

TOWARDS A CONCEPTUAL DATA MODEL FOR FAULT DETECTION, ISOLATION

AND RECOVERY IN VIRTUAL SATELLITE

Sascha Müller
 (1)

, Andreas Gerndt
 (2)

(1)
German Aerospace Center (DLR), Brunswick, Germany, sa.mueller@dlr.de

(2)
German Aerospace Center (DLR), Brunswick, Germany, andreas.gerndt@dlr.de

ABSTRACT

Reliability engineering is an integral part in the

design of safety critical systems. Especially

spacecraft that cannot receive physical maintenance

once delivered into orbit heavily require a fault

tolerant design approach. In order to overcome these

challenges, concepts from the domain of Fault

Detection, Isolation and Recovery (FDIR) are

employed. With this paper we present our approach

for bringing Model Based Systems Engineering into

the realm of reliability engineering using the Virtual

Satellite (VirSat) framework. The tool we are

developing for this purpose is called VirSat FDIR.

In this paper, we discuss a Conceptual Data Model

for modelling important aspects of the FDIR domain

that we have conceived and implemented for VirSat

FDIR. It supports modelling of FDIR faults,

recovery, analysis and requirements. We further

discuss how these models can be actively used for the

purpose of generation of FDIR artefacts and the

process of Verification and Validation.

1. INTRODUCTION

In the past years a lot of effort has been invested into

enabling Model Based Systems Engineering (MBSE)

for the whole life cycle of a spacecraft. Part of these

efforts is Virtual Satellite 4 (VirSat4) [1]. VirSat4 is a

software framework that allows for the integration of

various different engineering processes across the

individual phases of spacecraft design and operation, as

well as the different disciplines.

An important discipline in the design of safety critical

systems such as spacecraft is reliability engineering. No

matter how well designed a system is, it must always be

able to deal with the presence of faults to some extent.

In order to raise trust in handling such faults, concepts

from the domain of Fault Detection, Isolation and

Recovery (FDIR) are employed.

With this paper we present our approach for bringing

MBSE into the realm of reliability engineering using the

Virtual Satellite framework. The tool we are developing

for this purpose is called VirSat FDIR. Virtual Satellite

provides a generic systems engineering language in

which a Conceptual Data Model (CDM) capturing one

specific engineering aspect can be described. In this

paper, we discuss such a Conceptual Data Model for the

FDIR domain that we have developed for VirSat FDIR.

The tool currently focuses on the modelling of faults by

means of Fault Trees (FT). Fault Tree Analysis (FTA) is

a commonly used methodology for performing state-of-

the-art failure analysis [2]. The resulting Fault Trees are

acyclic graphs that describe how faults propagate

through the components and subsystems of a system and

eventually lead to a top level failure. VirSat FDIR

supports the graphical modelling of Fault Trees and the

import of textural descriptions of Fault Trees for

integrating supplier data. Furthermore, it also supports

the generation of Failure Modes and Effects Analysis

(FMEA) tables based on the ECSS standards.

In conjunction to fault modelling, the tool also features

modelling support to deal with the recovery related

aspects of FDIR. For this purpose we have introduced a

concept we call Recovery Automaton. It models the

underlying decision process guiding which recovery

action should be executed upon observing some fault.

The tool also implements the synthesis procedure that

we have described in [3]. It takes as input a modelled

Fault Tree and aims to generate recovery strategies

optimized towards reliability. The focus is in particular

in regards to redundancy management.

Due to being conceptualized with the generic

engineering language, VirSat FDIR can be used to

annotate any Virtual Satellite study with fault and

recovery information without requiring domain specific

knowledge about the models that are being annotated.

This also means that the tool can be used as soon as in

the early phase A studies and also in the later phases of

the spacecraft life cycle. Furthermore, as Virtual

Satellite is made with concurrent engineering in mind,

VirSat FDIR inherits this capability and can be

employed in parallel to the creation of the main system

model.

With the initiative of the VirSat FDIR software we not

only want to model FDIR concepts but also actively

employ these models to assess the FDIR design and

perform verification and validation (V&V) on it.

Towards this goal, we support performing two forms of

analysis: Reliability Analysis, a quantitative form of

analysis that requires precise quantitative information

such as the failure rates of the base faults. And

Minimum Cutset Analysis, a qualitative form of

analysis that only requires the underlying Fault Tree

structure.

2. PAPER STRUCTURE

The paper is structured as follows: Section 3 of this

paper gives an introduction over the topic of FDIR and

fault trees. An introduction on Virtual Satellite and its

generic engineering language is given in Section 4.

VirSat FDIR and the conceptual data model driving it

are then introduced in Section 5. Here we also discuss

how to deal with other interesting aspects such as

employing configuration control on the level of fault

trees. Going into the topic of generation, we continue in

Section 6 with what kind of artefact data we can

generate from our models. We finally conclude in

Section 7 with a summary of this paper and follow up

with an outlook to future plans.

3. BACKGROUND ON FDIR & FAULT TREES

The purpose of FDIR lies in keeping a system in a

stable and operational state, even in the presence of

faults. A fault can be any kind of system anomaly.

Examples for such faults can be equipment failures,

wrong sensor readings, external interferences, random

bit flips and many more. However, not every fault is

necessary a failure. A failure is an actual loss of a

mission critical function. The task of FDIR is to find

faults in the system and prevent them from turning into

failures. While some of the following steps are optional

and sometimes omitted, performing FDIR generally

means applying the following procedural approach [4]:

- Monitor the system to detect the occurrence of

faults.

- Identify the fault and localize it within the system.

- Isolate the fault and prevent further propagation

into other parts of the system.

- Perform recovery actions to reconfigure the

 system and return it into a stable state.

System

Recovery
ActionEvent

Detection Isolation

FDIR

Fault

Figure 1. Interaction between system and FDIR

In order to derive how faults relate to each other and

eventually lead to a system wide failure, failure analysis

techniques such as Fault Tree Analysis can be

employed. In general, Fault Trees are graphs consisting

of two types of nodes representing events and gates. The

root node, or top level event (TLE), usually represents

the event of a system failure whereas the leaves of the

tree model the event of individual components failing.

The leaves are also called basic events (BE). They

correspond to a Boolean variable where false represents

the initial state of no failure. The variable is considered

true in case of a failure event. The branches of the trees

are represented by the gates performing operations on

the events. Fault propagation in FTs starts at the BEs

points over the gates and ends in the TLE.

One of the very basic types of FTs are Static Fault Trees

(SFT). They employ Boolean algebra to combine

various different failure events by AND and OR

operations, often graphically represented as gates, until

they sum up to the overall system failure. The failure

events are usually related to faulty components of the

system. Applying this methodology, statements such as

“The system fails if component A and component B

fail” can be modelled and refined to arbitrary levels of

precision.

A particular extension is the notion of Dynamic Fault

Trees (DFT). It introduces temporal understanding and

new features to analyse redundancy concepts known as

spare management. Accordingly DFTs define a new

SPARE gate to model that some faulty component or

subsystem is replaced by a spare from a set of redundant

parts. In the common understanding of DFTs, the order

in which such a spare is chosen is deterministic and

defined at design time by the reliability engineer.

With the addition of spares, DFTs also introduce a new

node state. In SFTs nodes only have two states: Failed

or operational. In DFTs a node can be either failed,

active (operational) or dormant (operational). A node

that is an unactivated spare is dormant, all other nodes

are activated. Together with this state, failure rates for

failing actively and failing dormantly can be defined for

every BE. These rates are then used for calculating

measures of interest such as the probability of the top-

level failure after some time (reliability).

4. VIRTUAL SATELLITE 4

Virtual Satellite 4 is a concurrent engineering tool used

at the concurrent engineering facility (CEF) at the

German Aerospace Center (DLR). It implements an

MBSE approach envisioned to cover the whole lifecycle

of a satellite, starting from its initial design to the

operational phase.

A cornerstone for ensuring modularity, reusability and a

high level of semantical precision is the notion of a

conceptual data model (CDM), or simply “concept”. A

CDM is a meta-model providing the language for

capturing and defining a specific aspect in the satellite

model. In contrast to generic modelling languages such

as SysML or UML, a CDM may be specific to a certain

phase or to a certain engineering discipline. In the

technical memorandum ECSS-E-TM-10-23 provided by

the European Cooperation for Space Standardization

(ECSS) a CDM is defined as a

“data model that captures the end-user needs in the

end-user terms”.

Evolution of the model

...

DB

Phase 0/A

DB

Phase B

DB

Phase C

Figure 2. Virtual Satellite database growing along the phases

The high-level of specialization enables CDMs to be

semantically precise and restricts models such that those

with an unclear interpretation cannot be created. An

example for a CDM that is actively being employed in

the CEF is described in [5]. This CDM is used for

creating Phase 0/A satellite models. Within the

framework of the S2TEP project, recent advances have

been achieved for bringing VirSat into phase B studies.

In VirSat4, CDMs can be described using its Generic

Systems Engineering Language (GSEL) [6]. The GSEL

features two types of elements: StructuralElements and

Categories.

- StructuralElements are used to describe system

decomposition into its various subsystems and parts

and relate parts with each other. An example for a

relationship between StructuralElements is a

product in a product list typing its actual

instantiation in the satellite model.

- Categories, on the other hand, are used for tagging

parts with the actual data information. Examples for

attachable Categories are mass values, power

consumption, interfaces or relevant for this work

FDIR information.

To enable concurrent engineering, each instance of a

StructuralElement is tagged with an owner. Only the

owner is allowed to edit this instance and assign

Categories to it. By this manner, merge conflicts are

avoided.

A VirSat4 extension is a VirSat4 application equipped

with a set of CDMs. VirSat4 extensions may share

common concepts or be completely independent. When

a VirSat4 extension accesses a repository, its concepts

are stored in the repository alongside the satellite data

model. This enables different VirSat4 extensions that

are equipped with different sets of CDMs to

communicate with each other. Fig. 3 depicts the

architecture of having different VirSat4 extensions

operating on a common repository.

Concept A Concept B

VirSat Application A

Concept B Concept C Concept D

VirSat Application B

<<Access>>

<<Access>>

<<Access>>
VirSat Application C

Concept A Concept D Concept D

Concept C

Concept B

Concept A

Repository

Satellite

Model

Figure 3. Virtual Satellite 4 architecture with different VirSat4 extensions operating on the same repository

5. FDIR CONCEPTUAL DATA MODEL

In this section we present the main contribution of this

paper: Our Conceptual Data Model for the FDIR

domain. The CDM deals with mainly two FDIR aspects:

Modelling faults and modelling the recovery from them.

Detection and Isolation are not considered in the FDIR

CDM. However, due to the high importance of

detection, it is one of the major future goals to support

modelling it as well. Overall, the current FDIR CDM

can be split up into of three sections:

- The Fault CDM,

- The Recovery CDM

- And the Requirements and analysis CDM.

The CDM is independent of the concrete structural

decomposition of the system and only contains

Categories. The actual system decomposition in terms

of StructuralElements has to be defined in a separate

concept. In the following the word Component is used

to refer to any element of such a structural

decomposition. To provide out of the box modelling

capabilities, VirSat FDIR is equipped with the FDIR

CDM and a default concept for modelling the system

decomposition. The default structural decomposition

and how it can be used for configuration control is

discussed in section 5.2

The core element of the Fault CDM is the Fault

Category. It can be assigned to any Component. To

model the cause of a fault, a meta-model following

DFTs is employed. The BasicEvent Category models

direct causes of a Fault and is supplied with a failure

rates and, if it is a transient event, with a repair rate. For

indirect causes, every Fault is also equipped with an FT;

the fault being the root of the FT. Every FT contains its

local graph data, i.e. its edges and the gates describing

the propagation from the lower level faults to the root

fault. Fig. 4 summarizes the Fault CDM and illustrates

the relations between the Categories.

Fault Model

Component

Fault

1

*

FaultTreeNode

Gate

AND

FaultTree

FaultTreeEdge

...

1 1

OR SPARE

1

*

BasicEvent

1

*

<<connects>>

2

1

*

Figure 4. Section of the FDIR CDM for modelling faults

To support provision of fault information from

suppliers, VirSat FDIR can import (and export) FTs

described in the textual Galileo format [7]. The

language has been implemented as a Domain Specific

Language using XText. The textual format is also used

to convert the FT model into an input representation for

external FT analyser tools. VirSat FDIR comes with a

native but slow implementation for analysing FTs. For

high performance analysis, the tool supports using the

STORM [8] tool as a solver backend.

For modelling the recovery aspect we define an object

called a RecoveryAutomaton [3] (RA). An RA is a

Mealy automaton that listens to the events produced by

an FT and outputs a list of recovery actions. Through

the Fault CDM, the system is abstracted to a pure fault

perspective. In our model, this abstracts the System-

FDIR interaction initially depicted in Fig. 1 to a FT-RA

interaction. Fig. 5 illustrates the simplified view.

Recovery
ActionFault

Figure 5: Interaction between Recovery Automaton and

Fault Tree

The RA uses guarded transitions. If the events listed by

the guards occur in the FT, the RA transitions to a new

state and outputs a list of recovery actions. A

RecoveryAction is an abstract Category providing an

interface for modelling domain specific recovery

behaviour. It is envisioned that more RecoveryActions

from specific domains can be added by extending the

FDIR CDM. The overall Recovery CDM and its

relation to the elements of other CDMs are illustrated in

Fig. 6.

Recovery Model

ComponentRecoveryAutomaton

1*

State Transition

RecoveryAction

ClaimAction

1
*

1
*

1
*<<connects>>

2

BasicEvent

<<guards>>
*

SPARE

FaultTreeNode

<<claim>>

<<claiming>>

Figure 6. The CDM section for modelling recovery

Per default, the FDIR CDM provides the ClaimAction.

The ClaimAction represents the action of a SPARE gate

claiming a spare. Going forward, we hope to be capable

of extending the palette of default recovery actions

included in the FDIR CDM. Current efforts involve are

going towards providing a RecoveyAction modelling a

transition into the Satellite Safe Mode.

Since both FTs and RAs are objects designed with

graphical representation in mind, modelling them in a

graphical manner is highly desirable. VirSat FDIR

supports a connection to the Graphiti framework for

providing diagrams for FTs and RAs respectively.

5.1 FDIR Analysis

In VirSat FDIR, just as the fault and recovery models,

Components can also be tagged by analysis and

requirements Categories. The analysis Categories

reference the fault element to be analysed. Furthermore,

the requirements Categories reference the analysis

elements and impose expected values on them.

VirSat FDIR currently supports two forms of analysis:

- ReliabilityAnalysis. Reliability is a quantitative

property. It is determined by the probability that a

system is still functional after

a given timeframe t has passed. Also computed for

this Category is the Mean Time To Failure

(MTTF). The MTTF is the expected time until the

fault under analysis occurs. For this analysis all

BasicEvent Categories require to be supplied with

failure rate data.

- MCSAnalysis. The Minimum Cut Set (MCS)

Analysis is a qualitative form of analysis. A MCS is

a minimum set of BasicEvents that can lead to the

occurrence of the fault under analysis. The fault

model does not need to be refined to the point of

having failure rate data available. Also computed in

this analysis is the fault tolerance: The size of the

smallest MCS.

Requirements & Analysis Model

Component

Analysis

1

*

ReliabilityAnalysis MCSAnalysis

FDIRRequirement

1

*

ReliabilityRequirement FaultToleranceRequirement

Fault BasicEvent

Figure 7. The CDM section for modelling FDIR

requirements and analysis

Mirroring the analysis model, the requirements model

provides two Categories: One for imposing expected

results on the ReliabilityAnalysis and one for imposing

expected results on the MCSAnalysis. The overall CDM

is depicted in Fig. 7. On this basis, automatic V&V is

now performed as follows: Whenever an analysis result

changes, VirSat FDIR executes an automatic validator

that checks the fulfilment of the FDIR requirements. It

then creates warnings for non-fulfilled requirements.

5.2 Configuration Control

When designing space systems, it is often not the case

that the entire system has to be designed from scratch.

Parts of previous studies, product definitions and many

other design artefacts have a high potential for reuse.

This holds especially when considering a series of space

systems [1]. VirSat4 FDIR comes with a Product

Structure CDM for describing the system decomposition

allowing for the reuse of designed products. Considered

here is a simplified version depicted in Fig. 8.

Product Structure CDM

ProductTree

ElementDefinition

ConfigurationTree

ElementConfiguration
<<inherits>>

1

*

1

*
1

* 1

*

Figure 8. Simplified Product Structures CDM

A ProductTree (PT) represents a container for product

definitions, called the ElementDefinitions (ED). An ED

abstractly represents a Component (Product). A

ConfigurationTree (CT) represents a concrete instance

of the system, i.e. the satellite model, and contains

ElementConfigurations (EC). ECs can be typed by EDs

and inherit their Categories. In particular, fault

Categories can be assigned to EDs. In this manner,

product level FTA can be reused over multiple ECs and

also over multiple missions, each with their own CT.

FT

<<inherits>>

PT

ED

Fault

CT

EC1

Fault

FT

Fault

FT

EC2

Fault

FT

Figure 9. Example of a Product Tree and a derived

Configuration Tree

Fig. 9 illustrates an example of constructing an FT over

a product structure with two ECs typed by one ED.

6. FDIR ARTIFACT GENERATION

To increase the value of created FDIR models and to

reduce the effort in creating them, VirSat FDIR aims to

generate derivable information from the models.

Currently, the tool supports the generation of recovery

models focusing on increasing system reliability and on

the generation of FMEA tables. In the future, we aim to

generate entire FDIR reports from the FDIR model.

6.1 Generation of Recovery Models

In VirSat FDIR, we have implemented the methodology

reported in [3]. This allows the generation of RAs from

non-deterministic FTs. Typically, gates in FTs are

interpreted deterministically. However, this requires the

designing engineer to know a-priori the optimal strategy

for managing the redundancies. In non-deterministic

FTs SPARE gates do not simply claim spares

deterministically from left to right. Instead, they claim

according to the ClaimActions by an RA. By

transforming a non-deterministic FT into a Markov

Automaton and optimizing its schedule, a reliability

optimal RA can be generated from the fault model.

6.2 Generation of FMEA tables

FTs are one of many ways for describing fault relations.

While they are powerful for precisely describing the

causes of a fault, in the space industry Failure Modes,

Effects and Criticality Analysis is the standard go-to

tool demanded by many standards such as the ECSS. In

VirSat FDIR we follow the ECSS standard ECSS-Q-

ST-30-02C. To guarantee compatibility with these

standards, it is necessary to provide a view on the fault

model through FMEA tables. The solution for obtaining

an FMEA entry for a given Fault equipped with a FT is

straightforward. An ECSS compatible FMEA table

varies depending on the item under consideration, but

commonly it contains at least the following columns:

- Item. The name of the fault under consideration.

- Failure Modes. The direct causes of a fault. In an

FT these are the basic events of a fault and the

direct child faults.

- Failure Causes. The failure modes of the failure

modes. Hence, they can be computed just as the

failure modes of the fault under consideration.

- Probabiliy Level. The probability level can be

obtained by performing a ReliabilityAnalysis and

categorizing the result according to a mission

specific probability level table.

7. CONCLUSION AND FUTURE WORK

In this paper we have presented our approach for

performing MBSE in the FDIR domain using an FDIR

CDM. Furthermore, we have introduced our new tool

VirSat FDIR that implements the presented

methodology. In the future we plan to expand the CDM

to also model the aspects for detection. Other interesting

aspects intended for follow up are the consideration of

more recovery actions in the recovery model, generation

of FDIR reports from the FDIR model and we aim to

bring VirSat FDIR into the later phases of spacecraft

V&V and design by integrating a simulation based

FDIR validation approach into VirSat FDIR.

8. REFERENCES

1. Lange, C., Grundmann, J. T., Kretzenbacher, M.,

 & Fischer, P. M. (2017). Systematic reuse and

 platforming: Application examples for enhancing

 reuse with model-based systems engineering

 methods in space systems development.

 Concurrent Engineering, 1063293X17736358.

2. Ruijters, E., & Stoelinga, M. (2015). Fault tree

 analysis: a survey of the state-of-the-art in

 modeling, analysis and tools. Computer science

 review, 15, 29-62.

3. Müller, S., Gerndt, A., & Noll, T. (2017).

 Synthesizing FDIR Recovery Strategies From

 Non-Deterministic Dynamic Fault Trees. In AIAA

 SPACE and Astronautics Forum and Exposition

 (p. 5163).

4. Wander, A., & Förstner, R. (2013). Innovative

 fault detection, isolation and recovery strategies

 on-board spacecraft: state of the art and research

 challenges. Deutsche Gesellschaft für Luft-und

 Raumfahrt-Lilienthal-Oberth eV.

5. Fischer, P. M., Deshmukh, M., Maiwald, V.,

 Quantius, D., Gomez, A. M., & Gerndt, A. (2018).

 Conceptual data model: A foundation for

 successful concurrent engineering. Concurrent

 Engineering, 26(1), 55-76.

6. Fischer, P. M., Lüdtke, D., Lange, C., Roshani, F.

 C., Dannemann, F., & Gerndt, A. (2017).

 Implementing model-based system engineering for

 the whole lifecycle of a spacecraft. CEAS Space

 Journal, 9(3), 351-365.

7. Dugan, J. B., Sullivan, K. J., & Coppit, D. (2000).

 Developing a low-cost high-quality software tool

 for dynamic fault-tree analysis. IEEE Transactions

 on reliability, 49(1), 49-59.

8. Dehnert, C., Junges, S., Katoen, J. P., & Volk, M.

 (2017, July). A storm is coming: A modern

 probabilistic model checker. In International

 Conference on Computer Aided Verification (pp.

 592-600). Springer, Cham.

