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Abstract—Spread spectrum multiple access (SSMA) is widely
used by radionavigation satellite services (RNSS) to separate
an increasing number of systems, satellites and signals within
a common frequency band, but multiple access interference
(MAI) needs to be carefully modeled and monitored for spectrum
coordination or performance analysis of safety-critical services.
Within the class of Gaussian approximations for MAI, we derive
the very accurate conditional Gaussian approximation (CGA),
being the first to consider a delay/Doppler channel, non-uniform
symbol rates and arbitrary improper signaling.

Index Terms—Global navigation satellite system (GNSS), spec-
tral separation coefficient (SSC), intersystem interference.

I. INTRODUCTION

ADIONAVIGATION satellite services (RNSS) provided
by Global Positioning System (GPS) and other global
or regional constellations rely on spread spectrum multiple
access (SSMA) to separate multiple signals transmitted in a
shared frequency band. However, as the signals are received
asynchronously, multiple access interference (MAI) cannot be
avoided at any point in time or space. Conservative RNSS
performance analysis in the presence of MAI is of interest
for spectrum coordination [1], [2], signal design, and for
integrity assessment of safety-critical services such as space-
based/ground-based augmentation systems (SBAS/GBAS).
Performance of SSMA has been studied extensively for
time-limited [2]-[5] or band-limited [5]-[9] spreading wave-
forms. It is generally agreed that MAI at the output of a
matched filter (MF) is accurately modeled by the conditional
Gaussian approximation (CGA) [4], [6], when conditioned on
the channel parameters. The considerably simpler standard
Gaussian approximation (SGA) [3], [5] is accurate only in
special cases. In particular, SGA and CGA are identical for
band-limited IS-95-type systems [7], which employ aperiodic
and second-order circular (proper [10]) spreading. With few
exceptions (encrypted services), RNSS use periodically corre-
lated spreading and binary (hence improper) symbol alphabets,
so that the SGA must be considered mismatched here.
We revisit the CGA and extend it from the case of a single
terrestrial service to multiple satellite services. The technical
novelties compared with literature [2]-[9] are as follows:
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1) In addition to the variance, we derive the conjugate vari-
ance of MAI, which is relevant for improper alphabets;

2) A satellite-to-earth channel with considerable relative
Doppler shifts is considered when deriving the CGA;

3) Arbitrary symbol rates among different services can be
taken into account by including a Dirichlet kernel in the
calculation of conditional second-order moments.

Numerical results show that the established spectral separation
coefficient (SSC) [1], which is based on SGA, leads to overop-
timistic results for modernized and legacy RNSS signals.

II. SYSTEM MODEL

We consider K satellite signals received over an additive
white Gaussian noise (AWGN) channel. Signals are processed
independently, producing a delay estimate and a phase esti-
mate per signal. These estimates, which are the crucial raw
observables for satellite navigation, are obtained by widely
linear combinations of an early, late and prompt MF output.

A. Received Signal

The receiver’s pre-correlation baseband signal is the sum of
K wide-sense cyclostationary (WSCS) signals and noise

K
y(1) = 3" VG
k=1

Each satellite signal is characterized by the respective received
power C and synchronization parameter 6, = [Tk, Vg, ¢)k]T,
including delay 7, Doppler shift v, and phase ¢;. Cyclosta-
tionarity is induced by transmission of random symbols {b;(")}
with a rate of 1/Ty. The contribution of the nth symbol is

)
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n=—o00

x(1:00) = BV g (t — 1 —nTy). (2)

The spreading waveforms ¢ (¢) are normalized to the symbol
duration as L O:o lgx(t)|>dt = Ty, and they are band-limited
to a common receiver bandwidth B in the sense that the
Fourier transforms Q(f) = f_ o; qr(t)e™ > dt have compact
support [-B, B] for k =1, ..., K. While g (¢) is deterministic,
each sequence {b;{")} consists of independent and identically
distributed symbols with E[b\"]= s =0, E[|b"|?] =Zgs- = 1
and E[(b;{”))z] = i € C, |Zkk| < 1. The sequences are
independent for k = 1,...,K. We assume 1/T] < B < f,
where f. is the signals’ common carrier frequency.

Finally, n(¢) is complex baseband AWGN, which means that
its real and imaginary part are independent AWGN processes
each with two-sided power spectral density (PSD) Ny/2 [10].
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B. Matched filter (MF) and coherent estimators

Without loss of generality, we consider k = 1 as the signal
of interest. We focus on coherent estimators, which require
knowledge of N symbols b(1> .. b(N) and a reasonably ac-
curate synchronization estlmate 01 = [f1, 91,$1]T. If symbols
and ¢ are unavailable, noncoherent estimators with squaring
loss can be used, for which our performance analysis may
serve as a benchmark. The prompt MF output is defined as

P = WZ/ (x00) oy 3)
1

The late/early outputs £; and &; are defined analogously, with
a delay/advance of 7} in (3) by the correlator spacing € > 0.
Let the relative synchronization parameters be Ay = 0,06,
for k = 1,...,K. To refine the initial estimate 91, the
receiver produces high-resolution estimates of the unknown
residuals A¢; and Atj. The coherent discriminator functions
Im{®,} and Re{E;— L} are approximately linear in A¢y, A1y,
respectively, if @, ~ 6, and lead to the following well-known
linear estimators realized by coherent tracking loops [11],

A Im{%;}

Ad = —T) 4
?1 NTC 4
. Re{&; - L}

A = — =, 5
o S1(e)VNTC, ©)

Here, we used Sj(€) = _TL. /_2 |01(f)|?4n f sinQn fe)df. It
is easily verified that (4) and (5) are unbiased for 0, ~0,.

III. CONDITIONAL GAUSSIAN APPROXIMATION (CGA)

For the CGA, we condition on C = (Cy,...,Ck) and © =
(91, 01,...,0k), considering symbols and noise as random.

A. Variance of the carrier-phase estimator A,

Proposition 1. The conditional variance of the carrier-phase
estimator (4) caused by MAI and AWGN is given by

No + XK, Crc (¥ — Re{yix })
2NTCq ’

where the (conjugate) variances due to MAI are
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Proof. We first recall from [10] that, for any complex
random variable Y, Var[Im{Y }]=Var[Y]/2—Re{Cov[Y,Y*]}/2
and apply this to the right-hand side of (4). Then we expand P
into K + 1 uncorrelated summands using (1), which represent
the contributions of MAI, noise, and intersymbol interference
(ISI). Variance and conjugate variance of MAI for k # 1
are given by Cryy £ Var[Pi]lx and Crif £ Cov[Py, Pk,
which are derived in the Appendix. The contribution of AWGN
is well-known [5], [11, Sec. 5.2.9]. The ISI contributions
(C1y1, C1ry) are nonzero but negligible since 1/T7 < B [5].

B. Variance of the time-delay estimator AT

Proposition 2. The conditional variance of the time-delay
estimator (5) caused by MAI and AWGN is given by

B
Var| %] = (No(l— 7 [ 1P eostanse ay)

+ZC (—+——Re{)(k}

+Re {%" + %" —)zk}))/(sf(e)zvncl) . (10)

Proof. For any pair (U, V) of complex random variables,
Var[Re{U — V}] = Var[U]/2 + Var[V]/2 — Re{Cov[U, V]} +
Re{Cov[U, U*]/2 + Cov[V,V*]/2 — Cov[U,V*]} is easy to
show with [10]. We apply this to (5) and proceed as in
the proof of Proposition 1; the MAI contributions Crer =
Var[E]lk, Ckéx = Cov[&1,&E ]k, Cudx = Var[Ly]lk,
Cidx = Cov[Ly, Li]lks Coxx = Cov[E, Li]lk and Ci yrx =
Cov[&Ey, L]]|x are derived in the Appendix for k # 1. The
contribution of AWGN is well-known (cf., [11, Sec. 7.2.1]).

C. Signal-to-interference-plus-noise ratio (SINR)

The SINR of the prompt MF output is defined as SINR =
| E[P1]|?/Var[P;], where the denominator contains AWGN
and MAL It is often used as a single figure of merit, although
it does not provide a full second-order characterization of &,
£, and P;. Plain signal-to-noise ratio is SNR £ | E[P; ][>/ No.

A useful quantity is the loss SNR/SINR = 1 + ¥ with

K c,
Y = — > 0.
kZ:zNO'J’k

IV. STANDARD GAUSSIAN APPROXIMATION (SGA)

(an

The SGA relies on the assumption of uniformly distributed
relative time-delays and carrier-phases [7], [8]. To obtain the
SGA for any of the performance measures (6), (10) or (11), all
conditional moments are simply replaced by their expectations
with respect to uniform Atg € [0,7;) and A¢y € [—nx, ). For
instance, E[W] reduces to a weighted sum of the SSCs [1]

R+ anf ol
B [Wk] - [B Tl Tk d

12)

Note that CGA and SGA are identical for interference from
an IS-95-type system, for which BTy < 0.5 and Xz, = 0.
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Table 1
OVERVIEW OF RNSS SIGNALS L1 C/A [12] AND E1-B [13]

Signal | Zgg Hi (f) Ar(f) Ty (ms) Ci (dBW) !
EI-B | +1 CBOCEé 1“+)> Memory 4 [~160.0, —157.0]
LICA | -1 BPSK(, Gold  20x1 [-158.5,—153.0]
— (a)
N
§ LU e e e e S PR S
a =210 - — EIB
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|Ak(f)* (dB)
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Fig. 1. (a) Pulse-only PSD for reference receiver bandwidth B = 12.28 MHz
and maximum power Cy. (b) Code spectrum (exemplary). Addition of the
respective components shown in (a) and (b) yields the PSD % [0k(N))?.

V. NUMERICAL RESULTS

CGA and SGA are still conditioned on some or all of
the parameters (C,®). For simplicity, we assume 6, = 6,
for Section V. The remaining dependency on constellation
parameters can be removed numerically as follows:

« over a range of possible (C, ®), determine the maximum

(worst-case) of Var[A,], Var[Af|] or P,
« or invoke the joint distribution of (C,®) to obtain the
distribution of Var[Ad;], Var[Af] or V.

A. RNSS Signals

We consider GPS L1 C/A [12] and Galileo E1-B [13] at
f-=1575.42 MHz as example for a legacy/modernized signal,
respectively. Like almost all RNSS signals, both use a binary
alphabet and direct-sequence SSMA, hence |Xxx| = 1 and
Ok(f) = Ac(f)Hk(f), with a pulse Hi(f) and a code Ag(f).
Details are given in Fig. 1 and Table 1. Quite different from
earlier works on frequency-domain CGA [5]-[8], we do not
assume perfectly random code for Ai(f), but consider the
finite-length pseudorandom sequences from [12], [13].

We assume Ny = —204.0 ‘Tlf[—:v for a low-noise receiver [1].

B. Constellation analysis

We consider 31 GPS satellites and 24 Galileo satellites
to determine the cumulative density function (CDF) Fy(V),

IThe given interval applies only to the reference receiver with the full
bandwidth B = 10.23MHz [12] or B = 12.28 MHz [13], respectively. For
smaller B, parts of the PSD in Fig. 1 are unused, and Cy reduces accordingly.
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Fig. 2. CDF Fy(V) of intrasystem (X«X), intersystem (X«Y), or combined
(X«—X+Y) MALI for K =55 and B = 2.046 MHz.

using reference constellations [12], [14]. With L1 C/A and
E1-B, there are K = 55 potentially active signals. For the
power profile C, we assume the maximum Cj from Table I
whenever the corresponding satellite appears with at least 5°
elevation, and zero otherwise. Whenever k =1 is active, we
compute CGA and SGA for each constellation point (C, ®)
in time with a resolution of 6.5Hz, and approximate Fy(¥)
by their cumulative histograms. We consider ten sidereal days,
as this is the least common multiple of the GPS and Galileo
constellation periods. The receiver is located at 52° northern
lattitude (Central Europe). The results in Fig. 2 reveal that
the SGA tends to underestimate the tails of Fy(¥) by 4-8 dB.
Moreover, L1 C/A SINR is dominated by L1 C/A (intrasystem)
MALI rather than by AWGN 30% of the time. Meanwhile, E1-B
SINR is barely affected by E1-B MAI, which is due to better
spreading waveforms, fewer satellites but also lower power:
if maximum E1-B received power is increased by 6dB, for
instance, intrasystem MAI will exceed AWGN 5% of the time.

C. Worst-case analysis

A worst-case analysis is particularly useful to study MAI
for a single interferer (K = 2) as a function of the re-
ceiver configuration (N, B, €), interferer-to-signal ratio C;/Cy,
or signal-to-noise-density ratio C;/Np, without the need to
simulate full constellations. For the powers C, we use the
minimum Cj from Table I for £k = 1 and the maximum Cy
for k = 2. The range of possible synchronization parameters
® can simply be described by 0 < 7, < Tk, |¢x| < 7 and
[vi] < 4kHz, k = 1,2. Results in Figs. 3 and 4 show
that MAI may exceed the impact of thermal noise even for
K = 2. While longer coherent integration times N7; can only
improve the overall performance, small correlator spacings €
can effectively suppress MAI for time-delay estimation.

VI. CONCLUSION

Other than IS-95-type systems, most RNSS use a recurring
spreading waveform for transmission of each binary symbol,
so that the signal statistics are neither proper nor aperiodic.
Therefore, the SGA and currently used spectrum coordination
standards [1] lead to an inaccurate assessment of MAI for
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Fig. 3. Carrier-phase standard deviation vs. coherent integration time for
B=2.046 MHz. Contributions of AWGN and worst-case intrasystem (X«—X)
or intersystem (X«Y) MAI for K = 2.
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Fig. 4. Time-delay standard deviation vs. bandwidth and correlator spacing
with E1-B for NT7 = 80ms. (a) CGA for worst-case intrasystem MAI (K =
2, C,/C1=3dB). (b) Contribution of AWGN (C;/Ny~44 dB-Hz). Speed of
light is given by ¢ = 2.998 x 108 m/s.

legacy and even modernized RNSS signals. We derived accu-
rate, receiver-specific expressions for satellite navigation per-
formance in the presence of improper and WSCS interference
based on the CGA. As RNSS are beginning to transform from
being noise-limited to interference-limited in some frequency
bands, the proposed analytical and numerical methodology
will be important for receiver and operator parties.

APPENDIX
CONDITIONAL SECOND-ORDER MOMENTS OF MAI

For a generic @ € {-¢,0,€} and () £ [ + a, V1, 1],
we consider the random contribution from the mth symbol of
the kth signal to the nth MF output for unit power Cy = 1

mmy, ve LTy  (m),,.
X" & / (<001 (@) 2" (1: 6,) e
1,k ‘/Tl . 1 k
)*
RN

)ejA¢k o0
= le O1(f = VDO« (f = k)

« (Tt~ n0) g7, (13)

where the equation follows with Plancherel’s theorem [15].
With Poisson’s summation formula [15], we have for k£ # 1

E Z Xirzml)(a,])
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. (14
T, (14)

We summate this result over n = 1,..., N as any two random
variables of the form (13) are uncorrelated for unequal n.
Finally, dividing by N and substituting f <« f; — vx yields

the prompt (conjugate) variance yy, ¥ for aq = ap = 0,
the early (conjugate) variance &, & for a; = @y = —¢,
the late (conjugate) variance A, A for @) = as = ¢,

the early/late (conjugate) covariance xi, yx for a; =
—@) = €.

Conjugate variances/covariances are obtained if the operators
in brackets *), , (+) are ignored, and variances/covariances
otherwise.
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