Procedures for DataQC within the EnMAP and DESIS Ground Segments

DLR–EOC, German Aerospace Center, Earth Observation Center
Spaceborne EO imaging spectrometer missions

<table>
<thead>
<tr>
<th>Mission Instrument</th>
<th>ISS/MUSES DESIS</th>
<th>EnMAP HSI (2 instruments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target lifetime</td>
<td>2018-2023</td>
<td>2020-2025</td>
</tr>
<tr>
<td>Satellite (mass, dimension, usage)</td>
<td>455 t, 109.0×97.9×27.5 m³ (multi-purpose)</td>
<td>1 t, 3.1×2.0×1.7 m³ (single-purpose)</td>
</tr>
<tr>
<td>Orbit (type, local time at equator, inclination, height, repeat cycle)</td>
<td>not Sun-synchronous, various, 51.6°, 320 km to 430 km, no repeat cycle</td>
<td>Sun-synchronous, 11:00, 98.0°, 653 km, 398 revolutions in 27 days</td>
</tr>
<tr>
<td>Coverage</td>
<td>55° N to 52° S</td>
<td>74° N to 74° S</td>
</tr>
<tr>
<td>Revisit frequency</td>
<td>3 to 5 days (average)</td>
<td>≤ 4 days, ≤ 27 days (±5° tilting)</td>
</tr>
</tbody>
</table>

Mission Instrument

- **Off-nadir tilting** (across-track, along-track)
 - -45° (backboard) to +5° (starboard), -40° to +40° (by MUSES and DESIS)
 - -30° to +30°, 0° (by EnMAP)
- **Spectral range**
 - 420 nm to 1000 nm
 - 420 nm to 2450 nm
- **Spectral (res., acc.)**
 - 2.55 nm, na
 - 6.5 nm, 0.5 nm (VNIR), 10.0 nm, 1.0 nm (SWIR)
- **Radiometry (res., acc.)**
 - 13 bits, na
 - 14 bits, 5%
- **Spatial (res., swath)**
 - 30 m, 30 km (@ 400 km)
 - 30 m, 30 km
- **SNR (signal-to-noise)**
 - 205 (no bin.) / 406 (4 bin.) @ 550 nm
 - 500 @ 495 nm, 150 @ 2200 nm
- **Instrument mass**
 - 93 kg
 - 350 kg
- **Capacity (km, storage)**
 - 2360 km per day, 225 GBit
 - 5000 km per day, 512 GBit

<table>
<thead>
<tr>
<th>Mission Instrument</th>
<th>ISS/MUSES DESIS</th>
<th>EnMAP HSI (2 instruments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space agency</td>
<td>Teledyne, USA & DLR, Germany</td>
<td>DLR, Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Science Segment: GFZ et al.)</td>
</tr>
<tr>
<td>Space segment</td>
<td>Teledyne</td>
<td>OHB System AG</td>
</tr>
<tr>
<td></td>
<td>• VNIR Instrument by DLR</td>
<td>• VNIR Camera by DLR</td>
</tr>
<tr>
<td></td>
<td>• Support Calibrations by DLR</td>
<td>• Support Calibrations by DLR</td>
</tr>
<tr>
<td>Ground segment</td>
<td>Teledyne</td>
<td>DLR (EOC, GSOC)</td>
</tr>
<tr>
<td></td>
<td>• Processing, Archiving, Processors, and Calibration by DLR</td>
<td>• Project Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Command and Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• User Interf., Data Reception, Processing, and Archiving</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Processors and Calibration</td>
</tr>
</tbody>
</table>
Spaceborne EO imaging spectrometer missions

... many dedicated presentations in this session
Part 1:
Data Quality Control within Pre-Processing Chains
Overview - Processing Chain (EnMAP)
EnMAP & DESIS – Data Quality Indicators

- **Radiometric properties (L0 / L1B)**
 - Artifacts related to radiometric calibration (striping, banding)
 - Artifacts related to dual gain
- **Spectral properties (L0 / L1B / L2A)**
 - Spectral smile
- **Datatake / image properties (L0 / L1B)**
 - Saturation (cross-talk, blooming)
 - Other artifacts / suspicious pixel / repetitive pattern
 - Error messages in virtual channel, sensor & processor log files
- **Environmental conditions** during acquisition (L1C / L2A)
 - Sun elevation
 - Percentage of cloud, haze, cirrus and cloud shadow
 - Average scene visibility / AOT / WaterVapour
 - Problems in atm. correction (e.g., # DDV pixels, meaningful aerosol type, …)
 - Artifacts related to terrain correction / DEM
EnMAP Level L0/L1B Processing – detailed steps

- **Bad (dead & suspicious) pixel flagging**
- **Saturated pixel flagging (incl. blooming)**
- **Non-linearity correction**
- **Dark signal correction**
- **RNU correction**
- **Gain matching (VNIR)**
- **Spectral referencing**
- **Spectral / spatial straylight correction**
- **Radiometric referencing**
- **QL generation**
- **Cloud-haze and land-water masks generation**

 L1C / L2A

- **Geometric correction (incl. keystone correction)**
- **Atmospheric correction (incl. smile correction)**
Operational QC within pre-processing chains

- Radiometry
 - Artifacts related to radiometric calibration (striping, banding)

Examples using the airborne HySpex scanner (SWIR camera depicted)

BACHMANN et al., 2013:
Extending DLR’s operational data quality control (DataQC) to a new sensor - Results from the HySpex 2012 campaign
Detecting Striping Artefacts
Detecting Striping Artefacts

Normalized detector map of HySpex scene
Detecting Striping Artefacts

Anomalous pix. at band 31, pixel 237

Normalized detector map of HySpex scene
DESIS – first results using 5 Earth datatakes

- Manufacturing defects as expected
- So far: low number of defective pixels on chip
- So far: consistency in defective pixels (no unstable / “flickering” pixels)
DESIS on-board calibration sources

(LED #1, LED #2, LED #3, LED #4, LED #5, LED #6, LED #7, LED #8, LED #9)

Blue

Infra-red

(Lab. measurements)
In-orbit vicarious spectral characterization

- Approach:
 analysis of how atm. absorption features are resolved.
 Example: 762 nm Oxygen absorption

Cross-track change is “spectral smile”

Nominal center wavelengths
Nominal bandwidths

(Lab. measurements)
In-orbit vicarious spectral characterization

- Comparison of
 - nominal spectral smile (top)
 - observed spectral smile (below)

- Derivations for some cross-track elements indicate small change between pre- and post-launch spectral calibration

- Next steps: compare to calibration datatakes (LEDs)

First (preliminary) results!
Part 2:
“Offline” Data Quality Control – Vicarious Approaches
Radiometric Cal / Val (I)

- Approach based on
 - permanently instrumented CEOS RadCalNet sites
 - pseudo-invariant desert sites (PICS) thus using agreed community standards

- Allows for modeling at TOA & BOA level
- For vicarious calibration / “flat fielding”
- Also for sensor cross-calibration to other missions (e.g., S-2)

- DESIS tilting capabilities can also contribute to site BRDF characterization!

Source: http://calvalportal.ceos.org
Radiometric Cal / Val (II)

- Dedicated CalVal campaigns using airborne and in-situ measurements

- Preparatory campaigns in 2018: DLR HySpex and NASA AVIRIS NG overflights over Oberpfaffenhofen, incl. on-site measurements
Summary – Cal/Val/Mon/DataQC for EnMAP & DESIS

- **Calibration & monitoring**
 - On-board calibration sources (& sun calibration)
 - Inclusion of vicarious CalVal approaches

- **DataQC within pre-processing chain**
 - Integrated within L0 / L1B / L1C / L2A processors
 - Generation of QC-related metadata, QC flags + reports
 - Interactive procedures for additional parameters

- **Independent validation**
 - Incl. ground-based CalVal activities
Thank you very much for your attention!

enmap.org