Efficient Massively Parallel Prospection for ISRU by Multiple Near-Earth Asteroid Rendezvous using Near-Term Solar Sails and ‘Now-Term‘ Small Spacecraft Solutions

Jan Thimo Grundmann(1†), Waldemar Bauer(2), Jens Biele(2), Ralf Boden(3), Matteo Ceriotti(4), Federico Cordero(5), Bernd Dachwald(6), Etienne Dumont(1†), Christian D. Grimm(1†), David Herčík(7), Alain Herique(16), Tra-Mi Ho(1), Rico Jahnke(1†), Aaron D. Koch(1†), Wlodek Kofman(17), Alexander Koncz(8), Christian Krause(2), Caroline Lange(1†), Roy Lichtenheldt(9), Tobias Miksch(10), Eugen Mikulz(1), Sergio Montenegro(10), Ivanka Pelivan(8)(15), Alessandro Peloni(4), Dirk Plettemeier(17), Dominik Quantius(1†), Siebo Reershemius(1†), Thomas Renger(1†), Johannes Riemann(1†), Michael Ruffer(10), Kaname Sasaki(1†), Nicole Schmitz(8), Wolfgang Seboldt(11), Patric Seefeldt(1), Peter Spietz(1), Tom Spröwitz(1), Maciej Szajder(1)(12), Simon Tardivel(13), Norbert Tóth(1†), Elisabet Wejmo(1), Friederike Wolff(9), Christian Ziach(14)

†DLR German Aerospace Center, Institute of Space Systems, Robert-Hooke-Strasse 7, 28359 Bremen, Germany – +49(0)421-24420-1107, jan.grundmann@dlr.de – (2)DLR German Aerospace Center, Space Operations and Astronaut Training – MUSC, 51147 Köln, Germany – (3)Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Solar Power Sail ISAS Pre-Project, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa, 252-5210, Japan – (4)University of Glasgow, Glasgow, Scotland G12 8QQ, United Kingdom – (5)Telespazio-VEGA, Darmstadt, Germany – (6)Faculty of Aerospace Engineering, FH Aachen University of Applied Sciences, Hohenstaufenallee 6, 52064 Aachen, Germany – (7)Institute for Geophysics and Extraterrestrial Physics, Technical University Braunschweig, Germany – (8)DLR German Aerospace Center, Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany – (9)DLR German Aerospace Center, Robotics and Mechatronics Center, 82234 Wessling, Germany – (10)Informatik 8, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany – (11)Consultant to DLR Institute of Space Systems – (12)Institute of Physics, University of Zielona Góra, Szafrana 4a, 65-069 Zielona Góra, Poland – (13)CNES, Future Missions Flight Dynamics, 18 avenue E. Belin, 31401 Toulouse cedex 9, France – (14)High-Tech Gründerfonds Management GmbH, Schlegelstraße 2, 53113 Bonn, Germany – (15)Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany – (16)Univ. Grenoble Alpes, IPAG, Grenoble, France – (17)Space Research Centre, PAS, 00–001 Warsaw, Poland – (18)Dresden University of Technology, Chair for RF Engineering, Dresden, Germany
the problem & the questions:

1. [revisit] What instrumentation should an exploration probe carry in order to establish with 100% confidence that water and/or hydrated minerals are present on an asteroid, and what further instrumentation, if any, would be required to ascertain how much water there is?

2. [revisit] How can the rate of spectral characterisation of NEOs be increased? It lags far behind discovery rate, especially at smaller sizes (D < 300m).

4. Technically, and scientifically, how does spectroscopy of an asteroid at short (km range) distances differ from spectroscopy with ground-based telescopes?

9. [revisit] Is there any evidence that the shape of an asteroid provides information on its composition?

5. [revisit] How can the water absorption feature at 3.1\,\mu m be best used as an indicator of hydrated minerals on carbonaceous asteroids? What additional measurement would further increase the quality or fidelity of the measurement?

8. What instrumentation should an exploration probe carry in order to establish with 100% confidence that water and/or hydrated minerals are present on an asteroid, and what further instrumentation, if any, would be required to ascertain how much water there is?

15. [revisit] How well understood are the processes of space weathering, and can we tell what the original state of the surface was, based on the current state?

22. What is the state of the art regarding matching meteorite spectra to asteroid spectra, and matching artificially weathered meteorite spectra to asteroid spectra?

23. Is anyone working on software that models how weathering affects meteorite spectra, to then attempt to match asteroid spectra to this modelled weathered meteorite spectra?

11. [revisit] What highest value telescopic composition/characterisation studies are not being pursued for lack of funding or perceived low priority from space agencies?
“When you’ve seen one asteroid,… or comet… you’ve seen one asteroid. …or comet.

So far, every asteroid visited looks different from all the others

• approaches to classification:
 • spectral information → taxonomy ← ? → composition
 • shape & topography ← ? → interior structure → porosity
 • families ← orbital dynamics ← Yarkovsky → YORP ← ?

• …but: each sees a little light at the end of the tunnel
 • taxonomy: obvious patterns but composition inferred (cf. ‘TC₃’)
 • shapes: radar (poor man’s flyby) shows >1 “top-like”, “cigar”,…
 • orbits: long-term monitoring makes small Y*-effects quantifiable

• …corollary: all these dots & models still need to be connected

⇒ need to study many more asteroids – close-up, soon, affordable
pick target by ‘scope, get ground truth by probe

- even if the questions 1,3,5-10,15-17,21 can be answered “with 100% confidence” – at some point before starting to dig for real you’ll have to 1st go & check.

- proof-sampling ⇔ sample-return

- non-sampling in-situ observations
 - create multi-scale context chain soil ⇔ telescope
 - landing site panorama, thermal properties & conditions
 - local conditions of space weathering ⇔ spectra validity

- ‘deep’ sounding extends context chain via and to the interior
 - collisional & orbital history – hidden fluff & rock remnants
 - sub-surface sampling, tomography

- in-situ resource utilization specifics
 - staking claims – be there, stay there
 - prospection = area mapping of volatiles & minerals

- note: current & future small solar system bodies science missions all require sample in-situ analysis and/or return
state of the art: DAWN – 2-asteroid rendezvous
HAYABUSA & HAYABUSA2 – 1-asteroid sample-return

- DAWN orbited (4) Vesta & orbits (1) Ceres
 - Δv capability ≈ 13 km/s from 275 kg Xe propellant
 - fly-by at (2) Pallas suggested but too marginal, possible fly-by of (145) Adeona not accepted

- HAYABUSA returned samples from (25143) Itokawa
 - Δv capability ≈ 4.0 km/s from 66 kg Xe propellant
 - total $\Delta v \approx 0.4$ km/s from 67 kg bipropellant
 - ≈ 40 kg used for SEP during mission, yielding 2.2 km/s

- HAYABUSA2 is currently at <1 LD approaching carbonaceous NEA (162173) Ryugu
 - Δv capability ≈ 3.2 km/s from 66 kg Xe propellant
 - up to ≈ 3.5 km/s if filled up to 73 kg Xe capacity

common feature:
high-performance electric propulsion
“if we keep it to a few basic questions, can we use what we already have to go to more asteroids at a time?”

- DAWN spent some Δv to move between various mapping orbits, the HAYABUSAS to return samples
 - what’s science payload to descope?
 - what’s there to repurpose?
 - where are the limits?

SESAME (Maiwald & Marchand, 2016)
- science payload 33 kg (orbiter) + 5* 4.3 kg (landers)
- launch mass 1571 kg
 - ~3x HAYABUSA2, though only moderately larger than DAWN
- payload fraction <3.5 %: ≈ no gain by descoping (sic!)
- GTOC-5-like trajectory to 5 NEAs of ≈200 candidate targets
- primarily astrodynamical target selection
- targets tied to launch date

⇒ possible, but...
disrupt! …the fuel tank:

Multiple NEA Rendezvous by Solar Sail

- solar sailing provides propulsion not limited by the amount of fuel carried

 – then what’s the next limit? –

 how well it is designed, built, tested, flown & fixed

 mechanisms have been fixed in space w/o astronauts around: e.g. Voyager 1 scan platform

- recent studies (Peloni et al., 2016-2018) demonstrate
 - 5 NEA stays for ≥100 days, each, in 10 years
 - accumulated $\Delta v > 50 \text{ km/s}$ @ $a_c = 0.2 \text{ mm/s}^2$
 - asteroid-oriented target selection is feasible
 - at-launch & in-flight target change capability

- target-flexible Multiple NEA Rendezvous for planetary science
 was identified as a mission type uniquely feasible with solar sail
 already by the GOSSAMER Roadmap Science Working Groups

figures: Peloni, Ceriotti, Dachwald, 2016
“okay, low-thrust to so many targets in a row… – is this even a robust mission type or just a one-off?”

even restricted to PHA & NHATS targets, only,…
- there are 100’s of possible NEA sequences for each launch date
- targets can be changed any time while in cruise or rendezvous
- now available sail technology is sufficient

<table>
<thead>
<tr>
<th>Object</th>
<th>Stay time [days]</th>
<th>Start</th>
<th>End</th>
<th>Time of flight [days]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>123</td>
<td>10 May 2025</td>
<td>26 Feb 2027</td>
<td>857</td>
</tr>
<tr>
<td>2000 SG</td>
<td>164</td>
<td>29 Jun 2027</td>
<td>06 Sep 2028</td>
<td>436</td>
</tr>
<tr>
<td>2015 JD</td>
<td>160</td>
<td>18 Feb 2029</td>
<td>24 Sep 2030</td>
<td>584</td>
</tr>
<tr>
<td>2012 KB</td>
<td>171</td>
<td>04 Mar 2031</td>
<td>29 Sep 2032</td>
<td>576</td>
</tr>
<tr>
<td>2008 EV5</td>
<td>113</td>
<td>20 Mar 2033</td>
<td>30 Sep 2034</td>
<td>560</td>
</tr>
</tbody>
</table>

Fig. 7 Number of unique sequences with at least one PHA and four encounters as a function of the launch date.

Fig. 8 Tree graph of first three legs of all sequences with five encounters found for launch date \(t_b = 30 \text{ April 2025}. \)
the other GOSSAMER Science Working Group studies:
Displaced L₁ (DL₁) & Solar Polar Orbiter (SPO)

• DL₁ – the ‘low end‘ extreme: Earth co-orbiting trajectory, ‘any‘ sail, @ e~0, i~0
• SPO – go to 75…90° inclination (heliocentric)

• SPO working principle:
 • get close to the Sun
 • crank up inclination
 • move out again (if necessary)
 • drop solar science payload

for asteroid work:
• get to inclination & get rid of synodic period problem:
 • go on a ‘depressed trajectory‘ to phase with any target
 • note: a depressed trajectory will actually make you happy!
• looking-out opposition survey on the way possible (cf. „Earthguard“)
GOSSAMER solar sail technology development (qualified)

- the 3-step DLR-ESTEC GOSSAMER Roadmap to Solar Sailing was set up in 2009 to develop key technologies for science missions
- 1st step: GOSSAMER-1 EQM was built & qualification tested
- development was stopped after reaching TRL 5
- a PFM design was ready to proceed
- a launch opportunity was available
- all-launchers load envelope

\[\frac{1}{2} (5 \text{ m})^2 \]

\[\approx 30 \ldots 37.6 \text{ kg}, \quad 79 \cdot 79 \cdot 50 \text{ cm}^3 \]
“okay, so you can deploy a membrane in a clean room – and how do you fly it?”

GOSSAMER-2 – high-orbit attitude & thrust vector control eval

- (20...25 m)2 sail area
- orbit where solar radiation pressure is dominant – high LEO, MEO, GTO, >GEO
- implementation of several to “all” control methods and all relevant mechanisms
- find out what’s the best ...

GOSSAMER-3 – all-up proof test & science mission readiness demonstrator

- (50 m)2 sail area
- initial orbit high enough to spiral out (sail up)
- applies best control method(s) of GOSSAMER-2
- prove that sails can operate science missions
 - imager & maybe a tiny science-like payload, e.g. sail-environment interaction (~1kg total)

the GOSSAMER Roadmap:

step 2 – control
step 3 – proving the principle

...that was the idea...

(↑2009 – ↓2014)
...and will it last?

- Complex Irradiation Facility
- unique materials testing conditions for space weathering of surfaces
 - ultra-high vacuum $\sim 10^{-10}$ mbar
 - $p^+ \& e^- @ 1...100$ keV, $1 \text{nA}...100 \mu\text{A}$
 - UV/vis/NIR $40...2500$ nm
 - sample @ $-193...+450^\circ\text{C}$
MASCOT – Mobile Asteroid Surface Scout(s)

- now <300000 km from (162173) Ryugu, on HAYABUSA2
- landing expected October 1st…4th, 2018 (*during IAC 2018*)
- with precursor studies, e.g. MARCOPOLO, and follow-on studies, e.g. MASCOT2 for AIM, a ready-to-go repertoire for many missions has already been created

- lander at the instrument level of a mainstream mission
- high degree of design re-use
- high-density design
- serves 4 full planetary science quality instruments
“Okay, so… compared to a real spacecraft…
– can a 10 kg shoe-box address all topics?”

Heritage landers:
- cover all fields
- medium-integrated design concept
- separate instrument interfaces ‘as usual’
- requirements-driven design, drives mission

MASCOTs:
- focus on key topics
- organically integrated design
- across unit border optimized interfaces
- constraints-driven design

Target body properties addressed…
- surface structure
- composition
- mechanical properties
- thermal properties
- interior structure
- spacecraft orientation

Note: no Scout would go outdoors without a compass!
MASCOT MicrOmega – composition by near-IR

- MicrOmega hyperspectral NIR microscope
 - spectral range 0.99…3.65 µm
 - spectral resolution ~20 cm⁻¹
 - field of view (3.2 mm)²
 - spatial sampling 25 µm

- provided by IAS, Orsay, France
MASCOT2 Low Frequency Radar
– the key to the interior structure

- **Deep Interior Radar**: LFR – Low Frequency Bistatic Radar
 - *with lander* (CONSORT-like) for tomography of the deep interior:
 - size of blocks
 - compositional heterogeneity

- **Shallow Subsurface Radar**: HFR – Higher Frequency Radar
 - fathom the regolith (first 10’s of m)
 - Layer, embedded block, voids
 - Regolith texture: size grain
 - compositional heterogeneity

- validate & improve our understanding of the asteroid’s evolution from accretion to now
- better model low gravity mechanics
- *sample return*: site selection and sample context
- *mining*: subsurface composition and mining strategies
...and returning them to the Earth

- sample return requires propulsion
 - pre-deployment propulsion capability can be useful for large sails
 - propulsion entirely on lander, control divided
- propulsion power drives lander battery & photovoltaics
 - the core sailcraft needs pre-deployment photovoltaics (PV)
- battery shared, mostly on lander
- rigid PV completely on lander
performance: the magic MNR & lander(s) numbers

- GOSSAMER-1 technology based
 - 0.2 mm/s² & 50 kg bus & payload → (50 m)² membrane
 - 0.2 mm/s² & 100 kg bus & payload → (70 m)² membrane
 - 0.2 mm/s² & 150 kg bus & payload → (85 m)² membrane

⇒ ESPA* / ASAP** compatible micro-spacecraft range
 (* ≤181 kg, 61·61·96 cm³ / ** ≤200 kg , 80·80·100 cm³)
 - start from GTO and upper stage disposal orbits of GEO & NavSat
where to start from?
– piggy-back launch opportunities for solar sails

\[\leftarrow L_1/L_2 \rightarrow \]
lunar fly-by
\[\leftarrow \text{LTO/Moon} \rightarrow \]
NavSat & upper stage graveyard

GEO

\[\text{q} > 2000 \text{ km spiral-up possible} \]

perigee kick to \(c_3 > 0 \)
apogee kick to \(q > 200 \text{ km} \) & perigee kick to \(c_3 > 0 \)

SSO

\[\text{orbit} \]

space debris control/mitigation
orbital lifetime <25 yrs required

DLR.de • Chart 19 > MiNER > Grundmann et al. • ASIME 2018 > 17APR2018 15:30
recap & bottom line:

- can even be improved in-situ, with mapping & particularly for small NEAs because they dominate catalogs
- go there & find out for many NEAs & for several classes
- remove shape model uncertainty by close look, and get definite composition by in-situ analysis & sample return
- in-situ, e.g. MicrOmega on the spot & at mineral grain scale (3.1μm); on small areas: MARA w/ filters for >5 μm bands, CAM with tuned LED illumination for <1 μm bands
- Low Frequency Radar can show the interior structure
- the information gained from spectroscopic instruments at the surface or from ‘orbit’ can be compared to in-situ analysis & sample return
- ...and it is of course possible to [revisit] with another sailcraft that has a better suited MASCOT still aboard or carries a shuttling sample-return lander & capsule
- MASCOTs can likely scrape the surface to expose fresher materials in the mm…cm depth range (TBC in Oct)
- Sample-return lander instruments considered include subsurface sampling devices (JAXA OKEANOS ldr study)
- on-ground studies in DLR Complex Irradiation Facility possible on dry materials (ultra-high vacuum environment)
- solar sailing (e.g. GOSSAMER type), suitable nanolanders (e.g. MASCOT type), and specific MNR trajectory studies
thank you for your attention! — as in any questions? as you like, please 😊
a final note
Life? ...the next Antarctica? = ‘look don’t touch’? if so, then will need supplies ‘from above’!

...and gravity

many rocks
all close to the surface
little gravity – but some
spare slides

• MNR studies – performance development of optimizers & expanded NEA databases
• GOSSAMER-style integration of landers & samplers
• PDC’17 exercise
 • exactly 11 moths ago – JST
• diverting asteroids using small solar sails & impactors (~SPO)
MNR by Solar Sail: performance development

• in the past 20 years,…
 • low-thrust trajectory optimization was greatly improved
 • many more NEAs discovered to pick targets from
 • sailcraft designs matured, were tested & flown
 • better understanding of near-term sail performance

• DLR ENEAS study (2000) – 2 fast flybys & 1 rendezvous in 5 years – 0.14 mm/s²
• ENEAS-SR (2005) – 1 sample return & 117 days in 10 years – 0.10 mm/s²
• ENEAS+ / ENEAS+SR (2005) – 3 rendezvous/sample return in 10 years – 0.22 mm/s²
• GOSSAMER NEO reference (2011) – 3 very slow flyby-rendezvous >1 rotation in 10 years
• Johnson et al (2012) – 3 rendezvous of ~30 days in 6 years – 0.35 mm/s²
• GOSSAMER NEO reference (2014) – 3 rendezvous of ~100 days in 10 years – 0.20 mm/s²
• Peloni et al. (2016) – 5 rendezvous of >100 days in 10 years – 0.20 mm/s²
integrating all that: GOSSAMER 1st

- a GOSSAMER sailcraft at launch consists of 5 independent spacecraft connected to act as one
- electrical – thermal – mechanical face-to-face interfaces enable energy transfer all through, end to end
integrating all that: …and landers

- an additional plane of interfaces is implemented on the ‘payload’ side of the Central Sailcraft Unit (CSCU)
- interfaces between the CSCU and the 4 Boom Sail Deployment Units (BSDU) already use elements also present in MASCOT, e.g. Umbilical
- MASCOT already has suitable interfaces to its carrying structure (MESS)

figures adapted from: Seefeldt et al., 2016, Ksenik
SEP trajectories: DAWN, HAYABUSA & HAYABUSA2
• chasing 2017 PDC – too little (a_c celeration), too late (arrival)
• hits on July 21st, 2027 – fully optimized launch in 2025 can’t be diverted in time
• a sequence launching in 2020 can divert and reach 2017 PDC but >3 years too late
• requires *substantial* a_c rise: $0.2 \rightarrow 0.73 \text{ mm/s}^2$ (!!!)

EXERCISE – EXERCISE – EXERCISE – EXERCISE
NOT A REAL WORLD EVENT – NOT A REAL WORLD EVENT – NOT A REAL WORLD EVENT – NOT A REAL WORLD EVENT

divert to PDC 2017 for rendezvous

divert after 2nd leg to fly to 2017 PDC

figures & tables extended from: Peloni, Ceriotti, Dachwald, 2016

original sequence

<table>
<thead>
<tr>
<th>Object</th>
<th>Stay time [days]</th>
<th>Start</th>
<th>End</th>
<th>Time of flight [days]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>//</td>
<td>13 Aug 2020</td>
<td>26 Apr 2022</td>
<td>621</td>
</tr>
<tr>
<td>2005 TG$_{90}$</td>
<td>128</td>
<td>02 Sep 2022</td>
<td>13 Jan 2024</td>
<td>498</td>
</tr>
<tr>
<td>2015 JF$_{11}$</td>
<td>104</td>
<td>25 Apr 2024</td>
<td>18 Jun 2026</td>
<td>776</td>
</tr>
<tr>
<td>2012 BD$_{14}$</td>
<td>499</td>
<td>20 Oct 2026</td>
<td>02 Aug 2028</td>
<td>644</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object</th>
<th>2017 PDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-major axis [AU]</td>
<td>2.24</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>0.607</td>
</tr>
<tr>
<td>Inclination [deg]</td>
<td>6.297</td>
</tr>
<tr>
<td>Right ascension of the ascending node [deg]</td>
<td>298</td>
</tr>
<tr>
<td>Argument of periapsis [deg]</td>
<td>312</td>
</tr>
<tr>
<td>Mean anomaly [deg]</td>
<td>332</td>
</tr>
<tr>
<td>Epoch (MJD)</td>
<td>57940</td>
</tr>
<tr>
<td>Absolute magnitude [mag]</td>
<td>21.9</td>
</tr>
<tr>
<td>Estimated size [m]</td>
<td>110 – 240</td>
</tr>
</tbody>
</table>

(1127 days = 3 years, 1 month *after* Earth impact or close fly-by of 2017 PDC)
divert to PDC 2013 for rendezvous

- 2011 AG₅ – the PDC 2013 Exercise impactor, hits February 3rd, 2040
- fully optimized launch in 2025 can be diverted to rendezvous 2011 AG₅ in time
- optimized trajectory: diverting from an ongoing MNR mission feasible at $a_c = 0.2 \text{ mm/s}^2$
landing... faster, harder, ... head-on

an exercise of synergy

- one of solar sails’ unique capabilities: orbit cranking to $i > 60^\circ$
- GOSSAMER solar sails are based on small separating sub-spacecraft
- payload-drop missions have been studied, e.g. Solar Polar Orbiter / Imager
- Kinetic Energy Impactors don’t care what they are made of
- fast e^--multiplied CCD ASTEROIDFINDER camera tech is good at tracking NEAs
- … add terminal guidance & propulsion
- … develop sails to $a_c \approx 0.5 \text{ mm/s}^2$

2004WR impact

with 81.4 km/s after 6 years

Dimension

<table>
<thead>
<tr>
<th></th>
<th>1m x 0.78m x 0.7m</th>
</tr>
</thead>
</table>

Sunshield

50 degree

Mass

179 kg

Payload

- 2 x High Resolution Cameras
- 4 x Middle Range Camera
- 4 x Webcam

Communication

- 1 x Ka-band antenna
- 2 x X-band antenna
- 4 x Interlink antenna

ACS

Propulsion (8 x 1N thrusters, 1x 400N thruster)

Dachwald, Wie et al., 200x
background image:
NASA/JPL J.D. Burke et al.
references

this presentation is based on the article

Capabilities of Gossamer-1 derived small spacecraft solar sails carrying MASCOT-derived nanolanders for in-situ surveying of NEAs

Acta Astronautica
accepted manuscript available online: 17-MAR-2018
article reference: AA6761
DOI: 10.1016/j.actaastro.2018.03.019

and references therein! 😊