panel sizing are presented for the Anisogrid architecture. The 
minimum weight curve is plotted over the load. Each point of the minimum weight curve 
represents the result of the iterative sizing algorithm, described in the previous subsection. 
Each of the 20 points comprises a design space between 1 and 2 million calculated designs, 
with three to four iterations executed. 

6.2.1 Flat Panel Results 

Uniaxial Compression 

The resulting minimum panel weight curve is characterised by a constantly increasing but 
degressive progression, which means that with higher loading, a lower amount of additional 
material is needed to fulfil all sizing criteria (see Figure 42, top). Regarding the margins of 
safety, it can be seen that, for compression, it is a pure stability problem. The global as well as 
the local stability criteria are sized nearly to zero and dimension the panel (see Figure 42, 
below). 

Definition:
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Input:
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6.6 Summary of the Aniso- and Orthogrid Sizing Results 

Summarising the sizing results, the compression load case is noted to be purely stability 
driven, which is especially the case for the flat panel over the whole load range. For the 
curved panel, the strength is additionally critical at higher loads. 

As a result, a 10% weight increase is calculated for an Anisogrid structure under uniaxial 
compression on the flat panel. For the curved panel (R=2000mm), the weight penalty is lower 
between 6% for low loads and almost the same weight for high compressive loads. 

The pure shear load case is, in contrast, a strongly strength-driven load case. Particularly 
for the Orthogrid structure, the stiffeners are only required for global stiffness, whereby this 
stiffness is also generated for middle and high loads by the skin. Resultantly, the algorithm is 
trying to eliminate the stiffeners and the results are running into the defined maximum 
stiffener distance. For the Orthogrid panel, this behaviour was expected, but the Anisogrid 
panel also showed the same response which leads to the conclusion that the helical stiffeners 
are not as efficient for shear as they seemed to be. 

Regarding the combination of compression and shear loading, differentiation is necessary 
due to the fact, that as long as the panel is stability driven, the Anisogrid architecture has an 
even higher weight disadvantage of up to 25% in comparison to an Orthogrid structure, 
whereby this only occurs at very low loads. With rising load levels and resulting critical 
strength criteria, the Anisogrid architecture generates a weight benefit of between 5% and 
10% on a flat panel and up to 5% on a curved panel (R=2000mm). 
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7 Validation of Anisogrid-Concept with Panel Compression Test 

Thesis 4: Anisogrid structures with interface layers are able to generate a reliable 
connection of the grid and skin, even during a deep buckling state. 

In literature, different tests on panel and on barrel level show the separation of the rib 
structure and the skin as the main global failure mechanism [19, 22, 24, 28]. As a result, the 
use of interface layers is seen to be essential for the connection of the rib structure with the 
skin, especially in a post-buckling state, and the thesis 4 is formulated. Peeling stresses rise 
drastically when the skin starts to deform locally between the stiffeners. After a first failure of 
the interface, the crack subsequently grows and the skin separates largely from the rib 
structure. After loss of integrity, the structure fails globally. To overcome this failure mode, 
the Anisogrid structural concept contains interface layers which connect the skin and the ribs 
as shear loaded element. The large connection areas on the rib sides and the skin surface 
should ensure a necessary shear area. The panel test is intended to validate the functionality 
of the interface layers. 

Thesis 5: Anisogrid structures with triangular skin-bays show a post-buckling behaviour 
without mode-switches which is different to stiffened panels with rectangular  
skin-bays. 

In numerical investigations on panel level, a different post-buckling behaviour is observed 
for triangular stiffened panels in comparison to rectangular stiffened skin structures [93]. A 
post-buckling state in this case means the compressive load range at which the skin between 
the stiffeners begins to buckle until the (first) maximum of compressive load is reached. 
During this load range, the load-bearing capacity of the panel increases further, even though 
the skin is buckling locally in the skin-bays. Under dependence of, amongst other aspects, the 
stiffness distribution between the stiffeners and the skin, such post-buckling state can be 
quite long until the global panel failure occurs. During such a post-buckling state of a classical 
rectangular skin-bay, different local buckling patterns can occur. Quasi-isotropic skin 
laminates with an aspect ratio (skin-bay length divided by skin-bay width) higher than 1 
typically start with small local buckles, which move and combine into bigger local buckles. This 
behaviour is called mode-switch in the buckling state. In literature, mode-switches are 
described as dynamic processes which are difficult to simulate and therefore critical for sizing 
[11, 21]. The occurrence of mode-switches depends on various factors such as aspect ratio of 
the skin-bay, stiffness matrix of the skin laminate, boundary conditions by surrounding 
stiffeners, and also the global panel behaviour. In triangular stiffened Anisogrid panel designs, 
such a mode-switches are not seen in numerous numerical simulations carried out at DLR 
[93], which led to thesis 5. A local skin-bay buckling pattern occurs under a compressive load 
and stays constant until the global stability failure of the panel. To validate this observed 
behaviour, a panel test is designed, performed and analysed. 

The derived failure stresses in Chapter 4 are used for the panel sizing. However, it has to 
be recognised that global bending deformations will be caused by the eccentricity on the one-
side-stiffened panel. As a result, the maximum stresses at the compression and tension side 
of the bended structure are analysed for sizing with the static test results.   
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In summary, three main goals are defined for the panel test: 

 Validation of functionality of interface layers 

 Validation of missing mode switch during the post-buckling state 

 Comparison of failure strength on panel level with strength out of element tests 

In general, it should be noted that although a wide experience basis is available for panel 
compression testing of classically stringer stiffened panels [16, 23, 70, 97, 98], little 
experience is available with Anisogrid stiffened structures. A pure diagonal stiffened panel 
was tested in an European research project [47] but with different dimensions and without 
interface layers. As a consequence, the testing procedure, load levels and, especially, the 
failure behaviour of such panels are analysed during this test.  

To investigate the test goals, it seems most suitable to size a kind of “generic” panel 
adapted to the desired buckling behaviour and the joining between the skin and rib interface, 
instead of sizing a specific fuselage load level. Therefore, a very early skin-bay buckling load 
shall be designed with respect to the maximum panel failure load due to global buckling or 
strength. The possible switch of buckles can be proven as well as the ability of the interface 
layers to keep the skin attached, even at high deformation levels of the buckling skin. 

In order to conduct a valid panel test, a load state possibly free of boundary effects shall 
be designed to ensure the test objectives. Therefore, several skin-bays in compression 
direction and also in transverse direction are envisaged, as well as several grid ribs running 
from one end of the panel to the other. 

7.1 Sizing of Anisogrid Test Panel 

In order to transfer the test objectives into sizing criteria, the following objectives are defined: 

 Skin-bay buckling very early below stiffener strength and global panel buckling 

 Stiffener strength failure defines the limit load (strain sizing limits from knot tests) 

 Skin strength failure at limit load or higher (data sheet values) 

 Global panel buckling after limit load (particularly for flat panels critical) 

 Stiffener buckling after limit load 

7.1.1 Analytical Pre-Sizing 

The analytical pre-sizing is also carried out with the method used in Chapter 5, whereby the 
sizing process does not include the interface layers. As a consequence, the pre-sizing can only 
be seen as first stage and the verification and refinement by FEA is required additionally. 

In difference to the panel analysis in Chapter 5, limitations need to be considered due to 
the laboratory manufacturing process and the test facility: 

 Panel width maximum 1000 mm (test facility) 

 Panel length limited to 1200 mm including potting length on both ends (test 
facility) 

 Due to handling reasons and the number of individual tool parts a minimum 
distance of helical knots of 150 mm seems to be suitable 

 A flat panel with equal height for all ribs - to keep the costs for the tooling and 
manufacturing in certain limits has been defined. 

 Available slit tape width: ¼” resp. 6.35 mm  rib width is fixed 
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until the machine stopped compressing. Figure 90 shows the test panel after final failure at 
the displacement position when the machine stopped the test (panel is not unloaded). After 
final failure, a wrinkling deformation can be seen on the skin side in the centre of the panel. 
Smaller bulges can be observed at the central horizontal rib (right picture). The buckles in the 
skin-bays are also clearly visible, e.g. in the upper left corner. With the help of the DIC 
pictures, cracks can be identified at three of the four rib knots of the horizontal rib (see  
Figure 91). The corresponding massive drop in the load-displacement-curve confirms the 
global panel failure (this drop is also monitored by the machine for stopping a test). 

 

  
Figure 90: Test panel after final failure 
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7.5 Discussion and Conclusion of Test Results 

For the validation of two main aspects of the Anisogrid structure concept, a static uniaxial 
compression test of a flat panel is designed and conducted until global failure. Additionally, 
the rib and knot properties derived in the element tests could be compared on a panel level. 

The functionality of the interface layers is proven as one of the two main test goals. A grid-
skin-separation occurred, which should be prevented by the interface layers, but shows 
significant differences to other tests in literature. Two skin-rib-separations appeared in the 
centre of the left and right panel edges at which high deformation amplitudes raised, due to 
the cutting of the helix ribs directly before the “next” knots. As a result, the load of almost 
one skin-bay needed to be carried by only one helical rib (compare the panel picture next to 
Table 6). Such failure is not expected in a barrel structure, as no open edges exist in such a 
kind. However, these unexpected failures clearly demonstrate that the skin-rib-separation 
emerged only locally, did not run through the whole skin-grid interface, and the panel could 
be significantly loaded further. No other local separations are observed on the panel besides 
the damages which occurred at global failure of the panel, located in the centre of the panel 
along the horizontal (circumferential) stiffener. Even these separations, however, are locally 
restricted damages, indicating that the peak stresses of the cracks are distributed efficiently in 
the wide interface, stopping the crack growth early. Also, the huge skin deformation in the 
deep buckling range does not generate peel stresses high enough to separate the skin and rib. 
Under consideration of other published tests of grid structures with load-bearing skin, it can 
be clearly concluded that interface layers are needed for such loaded structures.  

Provoking a deep local buckling state in the skin-bays was the second main goal, in order 
to monitor whether changes of the buckling pattern or even mode-switches are occurring. On 
the tested Anisogrid panel, none of these effects were observed. Instead, a “stable” pattern 
of local buckles appeared in the skin-bays with constantly increasing amplitudes of up to 
three times the skin thickness. This behaviour validates or at least strengthens the numerical 
results which are achieved on flat and also curved Anisogrid stiffened shells. Perspectively, 
the observed difference in the buckling behaviour of triangular skin-bays may not be longer in 
terms of maximum deformation but it is seen that the higher reliability of numeric prediction 
might be a significant enabler for exploiting the possible buckling capabilities. 

The final failure of the panel is concluded to have occurred due to the failure of the knots. 
The measured maximum strains on the compression side of the bended panel reached the 
static strength obtained in the element tests. As a consequence, the test results of the 
element test are seen to be valid. 

The observed bending of the panel is significant, whereby it can be concluded that only 
the maximum knot strength was exceeded earlier than desired. The test goals could be fully 
investigated. The side supports for preventing additional out-of-plane deformation are seen 
to be appropriate for use.  
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9 Summary and Conclusion 

In this thesis, a structural Anisogrid fuselage design concept for civil aircraft is presented. The 
developed design concept consists of a load-bearing skin, stiffened by a grid of 
circumferential and helical ribs including special interface layers for the connection of the rib 
structure with the skin. Particularly, this design fulfils main laminate guidelines and focuses on 
a fully automated manufacturing process with pre-conditioned material, in this case CFRP-
prepreg. For utilisation of high stiffness properties, a prepreg with 60% fibre volume content 
is processed. In order to achieve the highest-possible efficiency in the fibre placement 
process, the maximum allowable ply thickness of 1 mm slit tapes (“package layers”) forms the 
basis of the investigation. As a compromise between high fibre-volume-ratio and efficiency of 
placement process, the cutting of rib layers in the intersection region is chosen. For the 
automated placement of the interface layers, a new placement head is developed.  

In order to overcome the lack of available material properties of the Anisogrid structural 
design concept, element specimens are manufactured and tested. Static tension and 
compression tests are performed, wherein rib and knot specimens are investigated 
separately. For a better evaluation of the results, a wide reference test programme is also 
manufactured and tested. Firstly, undisturbed and disturbed-rib specimens are investigated, 
cut from a thick plate. Secondly, typical laminate specimens are produced with the same rib 
and knot fibre orientation ratio.  

The tests show that the stiffness of a grid-rib (plain rib between knots) can be used for 
sizing of the whole rib structure including knot areas. A resulting different stacking in the knot 
area showed no remarkable influence on the stiffness for tension as well as for compression. 
As a consequence, the advantage of achievable high stiffness can be fully used for the 
Anisogrid prepreg concept. This can be exploited especially for stiffened structures, where 
stability is a more critical design driver than strength. 

In terms of strength, the Anisogrid prepreg concept with investigated 1 mm-thick and cut 
layers has to operate with much lower maximum allowable stresses for the knot area. For 
such thick package layers, the inter-fibre failure of the cut plies in the knot area cause ply-
separation from side to side and delaminations need to be expected. As a consequence, the 
reduction of layer thickness is strongly recommended. In a smaller test series with 0.25 mm-
thick package layers the maximum fibre failure of the uncut 0°-layers are attained. 
Considering this aspect, the resulting knot strength should be applied for the whole grid 
structure for sizing purposes. 

The comparison of the Orthogrid and Anisogrid architecture is performed through the 
sizing of panel structures under the same constraints and manufacturing process, differing 
only in the orthogonal or helical stiffened architecture. Therefore, an analytical sizing 
algorithm is used which minimises the same failure criteria for both. The sizing criteria are 
global panel buckling, local stiffener and skin-bay buckling and the strength in all stiffeners 
and the skin. The sizing is performed for flat and curved panels loaded with uniaxial 
compression, pure shear and the combination of both. The results are compared via the 
minimised weight per area. 

An inherent weight benefit for the Anisogrid stiffening architecture with load-bearing skin 
cannot be observed for the performed static analysis. Under uniaxial compression, a weight 
increase is calculated for an Anisogrid structure of 10% on the flat panel and between 6% for 
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low loads and almost the same weight for high compressive loads on the curved panel 
(R=2000mm). A compression-dominated loading in combination with shear leads to a slightly 
higher weight penalty (max. 15%) on the flat and curved panel. For load-cases with the same 
amount of compression and shear, shear-dominated or pure shear loads, the Anisogrid 
obtains a weight benefit between 5% and 10% on the flat panel, and up to 5% on the curved 
panel, especially at higher loads. 

A panel test with the developed design concept has been conducted to validate the 
observed different buckling behaviour on the one hand and the functionality of the proposed 
interface layers on the other.  

A different buckling behaviour can be observed under compression for Anisogrids in 
comparison to classical rectangular stiffened structure designs. After local stability loss in a 
skin-bay, so-called mode-switches can occur in rectangular skin-bays, when the local buckle 
pattern is changing. These are highly dynamic processes and are often the point of 
occurrence of different kinds of failures. In triangular skin-bays, these kinds of mode-switches 
are not seen in this manner. A stable buckling pattern and behaviour could be validated 
according to the FE calculations the first time with the test panel, which has a thin skin and, in 
consequence, a long skin-bay buckling state. As this test is at the moment only a single result, 
further tests should be performed, also with combined compression and shear loads. 
Nevertheless, the result is inspiring and the perspective of a reliable prediction of the buckling 
behaviour increases the confidence for the sizing process and can help to exploit structural 
weight potential. 

In addition to the buckling behaviour, the panel test validates the functionality of the 
interface layers. The skin buckled deeply locally without separating from the grid structure. 
Even two occurring cracks on the left and right central side of the panel did not grow, in 
contrast to the behaviour typically observed in other grid tests with skin. This design feature is 
seen to be essential for a valid airframe Anisogrid concept. The optimisation of the quantity of 
interface layers and the feet widths should be analysed in following investigations. 

It can be concluded that the proposed Anisogrid concept features high stiffness properties 
and a fully automated manufacturing process for a stiffened shell structure. The Anisogrid 
architecture is, in compression, slightly less weight efficient; on the other hand, it can be 
maintained that with this weight increase, a second load path for shear loads can be 
integrated into the structure. For damage tolerance reasons, this could prove to be 
remarkably interesting. The convincing predictability of the “stable” buckling behaviour also 
supports this architecture. 

Perspectively, the intended manufacturing process is of significant interest, due to the 
possibility of manufacturing a multi-oriented stiffened shell structure in a real one-shot 
process. The fabrication of topology optimised architectures seems to be realisable. Euphoric, 
on the one hand, diverse further aspects still have to be investigated. Despite the 
combination of a knot concept without cut layers, the damage tolerance and fatigue of such a 
grid structure is of evidential interest. Due to the long in-service life of an aircraft, the first 
concepts which are developed regarding reparability need to be detailed and validated. 
Furthermore, the joining of such a design on panel or barrel level is another important aspect. 
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A.2 Result Details Tension 

A.2.1 Tension - Table with dimensions of all specimens 

 

  
width height 

  
width height 

[mm] [mm] [mm] [mm] 

TEN-Lam-Rib-1 3.80 25.10 TEN-Lam-Knot-1 3.83 25.00 

TEN-Lam-Rib-2 3.84 25.10 TEN-Lam-Knot-2 3.84 25.10 

TEN-Lam-Rib-3 3.82 25.10 TEN-Lam-Knot-3 3.83 25.10 

TEN-Lam-Rib-4 3.71 25.10 TEN-Lam-Knot-4 3.83 25.10 

TEN-Lam-Rib-5 3.84 25.10 TEN-Lam-Knot-5 3.84 25.10 

TEN-Plt-Rib-1 4.07 18.40 TEN-Plt-Knot-1 4.05 18.10 

TEN-Plt-Rib-2 4.06 18.40 TEN-Plt-Knot-2 4.05 18.40 

TEN-Plt-Rib-3 3.99 18.30 TEN-Plt-Knot-3 4.06 18.40 

TEN-Plt-Rib-4 4.06 18.40 TEN-Plt-Knot-4 4.05 18.40 

TEN-Plt-Rib-5 4.08 18.30 TEN-Plt-Knot-5 4.03 18.40 

TEN-Plt-Rib-6 4.10 18.30 TEN-CC-3-Knot-1 4.80 17.90 

TEN-Grid-Rib-1 4.92 17.60 TEN-CC-3-Knot-2 4.91 17.60 

TEN-Grid-Rib-2 4.89 17.80 TEN-CC-3-Knot-3 4.91 17.60 

TEN-Grid-Rib-3 4.89 18.00 TEN-CC-3-Knot-4 4.82 18.10 

TEN-Grid-Rib-4 4.88 17.90 TEN-CC-1-Knot-1 4.91 17.60 

TEN-Grid-Rib-5 4.86 18.00 TEN-CC-1-Knot-2 4.80 17.90 

TEN-CC-1-Knot-3 4.91 17.60 

TEN-CC-1-Knot-4 4.80 17.90 
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A.2.2 Tension - Stress-strain curves of all specimens 
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A.3 Result Details Compression 

A.3.1 Compression – Table with dimensions of all specimens 

 

  
width height 

  
width height 

[mm] [mm] [mm] [mm] 

COM-Lam-Rib-1 3.80 25.10 COM-Lam-Knot-1 3.75 25.10 

COM-Lam-Rib-2 3.76 25.10 COM-Lam-Knot-2 3.85 25.10 

COM-Lam-Rib-3 3.85 25.10 COM-Lam-Knot-3 3.85 25.10 

COM-Lam-Rib-4 3.85 25.10 COM-Lam-Knot-4 3.87 25.10 

COM-Lam-Rib-5 3.85 25.10 COM-Lam-Knot-5 3.85 25.10 

COM-Lam-Rib-6 3.85 25.10 COM-Lam-Knot-6 3.86 25.10 

COM-Plt-Rib-1 3.86 18.30 COM-Plt-Knot-1 3.96 18.40 

COM-Plt-Rib-2 4.04 18.40 COM-Plt-Knot-2 4.05 18.40 

COM-Plt-Rib-3 4.06 18.40 COM-Plt-Knot-3 4.07 18.40 

COM-Plt-Rib-4 4.02 18.40 COM-Plt-Knot-4 4.07 18.40 

COM-Plt-Rib-5 4.07 18.40 COM-Plt-Knot-5 4.06 18.40 

COM-Plt-Rib-6 4.03 18.40 COM-CC-3-Knot-1 4.66 18.10 

COM-Grid-Rib-1 4.93 17.80 COM-CC-3-Knot-2 4.67 18.10 

COM-Grid-Rib-2 4.90 17.80 COM-CC-3-Knot-3 4.60 18.10 

COM-Grid-Rib-3 4.95 17.80 COM-CC-3-Knot-4 4.65 18.00 

COM-Grid-Rib-4 4.83 18.00 COM-CC-3-Knot-5 4.67 18.00 

COM-Grid-Rib-5 4.83 18.00 COM-CC-1-Knot-1 4.45 18.20 

COM-Grid-Rib-6 4.92 18.00 COM-CC-1-Knot-2 4.43 18.10 

COM-CC-1-Knot-3 4.42 18.00 

COM-CC-1-Knot-4 4.50 17.90 

COM-CC-1-Knot-5 4.48 18.10 
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A.3.2 Compression - Stress-strain curves of all specimens 
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The critical tensile stress for delamination growth can be calculated with following 
equation for the plain stress state: 
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���� Energy release rate; material 
value by Karnati2 

���� = 1.146
�

�
 ; (8552/AS4) 

ℎ� Height of plain rib ℎ� = 18 �� 

ℎ� Sum of uncut/0° layer heights ℎ� = 6 �� 

� Amount of delaminations e.g. for 1mm-thick package layers  
� = 12 

�� Youngs modulus of plain rib �� = 70 ���  

�� Youngs modulus of 0° layers �� = 141 ��� 

Δ� Temperature difference for 
consideration of residual stresses 

Δ� = 0 � 

(more relevant for hybrid materials) 

��,�,� , ��,�,� Residual stresses in the layers ��,�,� , ��,�,� = 0 

��  , �� Thermal expansion coefficients  

 

 

  

                                                       
2
  Karnati, S.R. 2014. A Mixed-Mode (I-II) Fracture Criterion for AS4/8552 Carbon/Epoxy Composite 

Laminate. Master Thesis. Greensboro, North Carolina. 
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B Appendix – Panel Analysis 

B.1 Sizing Criteria 

Following information are given to the implemented design criteria in the analytical tool 
according to the manual. 

B.1.1 Global Panel Stability 

For the global panel stability analysis an energy-based method is used computed with the 
help of Rayleigh-Ritz variation method. With this criterion/approach, following configurations 
can be analysed: flat plate, cylindrical shells or full cylinders; combinations of simply-
supported, clamped and free boundary conditions; fully anisotropic material properties.  

The methodology is based on the constancy of energy and can be written as stationary 
potential energy theorem: 

� + � + � − � = �������� 

V = strain energy 

U = potential energy of membrane loads 

Q = potential energy of lateral loads 

T = kinetic energy 

For a static deflection problem, the kinetic energy becomes zero and for the stability 
problem the lateral loads are also neglected: 

� + �� = �������� 

where λ is the buckling eigenvalue. 

With the Rayleigh-Ritz method the displacement function of the panel is approximated by 
a linear combination of trial functions. The unknown displacements u, v, w are represented by 
a double Fourier series (width and length in panel direction): 
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B.2 Example for Panel Sizing Procedure 

The iterative sizing process is shown as an example for the uniaxial compressive load case 
on the flat panel. In the following table, the results for the Unit weight are listed according to 
five iteration steps: 

Com Load Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

50 3.153 3.040 2.924 2.854 2.816 

100 4.671 4.262 4.020 3.963 3.898 

150 5.784 4.872 4.926 4.776 4.723 

200 6.201 5.516 5.508 5.409 5.409 

250 6.441 6.226 5.987 6.027 5.993 

300 6.821 6.763 6.665 6.486 6.484 

350 7.236 7.154 7.037 7.009 6.956 

400 8.088 7.711 7.526 7.477 7.443 

450 8.474 8.190 7.942 7.843 7.825 

500 9.018 8.345 8.400 8.221 8.254 

550 9.511 8.862 8.662 8.658 8.647 

600 9.807 9.100 9.144 9.006 8.904 

650 9.867 9.774 9.506 9.344 9.368 

700 10.052 10.017 9.819 9.699 9.633 

750 10.411 10.411 10.074 9.916 9.919 

800 10.411 10.411 10.390 10.235 10.194 

850 10.955 10.806 10.653 10.579 10.496 

900 11.321 10.988 10.913 10.882 10.765 

950 11.445 11.324 11.230 11.084 11.090 

1000 11.779 11.611 11.448 11.378 11.291 

The percentage change of the unit weight is shown in the following diagram. It can be 
seen that the unit weight in relation to the last iteration step is achieved relatively fast in 3 
iterations within 5%: 

 

In the following, the inputs (Max and Min values) and results of the first and second 
iteration step are plotted for all sizing variables. Additionally, the results of the previous 
iteration step are plotted, which are the basis for the Max/Min values of the active iteration. 
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