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ABSTRACT 

Reliability engineering is an integral part in the 

design of safety critical systems. Especially 

spacecraft that cannot receive physical maintenance 

once delivered into orbit heavily require a fault 

tolerant design approach. In order to overcome these 

challenges, concepts from the domain of Fault 

Detection, Isolation and Recovery (FDIR) are 

employed. With this paper we present our approach 

for bringing Model Based Systems Engineering into 

the realm of reliability engineering using the Virtual 

Satellite (VirSat) framework. The tool we are 

developing for this purpose is called VirSat FDIR.  

In this paper, we discuss a Conceptual Data Model 

for modelling important aspects of the FDIR domain 

that we have conceived and implemented for VirSat 

FDIR. It supports modelling of FDIR faults, 

recovery, analysis and requirements. We further 

discuss how these models can be actively used for the 

purpose of generation of FDIR artefacts and the 

process of Verification and Validation. 

 

1. INTRODUCTION 

In the past years a lot of effort has been invested into 

enabling Model Based Systems Engineering (MBSE) 

for the whole life cycle of a spacecraft. Part of these 

efforts is Virtual Satellite 4 (VirSat4) [1]. VirSat4 is a 

software framework that allows for the integration of 

various different engineering processes across the 

individual phases of spacecraft design and operation, as 

well as the different disciplines. 

 

An important discipline in the design of safety critical 

systems such as spacecraft is reliability engineering. No 

matter how well designed a system is, it must always be 

able to deal with the presence of faults to some extent. 

In order to raise trust in handling such faults, concepts 

from the domain of Fault Detection, Isolation and 

Recovery (FDIR) are employed. 

 

With this paper we present our approach for bringing 

MBSE into the realm of reliability engineering using the 

Virtual Satellite framework. The tool we are developing 

for this purpose is called VirSat FDIR. Virtual Satellite 

provides a generic systems engineering language in 

which a Conceptual Data Model (CDM) capturing one 

specific engineering aspect can be described. In this 

paper, we discuss such a Conceptual Data Model for the 

FDIR domain that we have developed for VirSat FDIR. 

 

The tool currently focuses on the modelling of faults by 

means of Fault Trees (FT). Fault Tree Analysis (FTA) is 

a commonly used methodology for performing state-of-

the-art failure analysis [2]. The resulting Fault Trees are 

acyclic graphs that describe how faults propagate 

through the components and subsystems of a system and 

eventually lead to a top level failure. VirSat FDIR 

supports the graphical modelling of Fault Trees and the 

import of textural descriptions of Fault Trees for 

integrating supplier data. Furthermore, it also supports 

the generation of Failure Modes and Effects Analysis 

(FMEA) tables based on the ECSS standards.  

 

In conjunction to fault modelling, the tool also features 

modelling support to deal with the recovery related 

aspects of FDIR. For this purpose we have introduced a 

concept we call Recovery Automaton. It models the 

underlying decision process guiding which recovery 

action should be executed upon observing some fault. 

The tool also implements the synthesis procedure that 

we have described in [3]. It takes as input a modelled 

Fault Tree and aims to generate recovery strategies 

optimized towards reliability. The focus is in particular 

in regards to redundancy management.  

 

Due to being conceptualized with the generic 

engineering language, VirSat FDIR can be used to 

annotate any Virtual Satellite study with fault and 

recovery information without requiring domain specific 

knowledge about the models that are being annotated. 

This also means that the tool can be used as soon as in 

the early phase A studies and also in the later phases of 

the spacecraft life cycle. Furthermore, as Virtual 

Satellite is made with concurrent engineering in mind, 

VirSat FDIR inherits this capability and can be 

employed in parallel to the creation of the main system 

model.  

 

With the initiative of the VirSat FDIR software we not 

only want to model FDIR concepts but also actively 

employ these models to assess the FDIR design and 

perform verification and validation (V&V) on it. 

Towards this goal, we support performing two forms of 

analysis: Reliability Analysis, a quantitative form of 

analysis that requires precise quantitative information 

such as the failure rates of the base faults. And 

Minimum Cutset Analysis, a qualitative form of 

analysis that only requires the underlying Fault Tree 

structure. 

 



 

2. PAPER STRUCTURE 

The paper is structured as follows: Section 3 of this 

paper gives an introduction over the topic of FDIR and 

fault trees. An introduction on Virtual Satellite and its 

generic engineering language is given in Section 4. 

VirSat FDIR and the conceptual data model driving it 

are then introduced in Section 5. Here we also discuss 

how to deal with other interesting aspects such as 

employing configuration control on the level of fault 

trees. Going into the topic of generation, we continue in 

Section 6 with what kind of artefact data we can 

generate from our models. We finally conclude in 

Section 7 with a summary of this paper and follow up 

with an outlook to future plans. 

 

3. BACKGROUND ON FDIR & FAULT TREES 

The purpose of FDIR lies in keeping a system in a 

stable and operational state, even in the presence of 

faults. A fault can be any kind of system anomaly. 

Examples for such faults can be equipment failures, 

wrong sensor readings, external interferences, random 

bit flips and many more. However, not every fault is 

necessary a failure. A failure is an actual loss of a 

mission critical function. The task of FDIR is to find 

faults in the system and prevent them from turning into 

failures. While some of the following steps are optional 

and sometimes omitted, performing FDIR generally 

means applying the following procedural approach [4]: 

 

- Monitor the system to detect the occurrence of 

faults. 

- Identify the fault and localize it within the system. 

- Isolate the fault and prevent further propagation 

into other parts of the system. 

- Perform recovery actions to reconfigure the 

 system and return it into a stable state. 
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Figure 1. Interaction between system and FDIR 

In order to derive how faults relate to each other and 

eventually lead to a system wide failure, failure analysis 

techniques such as Fault Tree Analysis can be 

employed. In general, Fault Trees are graphs consisting 

of two types of nodes representing events and gates. The 

root node, or top level event (TLE), usually represents 

the event of a system failure whereas the leaves of the 

tree model the event of individual components failing. 

The leaves are also called basic events (BE). They 

correspond to a Boolean variable where false represents 

the initial state of no failure. The variable is considered 

true in case of a failure event. The branches of the trees 

are represented by the gates performing operations on 

the events. Fault propagation in FTs starts at the BEs 

points over the gates and ends in the TLE. 

 

One of the very basic types of FTs are Static Fault Trees 

(SFT). They employ Boolean algebra to combine 

various different failure events by AND and OR 

operations, often graphically represented as gates, until 

they sum up to the overall system failure. The failure 

events are usually related to faulty components of the 

system. Applying this methodology, statements such as 

“The system fails if component A and component B 

fail” can be modelled and refined to arbitrary levels of 

precision. 

 

A particular extension is the notion of Dynamic Fault 

Trees (DFT). It introduces temporal understanding and 

new features to analyse redundancy concepts known as 

spare management. Accordingly DFTs define a new 

SPARE gate to model that some faulty component or 

subsystem is replaced by a spare from a set of redundant 

parts. In the common understanding of DFTs, the order 

in which such a spare is chosen is deterministic and 

defined at design time by the reliability engineer. 

 

With the addition of spares, DFTs also introduce a new 

node state. In SFTs nodes only have two states: Failed 

or operational. In DFTs a node can be either failed, 

active (operational) or dormant (operational). A node 

that is an unactivated spare is dormant, all other nodes 

are activated. Together with this state, failure rates for 

failing actively and failing dormantly can be defined for 

every BE. These rates are then used for calculating 

measures of interest such as the probability of the top-

level failure after some time (reliability). 

 

4. VIRTUAL SATELLITE 4 

Virtual Satellite 4 is a concurrent engineering tool used 

at the concurrent engineering facility (CEF) at the 

German Aerospace Center (DLR). It implements an 

MBSE approach envisioned to cover the whole lifecycle 

of a satellite, starting from its initial design to the 

operational phase. 

 

A cornerstone for ensuring modularity, reusability and a 

high level of semantical precision is the notion of a 

conceptual data model (CDM), or simply “concept”. A 

CDM is a meta-model providing the language for 

capturing and defining a specific aspect in the satellite 

model. In contrast to generic modelling languages such 

as SysML or UML, a CDM may be specific to a certain 

phase or to a certain engineering discipline. In the 

technical memorandum ECSS-E-TM-10-23 provided by 

the European Cooperation for Space Standardization 

(ECSS) a CDM is defined as a 

 

“data model that captures the end-user needs in the 

end-user terms”. 
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Figure 2. Virtual Satellite database growing along the phases 

The high-level of specialization enables CDMs to be 

semantically precise and restricts models such that those 

with an unclear interpretation cannot be created.  An 

example for a CDM that is actively being employed in 

the CEF is described in [5]. This CDM is used for 

creating Phase 0/A satellite models. Within the 

framework of the S2TEP project, recent advances have 

been achieved for bringing VirSat into phase B studies.  

 

In VirSat4, CDMs can be described using its Generic 

Systems Engineering Language (GSEL) [6]. The GSEL 

features two types of elements: StructuralElements and 

Categories.  

 

- StructuralElements are used to describe system 

decomposition into its various subsystems and parts 

and relate parts with each other. An example for a 

relationship between StructuralElements is a 

product in a product list typing its actual 

instantiation in the satellite model.  

- Categories, on the other hand, are used for tagging 

parts with the actual data information. Examples for 

attachable Categories are mass values, power 

consumption, interfaces or relevant for this work 

FDIR information.  

 

To enable concurrent engineering, each instance of a 

StructuralElement is tagged with an owner. Only the 

owner is allowed to edit this instance and assign 

Categories to it. By this manner, merge conflicts are 

avoided.  

 

A VirSat4 extension is a VirSat4 application equipped 

with a set of CDMs. VirSat4 extensions may share 

common concepts or be completely independent. When 

a VirSat4 extension accesses a repository, its concepts 

are stored in the repository alongside the satellite data 

model. This enables different VirSat4 extensions that 

are equipped with different sets of CDMs to 

communicate with each other. Fig. 3 depicts the 

architecture of having different VirSat4 extensions 

operating on a common repository. 
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Figure 3. Virtual Satellite 4 architecture with different VirSat4 extensions operating on the same repository



 

 

5. FDIR CONCEPTUAL DATA MODEL 

In this section we present the main contribution of this 

paper: Our Conceptual Data Model for the FDIR 

domain. The CDM deals with mainly two FDIR aspects: 

Modelling faults and modelling the recovery from them. 

Detection and Isolation are not considered in the FDIR 

CDM. However, due to the high importance of 

detection, it is one of the major future goals to support 

modelling it as well. Overall, the current FDIR CDM 

can be split up into of three sections: 

- The Fault CDM, 

- The Recovery CDM 

- And the Requirements and analysis CDM. 

 

The CDM is independent of the concrete structural 

decomposition of the system and only contains 

Categories. The actual system decomposition in terms 

of StructuralElements has to be defined in a separate 

concept. In the following the word Component is used 

to refer to any element of such a structural 

decomposition. To provide out of the box modelling 

capabilities, VirSat FDIR is equipped with the FDIR 

CDM and a default concept for modelling the system 

decomposition. The default structural decomposition 

and how it can be used for configuration control is 

discussed in section 5.2 

The core element of the Fault CDM is the Fault 

Category. It can be assigned to any Component. To 

model the cause of a fault, a meta-model following 

DFTs is employed. The BasicEvent Category models 

direct causes of a Fault and is supplied with a failure 

rates and, if it is a transient event, with a repair rate. For 

indirect causes, every Fault is also equipped with an FT; 

the fault being the root of the FT. Every FT contains its 

local graph data, i.e. its edges and the gates describing 

the propagation from the lower level faults to the root 

fault. Fig. 4 summarizes the Fault CDM and illustrates 

the relations between the Categories. 
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Figure 4. Section of the FDIR CDM for modelling faults 

To support provision of fault information from 

suppliers, VirSat FDIR can import (and export) FTs 

described in the textual Galileo format [7]. The 

language has been implemented as a Domain Specific 

Language using XText. The textual format is also used 

to convert the FT model into an input representation for 

external FT analyser tools. VirSat FDIR comes with a 

native but slow implementation for analysing FTs. For 

high performance analysis, the tool supports using the 

STORM [8] tool as a solver backend. 

For modelling the recovery aspect we define an object 

called a RecoveryAutomaton [3] (RA). An RA is a 

Mealy automaton that listens to the events produced by 

an FT and outputs a list of recovery actions. Through 

the Fault CDM, the system is abstracted to a pure fault 

perspective. In our model, this abstracts the System-

FDIR interaction initially depicted in Fig. 1 to a FT-RA 

interaction. Fig. 5 illustrates the simplified view. 
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Figure 5: Interaction between Recovery Automaton and 

Fault Tree 

The RA uses guarded transitions. If the events listed by 

the guards occur in the FT, the RA transitions to a new 

state and outputs a list of recovery actions. A 

RecoveryAction is an abstract Category providing an 

interface for modelling domain specific recovery 

behaviour. It is envisioned that more RecoveryActions 

from specific domains can be added by extending the 

FDIR CDM. The overall Recovery CDM and its 

relation to the elements of other CDMs are illustrated in 

Fig. 6.  
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Figure 6. The CDM section for modelling recovery 



 

Per default, the FDIR CDM provides the ClaimAction. 

The ClaimAction represents the action of a SPARE gate 

claiming a spare. Going forward, we hope to be capable 

of extending the palette of default recovery actions 

included in the FDIR CDM. Current efforts involve are 

going towards providing a RecoveyAction modelling a 

transition into the Satellite Safe Mode. 

Since both FTs and RAs are objects designed with 

graphical representation in mind, modelling them in a 

graphical manner is highly desirable. VirSat FDIR 

supports a connection to the Graphiti framework for 

providing diagrams for FTs and RAs respectively.  

 

5.1 FDIR Analysis 

In VirSat FDIR, just as the fault and recovery models, 

Components can also be tagged by analysis and 

requirements Categories. The analysis Categories 

reference the fault element to be analysed.  Furthermore, 

the requirements Categories reference the analysis 

elements and impose expected values on them. 

VirSat FDIR currently supports two forms of analysis: 

- ReliabilityAnalysis. Reliability is a quantitative 

property. It is determined by the probability that a 

system is still functional after  

a given timeframe t has passed. Also computed for 

this Category is the Mean Time To Failure 

(MTTF). The MTTF is the expected time until the 

fault under analysis occurs. For this analysis all 

BasicEvent Categories require to be supplied with 

failure rate data. 

- MCSAnalysis. The Minimum Cut Set (MCS) 

Analysis is a qualitative form of analysis. A MCS is 

a minimum set of BasicEvents that can lead to the 

occurrence of the fault under analysis. The fault 

model does not need to be refined to the point of 

having failure rate data available. Also computed in 

this analysis is the fault tolerance: The size of the 

smallest MCS. 
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Figure 7. The CDM section for modelling FDIR 

requirements and analysis 

Mirroring the analysis model, the requirements model 

provides two Categories: One for imposing expected 

results on the ReliabilityAnalysis and one for imposing 

expected results on the MCSAnalysis. The overall CDM 

is depicted in Fig. 7. On this basis, automatic V&V is 

now performed as follows: Whenever an analysis result 

changes, VirSat FDIR executes an automatic validator 

that checks the fulfilment of the FDIR requirements. It 

then creates warnings for non-fulfilled requirements.  

 

5.2 Configuration Control 

When designing space systems, it is often not the case 

that the entire system has to be designed from scratch. 

Parts of previous studies, product definitions and many 

other design artefacts have a high potential for reuse. 

This holds especially when considering a series of space 

systems [1]. VirSat4 FDIR comes with a Product 

Structure CDM for describing the system decomposition 

allowing for the reuse of designed products. Considered 

here is a simplified version depicted in Fig. 8.  
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Figure 8. Simplified Product Structures CDM 

A ProductTree (PT) represents a container for product 

definitions, called the ElementDefinitions (ED). An ED 

abstractly represents a Component (Product). A 

ConfigurationTree (CT) represents a concrete instance 

of the system, i.e. the satellite model, and contains 

ElementConfigurations (EC). ECs can be typed by EDs 

and inherit their Categories. In particular, fault 

Categories can be assigned to EDs. In this manner, 

product level FTA can be reused over multiple ECs and 

also over multiple missions, each with their own CT. 

FT

<<inherits>>

PT

ED

Fault

CT

EC1

Fault

FT

Fault

FT

EC2

Fault

FT
 

Figure 9. Example of a Product Tree and a derived 

Configuration Tree 



 

Fig. 9 illustrates an example of constructing an FT over 

a product structure with two ECs typed by one ED.  

 

6. FDIR ARTIFACT GENERATION 

To increase the value of created FDIR models and to 

reduce the effort in creating them, VirSat FDIR aims to 

generate derivable information from the models. 

Currently, the tool supports the generation of recovery 

models focusing on increasing system reliability and on 

the generation of FMEA tables. In the future, we aim to 

generate entire FDIR reports from the FDIR model. 

 

6.1 Generation of Recovery Models 

In VirSat FDIR, we have implemented the methodology 

reported in [3]. This allows the generation of RAs from 

non-deterministic FTs. Typically, gates in FTs are 

interpreted deterministically. However, this requires the 

designing engineer to know a-priori the optimal strategy 

for managing the redundancies. In non-deterministic 

FTs SPARE gates do not simply claim spares 

deterministically from left to right. Instead, they claim 

according to the ClaimActions by an RA. By 

transforming a non-deterministic FT into a Markov 

Automaton and optimizing its schedule, a reliability 

optimal RA can be generated from the fault model. 

 

6.2 Generation of FMEA tables 

FTs are one of many ways for describing fault relations. 

While they are powerful for precisely describing the 

causes of a fault, in the space industry Failure Modes, 

Effects and Criticality Analysis is the standard go-to 

tool demanded by many standards such as the ECSS. In 

VirSat FDIR we follow the ECSS standard ECSS-Q-

ST-30-02C. To guarantee compatibility with these 

standards, it is necessary to provide a view on the fault 

model through FMEA tables. The solution for obtaining 

an FMEA entry for a given Fault equipped with a FT is 

straightforward. An ECSS compatible FMEA table 

varies depending on the item under consideration, but 

commonly it contains at least the following columns:  

- Item. The name of the fault under consideration. 

- Failure Modes. The direct causes of a fault. In an 

FT these are the basic events of a fault and the 

direct child faults. 

- Failure Causes. The failure modes of the failure 

modes. Hence, they can be computed just as the 

failure modes of the fault under consideration. 

- Probabiliy Level. The probability level can be 

obtained by performing a ReliabilityAnalysis and 

categorizing the result according to a mission 

specific probability level table. 

7. CONCLUSION AND FUTURE WORK 

In this paper we have presented our approach for 

performing MBSE in the FDIR domain using an FDIR 

CDM. Furthermore, we have introduced our new tool 

VirSat FDIR that implements the presented 

methodology. In the future we plan to expand the CDM 

to also model the aspects for detection. Other interesting 

aspects intended for follow up are the consideration of 

more recovery actions in the recovery model, generation 

of FDIR reports from the FDIR model and we aim to 

bring VirSat FDIR into the later phases of spacecraft 

V&V and design by integrating a simulation based 

FDIR validation approach into VirSat FDIR. 
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