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ABSTRACT: The aim of this work is to capture the spatiotemporal dynamics of large-scale flow structures 

in a turbulent boundary layer flow in a volumetric and time-resolved way. The applied means are dense 

Lagrangian Particle Tracking of Helium-Filled Soap Bubbles (HFSBs) using the Shake-The-Box (STB) 

algorithm and a subsequent interpolation to a regular grid using the physically regularized FlowFit method. 

The presented experiment was performed as a pre-test to a full campaign to be held in August 2018 at the 

Atmospheric wind tunnel at the University of the armed forces in Munich, Germany. This test demonstrates 

the principle applicability of the measurement techniques to a low-speed wind tunnel environment and shows 

that high spatial accuracy and resolution can be reached despite of a large measurement volume. Problems 

were encountered achieving a homogeneous bubble distribution and in deploying large amounts of bubbles, 

while not disturbing the flow.  

1 Introduction 

The understanding of the formation and the dynamics of very-large scale coherent structures within 

turbulent boundary layers (TBL) and their influence on the wall shear stress is an important research 

topic in aerodynamic flows at high Reynolds numbers not attainable by DNS. [1] showed that eddies 

with streamwise lengths of 10–20 δ are present in the logarithmic region of wall-bounded flows by 

compiling results from existing measurements and numerical simulations. [2] found streamwise 

energetic modes with wavelengths up to 14 pipe radii within fully developed turbulent pipe flow. They 

accounted the alignment of packets of hairpin-vortices as responsible for the creation of such structures 

and termed them ‘very large scale motion’ (VLSM). Indications of the existence of similar flow 

structures within the log-region of TBLs were given by [3], as well as [4]. They were able to document 

the existence of long stripes of negative or positive streamwise velocity fluctuations (u’) within these 

domains. Both publications relied on measurements using the method of particle imaging velocimetry 

(PIV) with a streamwise length of the investigation area around two times the boundary layer thickness 

(δ). Therefore the full extent of the found structures could not be examined. [5] and again [6] confirmed 

these results using a similar PIV-setup. Additionally, they performed measurements using a hotwire 

rake, covering a spanwise distance of more than one δ with eleven hot-wire probes. By applying 

Taylor’s hypothesis on the obtained time-series, they were able to extract quasi-instantaneous 

snapshots of the flow structures at several heights above the wall. In many of these snapshots, very 

long structures of positive and negative u’ can be seen, frequently exceeding a length of 20 δ. These 

regions of negative and positive u’ typically appear besides each other and show a meandering 
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behavior in spanwise direction. The authors account this meandering to the fact that the length scales 

indicated by single-point statistics were much shorter (around 6 δ). Due to the large extent of the found 

features, the authors termed them ‘superstructures’. As shown by experimental data [7][8], these 

superstructures seem to directly interact with small-scale structures near the wall (leaving a ‘footprint’). 

This impact on the conditions near the wall is of particular interest for the wall-shear stress induced 

drag production, as the large-scale structures underlie outer scaling (their extent is dependent on δ and 

therefore also dependent on the Reynolds number), while it was assumed that near-wall structures do 

not. A further examination of the formation and evolution of superstructures in their fully temporal and 

spatial extension is therefore of major interest for a better understanding of turbulent (wall bounded) 

flows in general. 

The aim of this work is to capture the large-scale development of a turbulent boundary layer in a both 

volumetric and time-resolved way. The applied means to achieve this goal are dense Lagrangian 

Particle Tracking of Helium-Filled Soap Bubbles (HFSBs) using the Shake-The-Box (STB) algorithm 

[9] and a subsequent interpolation to a regular grid using the physically regularized FlowFit method 

[10]. The presented experiment was performed as a pre-test to a full campaign to be held in August 

2018 at the atmospheric wind tunnel (AWM) at the University of the armed forces in Munich, 

Germany.  

 

 
Fig. 1. 3D sketch of the splitting plate, as installed in the Seitenwindkanal Göttingen (SWG) (see right insert). The 

left insert shows a photograph of the plate in the tunnel. The measurement volume is indicated by the green box.  
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2 Experimental Methods and Setup 

It has been shown recently that tracking HFSBs in flows up to approx. 20 m/s is possible at high 

accuracies and bubble numbers due to the large amounts of light reflected by the bubble surface and the 

resulting very good image quality [11][12][13].  

Illuminating the bubbles with state-of-the-art high power pulsed LED arrays allows for scaling the 

instantaneous measurement volume up to the cubic meter range. The tracing fidelity of such bubbles 

has been shown to be sufficient for low-speed wind tunnel experiments [14]. 

Here, the measurement principle was applied to a TBL flow, which was created in the Seitenwindkanal 

at DLR Göttingen (SWG). To this end, a splitting plate of 7.67 meter length and 2.39 m width was 

installed in the 9 m long test section of the tunnel (see Fig. 1). A tripping tape was applied right after 

the elliptical leading edge. Close to the end of the splitting plate, a system of four newly developed 

high-power LED arrays [15] was installed on one side of the tunnel, illuminating the plate spanwise 

and tangentially over a streamwise length of 1.5 m and a height of approx. 0.25 m (see Fig. 1 and Fig. 

2). Mirrors were installed on the opposite wind tunnel side wall, back-reflecting the volumetric light 

sheet, in order to increase the effective light output. Due to the low opening angle of the LEDs (6°), the 

light volume remains well confined within the measurement volume. 

 
Fig. 2. (Left, up) Overview of the LED arrays and cameras installed at SWG; (Right, up) Four LED arrays, installed 

at the wind tunnel side, illuminating the HFSB inside theTBL flow through a glass window; (Left, down) the camera 

system viewed through the windows in the ceiling of the tunnel. (Right, down) Sketch of the fields of view of two 

overlapping four-camera systems, forming one large connected measurement field of 1.5 m length. 
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The illuminated volume was imaged by two systems of four high-speed cameras (LaVision Imager Pro 

HS) each, which were installed on top of the wind tunnel test section, viewing through the illuminated 

region onto the darkened flat plate. Each four-camera system was imaging a common volume of 

approx. 90 × 60 × 25 cm
3 

(streamwise × spanwise × wall-normal). The two volumes overlapped for 

around 30 cm in streamwise direction, yielding a total volume of  150 × 60 × 25 cm
3
 (225 liters, see 

Fig. 2). The cameras were equipped with 35 mm Carl Zeiss Distagon lenses, which were tilted 

according to the Scheimpflug condition. 

The calibration of the camera viewing angles was performed using a 2.3 m × 1.0 m dot pattern 

calibration target, which was translated by 95 mm in wall-normal direction. Using a custom approach 

of the Volume-Self-Calibration [16], a common calibration for all eight cameras was created, so that 

bubbles could be seamlessly tracked when crossing from one system to the other, without the need of 

stitching. The optical transfer function (OTF) of the particles was calibrated according to [17]. 

An array of 100 HFSB nozzles was installed at the end of the settling chamber, each outputting 

~35.000 bubbles of 300 μm diameter per second. The array consisted of five wing-profile blades, each 

with insets for 20 nozzles (see Fig. 3). The flow rates of soap, air and helium were tuned using a 

LaVision HFSB controller. The height of the array was chosen such that a minor part of the generated 

bubbles was sheared off by the leading edge of the splitting plate, thus ensuring adequate seeding of the 

near-wall region.   

 

 
Fig. 3: Five wing-shaped blades, each housing 20 HFSB nozzles, as installed in the settling chamber of SWG. 

 

The recordings were carried out at free stream velocities of 𝑈𝐼𝑛𝑓 = 5.7 m/s, 𝑈𝐼𝑛𝑓 = 13.7 m/s and 

𝑈𝐼𝑛𝑓 = 22.7 m/s at repetition rates of 1 and 2 kHz. Depending on 𝑈𝐼𝑛𝑓, the LED pulse duration 𝑡𝑃 was 

adjusted, in order to minimize temporal blurring of the particle images at higher flow velocities. Values 

between 𝑡𝑃 = 99 μs and 𝑡𝑃 = 30 μs were used. With reduction of 𝑡𝑃 , the illumination is lowered, 

however all cases yielded sufficiently bright peaks for STB particle tracking . Fig. 4 shows exemplary 

images at 𝑡𝑃 = 49.5 μs (𝑈𝐼𝑛𝑓 = 13.7 m/s). The images were preprocessed by subtracting the sliding 

minimum over a kernel of 20 images. 
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Fig. 4. Exemplary camera images (Left: full view, right:detail view), showcasing the particle image quality 

 

From the camera images, Lagrangian particle tracks were reconstructed using the Shake-The-Box 

method [9]. An updated and extended version of the DLR in-house code was used [18]. The parameters 

of the internally applied method of Iterative Particle Reconstruction (IPR) [19] were as follows: the 

allowed triangulation error was set to 0.9 pixel, the height threshold for the 2D peak search was 25 

counts, the number of particle location updates (‘shake iterations) was 6 and the number of IPR 

iterations (triangulation on residual images + shaking) was 4. The following parameters were applied 

for the STB tracking part: The search radius for new tracks in the initialization phase was 9 pixels, with 

a pre-shift in streamwise direction of 8 pixels. For separation of real tracks from false track candidates, 

the maximum deviation from a Wiener-filter fit on four positions was set to 1.2 pixels per particle. 

With these setting, a large fraction of the present particle tracks (between 60 and 75 %, depending on 

the seeding density) were identified after the first four time-steps. From there on, the location of the 

particles of the known tracks for the next time step was predicted using a Wiener filter. The predicted 

particle positions were treated by eight iterations of shaking to correct prediction errors. New particles 

were triangulated from the residual images. The search for new tracks was aided by a predictor, which 

was constructed from a Gaussian average of the velocities of four neighboring particles with a search 

radius of 7 pixels. Additional particle tracks are identified and the algorithm converges within 20 to 30 

time-steps. 

After particle tracking was performed using STB, found particle positions are filtered with a continuous 

function consisting of cubic B-splines (“TrackFit”) [10]. The found discrete point information was 

interpolated to an Eulerian grid using the FlowFit algorithm [10], which applies physical constraints 

(data assimilation methods) to increase the spatial resolution beyond the sampling by the particles. 

These results can be used for examination of instantaneous flow structures. 

3 Results 

 

Three different free stream velocities were examined: 𝑈𝐼𝑛𝑓 = 5.7 m/s (Reθ = 4150 at the most upstream 

position of the measurement volume, Reθ = 4900 at the most downstream position), 𝑈𝐼𝑛𝑓 = 13.7 m/s 

(Reθ = 10,400 - 12,200) and 𝑈𝐼𝑛𝑓 = 22.7 m/s (Reθ = 15,000 - 17,600).  

Due to the fixed production rate of the HFSB nozzle arrays, the particle image density on the camera 

images is proportional to 𝑈𝐼𝑛𝑓. At the lowest velocity, local values of the particle image density up to 

0.08 particles per pixel are reached, however the particle distribution was quite uneven (as can be seen 

in Fig. 4). For this case, around 166.000 bubbles could be tracked within every time-step for time-series 
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of 4.800 images (after convergence of the STB algorithm). Judging from residual images, nearly all 

imaged bubbles were identified. Fig. 5 (Left) shows different views of a single time-step from such an 

evaluation. It can be seen that the outer regions of the boundary layer are subject to changes in particle 

density due to the entrainment of un-seeded air and some uneven production of the nozzles. However, 

the more interesting lower parts of the boundary layer, that experience turbulent mixing, are 

homogenously seeded. The very near-wall region could mostly not be captured due to the large size of 

the tracer particles in relation to the strong shear close to the wall (see side view in Fig. 5). When 

looking at a wall-parallel slice in the logarithmic part of the boundary layer (between z=30 mm and 

z=60mm) large, elongated structures of positive and negative u' can be identified, showcasing the 

typical meandering behavior of superstructures. In single snapshots, the length of these structures 

frequently exceeds 10 boundary layer thicknesses (δ99).  

 

 
Fig. 5. Instantaneous results at Uinf=5.7 m/s. (Left column): All tracked particles (~ 166.000) at single time-step; flow 

– parallel plane 5 cm thickness, showing particle tracks; Superstructures in a wall-parallel slice (30 – 60 mm above 

the wall), cc. by streamwise velocity fluctuations (Right column): FlowFit results of the same time-step. Iso-surfaces 

of Q-criterion (Q = 6.500 1/s
2
), and a wall parallel slice, cc. by streamwise velocity fluctuations. 

 

Regularized interpolation of the particle data onto a regular grid using FlowFit allows examination of 

the flow structures. The exemplary result given in Fig. 5 reveals a multitude of resolved flow 

structures, despite the large measurement volume. Vortices of different size and strength are visualized 

by the Q-criterion; the smallest resolvable structures (showing temporal coherence when examining a 

time-series) are only few mm in diameter. Compared to a mean bubble distance of d = 6.37 mm this 

demonstrates the ability of the Navier-Stokes regularizid data assimilation scheme FlowFit to increase 

the spatial resolution beyond sampling. Looking at a streamwise slice, an inclination of the structures in 

flow direction is evident, which has been reported as well for large hairpin-like structures in the 
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literature (Adrian 2007). As expected, the occurrence of major structures is limited by the boundary 

layer thickness (here δ99 ≈ 112 mm). A wall-parallel slice through the volume at z =42 mm reveals the 

same largescale structures as already visible in the particle representation. 

 

     
Fig. 6. Particle field at single time-step at Uinf = 13.7 m/s (Left) and Uinf = 22.7 m/s (Right). Color-coding by 

streamwise velocity 

 

For the higher flow velocities the tracking was equally successful, despite the reduced illumination 

time. 90.000 bubbles could be tracked per time-step at 𝑈𝐼𝑛𝑓 = 13.7 m/s and 74.000 at 𝑈𝐼𝑛𝑓 = 22.7 m/s. 

These numbers reflect the reduction in particle image density due to the increase in mass flow and 

velocity. Fig. 6 shows exemplary particle field for both velocities. Tracer bubbles can be found up to 

around 250 mm above the wall, however the particle distribution gets more and more inhomogeneous 

with increased velocities (see also Fig. 7, Left).  

 

      
Fig. 7. (Left) Particles (sum of several time-steps) within streamwise slice of 120 mm thickness at Uinf = 22.7 m/s; 

(Right) Bin-averaged velocity field (over 4800 images) in streamwise direction at Uinf=22.7 m/s, showing persistent 

vortices in streamwise direction, caused by the interaction of the HFSB rakes with the flow. 

 

Persistent longitudinal ‘hills’ and ‘valleys’ of particles can be recognized. This distribution is a first 

sign of disturbances caused by the HFSB nozzle rakes. Due to the fine meshes used in SWG, the 

bubbles had to be produced close to the measurement area. The arrays were positioned approx. 3 m in 

front of the splitting plate, in a region of contraction. Due to the bent streamlines, an optimal 

positioning of the nozzle wings without any angle of attack was not possible. Therefore, flow 

disturbances were induced, especially on the edges (tips) of the nozzle wings. Persistent vortices in 

stream-wise direction were created, leading to a permanent entrainment of clean air from the sides 
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(visible as valleys in the bubble distribution). Beside these regions, the well-seeded fluid close to the 

wall is pressed upwards (visible as hills).  

 

    
Fig. 8. 3D Two-point correlation iso-surfaces of streamwise (u-u, Left) and wall-normal component (w-w, Right) at 

Uinf=22.7 m/s 

 

These persistent flow structures can be quantified by averaging the particle tracking results of a full run 

(4,800 images) in three-dimensional bins. Fig. 7 (Right) shows a span-wise plane of such an average 

flow field at Uinf = 22.7 m/s, with bins of size 120 × 20 × 20 mm
3
. A footprint of the induced system of 

vortices can be seen, with maximum average wall-normal velocities of 0.4 m/s. When performing 

three-dimensional two-point correlations for Uinf = 22.7 m/s, these structures are clearly visible as long 

isosurface-tubes in the streamwise component (u-u, see Fig. 8). The wall-normal component (w-w) 

shows a shape that is expected given the inclined vortex structures within a turbulent boundary layer. 

As a result of these circumstances, the logarithmic layer is dominated by long, persistent streaks of 

positive and negative velocity fluctuation, spanning the whole measurement domain (see Fig. 9). It is 

evident that in the current investigation, at least for higher velocities, the creation and life of 

superstructures is influenced too much by the external disturbances for any meaningful examination. 

 

     
Fig. 9. (Left) Wall-parallel slice (z =30-60 mm) through tracked particles of single time-step at Uinf=22.7 m/s, color-

coded by streamwise fluctuations (u’). Persistent, elongated regions of delayed and accelerated flow can be seen. 

(Right) Wall –parallel slice (z = 45 mm) of FlowFit result of the same time-step 

 

On the other hand, the presented work was merely a trial for the actual experimental campaign to be 

carried out at the atmospheric wind tunnel (AWM) in Munich in August 2018. The aim was to identify 

possible challenges and to verify that the measurement technology is applicable in a wind-tunnel 

environment. The latter can clearly be seen as a success, as the flow could be successfully captured 

under all experimental circumstances. To further support this statement, Fig. 10 shows a full-field 

result of the FlowFit evaluation at Uinf=13.7 m/s and Uinf=22.7 m/s. Despite a lower number of 

available tracer particles and the higher Reynolds-number of the flows, the main vortical structures are 

still resolved. Temporal coherence of the structures is still present, albeit less pronounced than for the 

case at Uinf=5.7 m/s. 
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Fig. 10. Flow structures, visualized by Q-criterion of FlowFit evaluation result of single time-step at Uinf=13.7 m/s 

(Left, Q = 20,000) and Uinf=22.7 m/s (Right, Q = 36,500). Color-coding by streamwise velocity 

Conclusions 

 

An experiment was conducted at the Seitenwindkanal at DLR Göttingen (SWG), investigating a 

turbulent boundary layer flow spatially and temporally in a large volume of approx. 225 liters. It has 

been shown that large-scale, time resolved volumetric flow measurements can be realized at high 

spatial resolution in a wind tunnel environment at relevant flow velocities (currently up to  around 25 

m/s, further increases are foreseeable). The key ingredients for such experiments are the use of Helium-

filled soap bubbles as tracers, being illuminated by high-power LED arrays. The resulting images are 

well-suited for Lagrangian Particle Tracking using Shake-The-Box; the regularized interpolation using 

the FlowFit algorithm allows to further increase the spatial resolution. 

The seeding system was identified as a possible source of flow disturbances. In order to produce 

bubbles in such high numbers to sufficiently seed the flow, many nozzles have to be installed within 

the tunnel. Depending on the size and the shape of the nozzle arrays, it can be not easy to position them 

in a way, which does not influence the flow and the properties one might be interested in. For the 

current investigation, the arrays were not optimized and had to be put very close to the measurement 

domain. As a result, the flow was clearly biased by persistent longitudinal vortices. One measure to 

limit disturbances would be to extend the nozzle profiles to the wind tunnel wall, thus avoiding any 

wing tip vortices. Positioning the arrays further upstream, possibly in regions with low flow velocities, 

would give more time for distribution and dissipation of such disturbances. These learned lessons will 

be applied in the main wind tunnel experiment, to be carried out in August 2018, which will 

concentrate on the identification of turbulent superstructures and the characterization of their spatial 

and temporal development. 
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