

Wissen für Morgen

DLR - Institute of Composite Structures and Adaptive Systems

"SAGITTA – Unmanned Aerial Vehicle with innovative CFRP airframe "

M. Kleineberg J. Schmidt M. Hanke

- DLR Institute of Composite Structures and Adaptive Systems
- The "SAGITTA" Project
- Concept and Design
- Airframe Component Manufacturing
- Airframe Integration
- SAGITTA Flight Test
- Lessons Learnt

- DLR Institute of Composite Structures and Adaptive Systems
- The "SAGITTA" Project
- Concept and Design
- Airframe Component Manufacturing
- Airframe Integration
- Flight Test
- Lessons Learnt

DLR – German Aerospace Center

Sites and Employees

- 8.000 Employees
- 42 Institutes and Facilities
- 20 Locations, Offices in Brussels, Paris, Tokyo and Washington.

Institute of

Adaptive Systems

Aeronautics

Energy

Space

Transportation

Security Digitalisation

DLR – Institute of Composite Structures and Adaptive Systems

Director: Dep. Director: Prof. Dr.-Ing. Martin Wiedemann Prof. Dr.-Ing. Peter Wierach

Multifunctional Materials Prof P Wierach

We increase the ability of the materials!

- · Fiber- and nanocomposites
- Smart materials
- · Structural health monitoring
- Material characterization

Composite Design

Our design for your structures!

From requirements via concepts to

multi-functional structures

Prof C Hühne

Dr. M. Kleineberg Tailored manufacturing concepts

- Tolerance Management
- Process Simulation
- Functional Demonstrators
- **Digital Production Network** •
- Online Process Assessment •
- Design to Cost Modelling .

Adaptronics

Prof. H. P. Monner

The adaptronics pioneers in Europe

- · Simulation and demonstration of adaptive systems
- Active vibration control
- Active noise control
- Active shape control
- Autarkic systems

Composite Process Technology

Dr. J. Stüve

Research with industrial dimension

- Automated FP und TL
 - Online QA within autoclaves
- · Automated manufacturing for mass-production
- · Simulation methods for maximum process reliability and process assessment

Dr T Wille

With high fidelity to virtual reality for the entire life cycle!

- · Global design methods
- · Stability and damage tolerance
- · Structural dynamics
- Thermal analysis
- Multi-scale analysis
- Process simulation
- · Structure concepts and assessment
 - Multi-functional structures

Design and Sizing

- Shape-variable structures
- Hybrid structures

Composite Technology

- DLR Institute of Composite Structures and Adaptive Systems
- The "SAGITTA" Project
- Structural Concept
- Airframe Component Manufacturing
- Airframe Integration
- SAGITTA Flight Test
- Lessons Learnt

The "SAGITTA" Project

- Scouting for new ideas and solutions for selected technology gaps with qualified academic partners
- **<u>Recruiting</u>** and <u>training</u> of highly qualified <u>engineers</u> for Airbus
- Concentration of the German academic community behind the key technology areas of interest
- Provide the <u>Sagitta Demonstrator</u> as experimental platform to demonstrate selected technology experiments

The "SAGITTA" Project

Strategic Approach:

- VLO (Very Low Observability) UAV with ambitious "Diamond" configuration
- "Inverted flight" based VLO Concept
 - Symmetric profile (UAV turns upside down for the mission)
 - Seamless upper cover (lower cover inflight configuration)
- Concept without vertical stabilisers (just for maiden flight)
- VLO compatible integration of jet engines and ducts
- Scale of 1:4 to stay below 150kg (certification requirement)

- DLR Institute of Composite Structures and Adaptive Systems
- The "SAGITTA" Project
- Structural Concept
- Airframe Component Manufacturing
- Airframe Integration
- SAGITTA Flight Test
- Lessons Learnt

Basic Layout structural concept, provisional system allocation, integration and accessibility, centre of gravity, assembly/joining approach, ensure longitudinal stability

Detailed design

- All subcomponents
- Propulsion/fuel system
- Landing gear
- Termination system
- Flight control system
- Power Supply
- Data Link
- Sensors

Detailed design

- All subcomponents
- Propulsion/fuel system
- Landing gear
- Termination system
- Flight control system
- Power Supply
- Data Link
- Sensors

Termination System

CFK VALLEY STADE CONVENTION[™] **Propulsion System Tank**

Manufacturing / Assembly Periphery

- Tolerance Management
- Ergonomics
- Inspectability
- Maintenance strategy
- Jigs and Tools
- Quality Gates
- Process Documentation

- DLR Institute of Composite Structures and Adaptive Systems
- The "SAGITTA" Project
- Structural Concept
- Airframe Component Manufacturing
- Airframe Integration
- SAGITTA Flight Test
- Lessons Learnt

SAGITTA Specific Challenges

Ambitious 150kg MTOW limit with less than 30kg for the compete airframe \rightarrow Very thin, bonded micro sandwich laminates

High local load concentration (landing gear, termination system) → Critical ramping

Complex structures with back cuts (integrated leading edge) → Complex, modular tooling

Numerus access panels on functional lower cover \rightarrow Tolerances, Effort

Manufacturing of upper and lower cover

- Common CFRP open mould for upper and lower cover (symmetric airfoil)
- Integrated manufacturing of access panels and doors
- "Thin Ply" Prepreg (less resin uptake than infusion laminate)
- Rohacell micro foam core
- Autoclave curing

- Machined female, aluminium open moulds for C-spars
- Machined female, polymer open moulds for C-rib components
- Low areal weight pepreg fabric
- Local Rohacell micro foam core
- Autoclave curing

Trimming

- Manual diamond cutter trimming at moulded trim lines
- Removal of integrated access panels
- Optical inspection of all structural components
- Preparation of surfaces for structural bonding

- DLR Institute of Composite Structures and Adaptive Systems
- The "SAGITTA" Project
- Structural Concept
- Airframe Component Manufacturing
- Airframe Integration
- SAGITTA Flight Test
- Lessons Learnt

"Clean" Upper Cover + Spars + Ribs

- Global referencing and positioning of subcomponents
- Final joining of subcomponents starting with forward fuselage section (paste adhesive)
- Bolting of load introduction components for landing gear attachment and termination system

System Installation

- Installation of wiring
- Integration of fuel system support structure
- Integration of engine support structure and air ducts
- Integration of kinematic elements for rudders/actuators

Installation of Lower Cover

- Detailed planning of positioning, joining and pressing procedure
- Application of adhesive and final closing of the airframe structure
- Quality assurance of the bondlines based on boroscopy/video

Functional Test

- Test of rudder positions
- Test of rudder dynamics
- Test of neutral position
- Test of long term behaviour
- Test of wing tip split flaps (air brakes / yaw control)

CFK VALLEY STADE CONVENTION[™]

Roll Out

- Completion of structure
- Closing of access doors
- First time on provisional landing gear
- Shipping to Airbus Defence and Space for system tests

- DLR Institute of Composite Structures and Adaptive Systems
- The "SAGITTA" Project
- Structural Concept
- Airframe Component Manufacturing
- Airframe Integration
- SAGITTA Flight Test
- Lessons Learnt

SAGITTA Flight Test

Brake Tests in Manching, Germany

SAGITTA Flight Test

Flight Tests in Overberg, South Africa on July 5., 2017

- DLR Institute of Composite Structures and Adaptive Systems
- The "SAGITTA" Project
- Structural Concept
- Airframe Component Manufacturing
- Airframe Integration
- SAGITTA Flight Test
- Lessons Learnt

Lessons Learnt

- Iteration of ideas between all disciplines right from the start was time consuming but proved to be the major enabler for the **SAGITTA** success story
- Introduction of new manufacturing and assembly strategies was the only way to meet the ambitious target of 150kg MTOW
- Airbus Defence and Space managed the project in an open and comprehensive way, always leaving enough room for new ideas

"The Proof is in the Doing"

