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Abstract— Human teleoperation of robots and autonomous
operations go hand in hand in today’s service robots. While
robot teleoperation is typically performed on low to medium
levels of abstraction, automated planning has to take place on
a higher abstraction level, i.e. by means of semantic reasoning.
Accordingly, an abstract state of the world has to be maintained
in order to enable an operator to switch seamlessly between
both operational modes. We propose a novel approach that
combines simulation based geometric tracking and semantic
state inference by means of so called State Inference Entities
to overcome this issue. We also demonstrate how Evolutionary
Strategies can be employed to refine simulation parameters.
All experiments are demonstrated in real-world experiments
conducted with the humanoid robot Rollin’ Justin.

I. INTRODUCTION

Autonomous robots are turning into useful tools that can
be deployed in areas that are hazardous for humans. One
major application domain is thereby the space exploration
sector. Even though space assistant robots such as the hu-
manoid robot Rollin’ Justin [1] are mechanically capable of
manipulating their environment, they are currently unable
to work fully autonomously. Accordingly, they are typically
remotely operated by humans. Our research on telerobotic
manipulation with space assistant robots is therefore mainly
concerned with two aspects. First, direct teleoperation by
means of haptic input devices, as for example conducted
in the Kontur-2 experiment [2]. And second, human-robot
co-operation by means of supervised autonomy, as it is
performed in the METERON SUPVIS Justin experiment [3].
During those two missions, we have learned that both control
modalities are necessary to operate a robot most efficiently
under varying conditions (see Fig. 1).

Traded control is an approach that allows the operator
to switch between autonomous task execution and teleoper-
ation [4]. An open research question in traded control is
the synchronization of world states while switching from
teleoperation to autonomous mode. That is, planning in
autonomous mode requires an accurately modeled semantic
world state that corresponds to the real world environment.
However, during teleoperation, robots are not yet able to
keep track of the semantic state changes that are initiated
by the operator. Thus, the semantic world state at the end of
a teleoperation session is unknown, making it impossible for
the robot to operate autonomously afterwards.

An intuitive analogy for this problem can be derived by
comparing the robot with a sleepwalker. While sleepwalk-
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Kontur-2 METERON SUPVIS Justin

Direct control

Low latency (< 0.03 s)
Low bandwith (256 kBit/s)
Low availability (~10 min)

Supervised autonomy
High latency (> 1 s)

High bandwith (1 MBit/s)
High availability (~23 h)

Fig. 1: The humanoid robots Space Justin and Rollin’ Justin
remotely operated from the International Space Station using
direct control (Kontur-2, left) and supervised autonomy (ME-
TERON SUPVIS Justin, right). Given the varying communi-
cation conditions both control modalities are necessary, yet
direct control prevents the use of supervised autonomy due
to the loss of semantic information. This gap is visualized
as red line in the bottom center.

ing at night, the motor capabilities of the sleepwalker are
intact while at the same time he/she does not perceive the
environment on a conscious level [5], analogous to the robot
whose motors are active without “perceiving” the changes
it exerts on the environment on a semantic level. After
waking up, sleepwalkers tend to be disoriented and they are
usually unable to remember their actions. Similarly, robots
are “disoriented” after they are teleoperated due to the lack
of status updates during teleoperation mode. While visual
servoing may be used to track geometric state changes during
teleoperation [6], it is not robust against occlusion, poor
visibility, and constraint to objects in the field of view.
There is currently no work known to the authors that deals
with semantic state validation for telerobotic manipulation.
Accordingly, this paper proposes an approach to derive
semantic state transitions from robot telemetry retrieved
during teleoperation by means of physics simulations and
State Inference Entities (SIEs).



The contributions of this paper are (i) a software architec-
ture to infer semantic state transitions during robotic teleop-
eration, (ii) the concept of SIEs that allow to extract semantic
knowledge from physics simulations, and (iii) a method to
estimate simulation parameters by means of an evolutionary
algorithm. The developed methods are validated based on
real world robot telemetry recorded during teleoperation of
the humanoid robot Rollin’ Justin.

The remainder of this paper is structured as follows.
Section II gives an overview over related work on the topic,
especially traded control, semantic planning algorithms for
robots and naive physics. Section III proposes a system
concept to tackle the issue of state validation in teleoperation
scenarios with traded control. Section IV presents the SIE
used in the framework for state inference. Section V is dedi-
cated to explaining how the parameters for the simulation
were estimated, aiming at minimizing the reality gap. In
Section VI the system and the parameter estimation method
are evaluated and discussed before a conclusion is drawn and
an outlook is provided in Section VII.

A preliminary version of this work has been presented in
[7], where this paper extends on the parameter estimation
and evaluation of the framework.

II. RELATED WORK

While robots are not yet able to operate fully au-
tonomously, they already possess numerous autonomous
features. Therefore, different approaches emerged that aim
at blending human and robot intelligence in order to create
powerful human-robot teams. Their recurrent idea is to
ease task complexity for the human operator by integrating
autonomous support-features on the robot side, allowing the
user to command robots on different levels of autonomy.
They come in multiple slightly different implementations
(see [8, Tab. 5.2]).

Supervised autonomy is one implementation that allows
the operator to initiate tasks on a high level of abstrac-
tion while the execution is carried out by the robot au-
tonomously [8]. It allows the operator to command the robot
without demanding full attention, thus, freeing resources
of the operator that can be invested on other tasks. In
shared control on the other hand, the robot is controlled
via continuous input on a Human-Robot Interface (HRI) [8],
augmenting the human input e.g. with safeguarding functions
such as autonomous collision avoidance. Robot systems can
also provide both, supervised autonomy and shared control as
in [9]. This combination is called traded control and enables
the operator to command the robot in supervised autonomy
and switch to shared control whenever the robot encounters
an unsolvable situation.

Achieving predefined goals in the supervised autonomy
mode requires the robot to be able to generate and execute
plans. Since goals are rather defined as symbolic states (e.g.
“place the cup on the tray”) than as geometric states (e.g.
“cup at position (x,y,z) with pose («,f,7)”) and since
planning is much easier on the symbolic domain, planning
is mostly performed on a symbolic level, even though it

might be refined on the geometrical domain (e.g. hybrid
planning). Hybrid planning algorithms have been described,
for example, in [10], [11], [12].

On the robotic platform Rollin’ Justin [1] hybrid planning
is enabled by the use of action templates [13], [14]. Ac-
tion templates are action representations that are separated
into a symbolic header, providing the symbolic information
about the action in the planning domain definition language
(PDDL), and the body, grounding the action geometrically
to the robot. Key to semantic planning is the description of
the state transition in the symbolic header.

[15] learn the semantics of a task from raw robot sensor
data. The drawback of this approach is the large amount of
training data needed and the restrictive subgoal property.

Reasoning in intelligent systems still poses an unsolved
problem. While humans employ common sense to deduce
unknown parameters of a problem, robots are not yet able
to do so and demand the specification of every detail of the
problem. Considering the goal of predicting the symbolic
world state after teleoperation (essentially a mapping from
the initial world state and a time series of joint angles to
the new world state), many parameters are included that
are not specified explicitly, such as the physical rules by
which state transitions take place. It is supposed that humans
possess an inherent ability to predict and assess physical
phenomena that is referred to as naive physics [16]. Naive
physics gained impact on Al research with the work of
Hayes [17], [18] who proposed to create a formalization of
everyday physics knowledge that could be used by Als trying
to solve problems that include physics.

The idea of naive physics has recently been refreshed
by [19] who propose the existence of an intuitive physics
engine in the human mind. They also compare the simulation
capabilities in the human brain with physical simulation
engines as used for robot development or computer games.

It is thus not surprising that researchers tried to exploit
the rich intrinsic physical knowledge of physic simulation
engines in order to solve robotics tasks. Johnston and
Williams [20] created a simulation environment to solve,
for example, the egg cracking problem'. Mosenlechner and
Beetz employed the simulation framework Gazebo? in order
to evaluate task execution by simulation [21], to check
possible put-down locations in terms of stability and visi-
bility [22], and to find robot poses that allow object manipu-
lation most easily [23]. The same approach has been used in
[24] to solve the egg cracking problem, and in [25] to infer
task parametrization of vaguely specified instructions.

III. SYSTEM CONCEPT

The proposed framework to infer semantic state transitions
is designed to be as general as possible. However, it was
implemented in connection with the existing system on
Rollin’ Justin that has been described by Leidner et al. in
[13], [14]. In this section we will first present the existing

lhttp://commonsensereasoning.org/problem_page.
html#eggcracking, last retrieved on July 24, 2018
Zhttp://gazebosim.org, last retrieved on July 24, 2018
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system, then elaborate on the proposed framework in general,
and finally present the modules of which it consists.

A. Existing Planning System

The existing planning system is centered around the world
representation module that provides the geometric and sym-
bolic state of the world as well as an interface to query
object-specific information about every object in the world.

Being able to employ the hybrid planning abilities requires
permanent maintenance of the symbolic world state. The
semantic planner, that is invoked first whenever planning
is executed, searches for a series of actions, that enable a
transition from the current semantic state of the world to the
desired state. Once a symbolic plan is found, it is checked
for feasibility with a geometric planner that tries different
solutions and requests a new plan if all solutions fail. A
deviation in the symbolic world state might thus result in
an incorrect series of actions that cannot be executed by the
physical robot.

Updating the symbolic world state during autonomous
operation is straightforward once the initial world state is
known. Whenever an action is executed on an object, the
corresponding action template is queried from the Object
DataBase (ODB). Since the effects of actions on the sym-
bolic world state are stated explicitly in the headers of the
action templates (at least as long as no errors occur during
execution), the new world state can be derived by applying
the effects to the current world state. This process has been
described by Leidner et al. in [13].

However, while being teleoperated, the robot is com-
manded on a low level and does not possess a symbolic
representation of the action the user executes. Thus, the sym-
bolic state of the world cannot be updated automatically but
instead needs to be evaluated from whatever information the
robot is able to acquire. Even a robot that was able to update
its geometric world representation during teleoperation, e.g.
by means of computer vision, would require a mapping of
the geometric state to a symbolic state if it was to perform
autonomous symbolic planning afterwards.

B. Inference Framework

Generally the framework follows a circular pattern. It is,
in the first step, designed to be active during teleoperation
of the robot, thus, modules that cope with planning need not
be considered in this context. An overview is provided in
Fig. 2 showing the interaction between world representation,
simulation engine, inference module, and the ODB. Since
the framework forms a closed loop, the process described
here is able to reach the configuration that it started from. In
concrete terms this means that when starting from a known
world state, by going through the process, the system finishes
in a state where at least an estimate of the world state is
known again. This corresponds to the situation of switching
from autonomous control to teleoperation and back again as
the framework infers the world state.

Starting from the described situation of a known world
state, the world representation is able to initiate the simu-
lation environment to reflect the current world state. Once

initial‘ initial world state *robot
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['filled', 'bottle', 'ketchup']
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Fig. 2: Overview of the framework. The world representation
holds the current state of the world. The simulation engine
computes the new geometric world state from the initial
world state and robot telemetry data. The state inference
module computes the symbolic world state from the result
of the simulation. Information about objects is provided by
the central ODB.

the simulation has been initialized, it receives continuous
input from the robot about its current telemetry and mirrors
it to the simulated robot. Mimicking robot movements, the
simulation computes interactions between the robot and the
environment. Thus, the simulation maps the initial state of
the world and a time series of robot telemetry to a resulting
geometrical world state.

After the teleoperation finishes, the geometric world state
needs to be transformed into a symbolic one. Therefore, the
simulated geometric state of the world in combination with
descriptions of collisions of objects is parsed to the inference
module and inference is invoked. The results of the inference
process are forwarded to the world representation where they
are used to update the world state. This ensures that the world
representation is updated accordingly whenever the robot
switches back from teleoperation mode to autonomous mode.
The knowledge necessary for inferring symbolic states from
geometrical information is attached to the objects themselves
alongside the predicates they provide.

Each of the aforementioned steps, relies on object-specific
information. All object-specific information is stored in the
ODB and queried from the respective modules, as can be
seen in Fig. 2.

An advantage of the system that arises due to its loop-
structure is that we can not only use it to perform the sym-
bolic inference directly after the manipulation finished. In
addition to that, the system can also be employed to generate
on-line estimates of the world state during teleoperation. As
described, the whole process can be viewed as a mapping
from an initial world state and a time series of robot telemetry
to a final world state. Such a mapping can be split up by



introducing an intermediate world state that occurs at time
t. The time series of robot sensor values can be split up into
the values that occurred before ¢, and those afterwards. The
intermediate world state can be inferred from the initial world
state and the sensor values up to time ¢ and the final world
state can be inferred from the intermediate world state and
the second part of the sensor values. Executing this process
recursively, any temporal resolution can be achieved, limited
only by the frequency of the sensor measurements and the
real-time capability of the resulting system. Our experiences
with the framework indicate that the simulation engine forms
the main bottleneck for the overall speed.

C. Simulation Environment

The physical simulation is based on the robot simulation
environment Gazebo [26] in conjunction with the Open Dy-
namics Engine (ODE)?. The framework was augmented by
an interface that allows to change objects in the simulation,
control robot movements, and return simulation results. At
the beginning of a teleoperation session, the simulation is
initialized with the current state of the world that is queried
from the world representation. Information about the objects
present in the environment is requested from the ODB. This
includes meshes as well as physical information like mass,
center of mass, and inertia tensors.

Once the simulation is initialized, the robot in the simula-
tion starts to mirror the movements of the real world robot.
Accurate mirroring is achieved by streaming telemetry data
of the robot (here: the joint angles of the robot) constantly to
the simulation where the joint angles of the simulated robot
are set accordingly.

As soon as the teleoperation finishes, results of the simu-
lation, including object poses, a list of manipulated objects,
and a list of object collisions, are collected and passed to the
interference module.

Interfaces on the world- and robot level have been realized
by creating plugins for Gazebo. As the overall system has
been designed with focus on modularity, the simulation mod-
ule can easily be replaced by any other simulation engine,
only requiring a new adapter to allow for communication
with the other modules.

D. Inference Module

After receiving the data from the simulation module, the
inference process starts with the goal to extract semantic
predicates from the simulated geometric state of the world.
So far we are interested in static attributes of the world, sim-
ilar to the ones in [27], that are evaluated based on the poses
of objects and forces acting between them. Nevertheless, the
framework allows for expanding the input for the inference
module later on. The predicates (unary or n-ary) that are to
be evaluated are bound to the objects in the ODB and so is
the information used for evaluation of predicates. Thus, we
decided to implement the inference knowledge in terms of
State Inference Entities that are stored alongside other object
information in the ODB.

3http://ode.org/, last retrieved on July 24, 2018

The workflow for evaluating predicates is sketched in the
following: in the first step, the inference module selects the
objects on which the predicates are to be evaluated. This set
of objects consists of (i) all objects that have moved during
teleoperation and (ii) all objects that are in collision with an
object from (i). Constraining the set of objects in this way
reduces the computational load of the state inference process
and represents the intuition of updating only the state of those
objects that have been manipulated.

In the second step, the possible predicates and the corre-
sponding SIEs for these objects are queried from the ODB.
The SIEs are evaluated by the state inference module and
return nothing (returning nothing means that the predicate is
not fulfilled) or the parameters of the predicate (meaning that
the predicate holds in a certain parametrization). The results
are collected and used to update the world state.

IV. STATE INFERENCE ENTITIES

The SIEs form a central aspect of the state inference
process. They consist of executable Python code and im-
plement a common interface method executeSnippet
that is called from the state inference module. On calling
this method, all information available to the State Inference
Module is passed as argument to the function and used
to infer the state of the inspected predicate. The function
itself can be very simple, as seen in the pseudocode for the
predicate upright in Algorithm 1 and used in this work,
but it could potentially be any type of classifier. As the design
of the SIEs allows to use the full spectrum of python code,
there is virtually no limitation on the type of classifier. In
the future it is planned to augment the whole system such
that even probabilistic classifiers can be used.

The executeSnippet method returns either nothing
or a list of length three where the first element represents
the object name for which the predicate has been evaluated,
the second element is the name of the predicate, and the
third element is the value of the predicate. For example
["bottle’, ’on’, ’"table’] means that the predi-
cate on of the object bottle will be filled with the value
table. In case the predicate is not fulfilled, the SIE returns
an empty list.

Generally the SIEs are defined for each object and pred-
icate, however, objects that inherit from other objects also
inherit the SIEs. Inherited SIEs can be overwritten by creat-
ing a SIE of the same name in the inherited object.

Algorithm 1 Example implementation of the method
executeSnippet for predicate upright

function EXECUTESNIPPET(self)
zAXxis < self.zAxis
threshold «+ 20
angle <+ angleBetween(zAxis, [0, 0, 1])
result <— angle < threshold
return [“upright”, self.name, result]
end function
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V. ESTIMATING PARAMETERS

In order to test the implementation of the framework, an
initial parameter set for the simulation had to be found. Two
types of approaches had been chosen to estimate the param-
eters: computing physics parameters based on the meshes
of objects and optimizing parameters via an Evolutionary
Strategy (ES) [28].

If the geometry of an object and either the total mass or
the density are known, physical parameters like mass, center
of mass, and the inertia tensor can be computed assuming
a uniform density over the object. We implemented an
algorithm that generates prior estimates of these parameters
for the objects in the ODB.

While some physical parameters can be derived from the
geometry of an object, others such as e.g. friction parameters
are not grounded in geometry. Uncertainties in these param-
eters result in the deviation of simulated behavior from the
behavior observed in real world. This phenomenon is known
as reality gap. Similar to Laue and Hebbel [29] we employed
an evolutionary strategy (ES) to find a set of parameters that
minimizes the reality gap. We focused on optimizing the
friction parameters of two objects (u1, pa, see Section VI)
and the simulation parameters Constraint Force Mixture
(CFM) and Error Reduction Parameter (ERP), ODE-internal
parameters, critical for stability of the simulation.

Evolutionary strategies allow to optimize sets of real-
valued parameters, inspired by evolution in nature. First, gen-
erations of individuals are generated, assessed and selected
according to a fitness function. Then a new generation is
created via mutation and recombination from the selected
individuals. This type of optimization algorithms is found
mostly in problems where no derivative of the error function
with regards to the parameters can be computed [28].

Our optimization applied the (u/pp + A) version of the
ES. Given the dimensionality of the parameter vector D = 4,
we selected A = 10 - D = 40 [30], p = 10 (empirically),
and p = 2 (biologically inspired). Furthermore the mutation
parameter ¢ was tuned by o-self adaptation [31] with 7 =
D=%% =0.5 [32].

Due to randomness in the simulation, each scene was
simulated K = 3 times, yielding a predicted position Ei, , and
orientation IA{M for each object ©+ € 1... N. We defined the
translational error e; as the Root-Mean-Square Error (RMSE)
of the Euclidean distance between predicted and measured
object positions as

Ctik = \/(tzk - fi,k)T (tir — ii,k) (1)

and the rotational error as the RMSE of the geodesic distance
between the predicted and measured rotation on the unit
sphere as [33]

2
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€Rik = 7 Hlog (Ri,kRi,k) HF

with the log operator mapping the rotation matrices from
SO3 to the Lie algebra so3 [34]. These errors are combined

to the total error e; j of object ¢ in run k as

Cik = \/€lintC Chin ©)

The parameter ¢ = 0.01 (empirically) balances the rotational
and translational error. The overall error e of an individual
over all objects and all scenes is computed as

1 N K
e=\| v 2 D @)

i=0 k=0

VI. EVALUATION

The evaluation was performed in a twofold manner. In
a first step the precision of the simulation and the param-
eters resulting from the ES were validated since a precise
simulation forms the basis for the whole framework to be
applicable. In a second step the inference capabilities of the
framework were evaluated based on a small set of objects and
predicates from the ODB. The accompanying video shows
the evaluation procedure.

A. System

The framework was run on a Linux-Desktop PC, running
on a quad-core Intel® Xeon® CPU E5-1630 with 16GB
memory. As simulation environment we used Gazebo 7.7.0
with ODE 0.15.1. Communication between the modules was
enabled by the in-house developed middleware Links-and-
Nodes. For the evaluation of the inference capabilities, the
robot was commanded manually via a 3DCONNEXION
SpaceNavigator(®).

With this setup the simulation was running with a real time
factor around 2.2, allowing us to run the simulation on-line
while the robot was teleoperated.

B. Experiment

In order to assess the precision of the simulation, an
environment consisting of a table and two different sized
boxes was set up. The experiment setup is shown in Fig. 3.
The endeffector of the robot was moved manually in zero
gravity mode such that it interacted with the objects and
telemetry data was recorded. Ground truth was generated by
using the localization capability of Rollin’ Justin, based on

Fig. 3: Overview of the experiment setup.
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Fig. 4: (a), (b), (d), and (e) show the evolution of the simulation parameters. The orange line marks the parameter value of
the best individual, the dark blue line the mean parameter value of all individuals selected as parents for the next generation
and the light blue shaded area marks the 20th - 80th percentile of the parameter values in the selected individuals. (c) depicts
the evolution of the rotational error over time and (f) the evolution of the translational error. The orange line marks the best
overall individual, the dark blue line marks the mean and the blue shaded area the best individual to 80th percentile.

TABLE I: Results of the ES algorithm, comparing best individuals from initial generation and 30th generation.

[ [ CEM | ERP [ p1 [ po [ error rotational eg [ error translational e; | overall error e |
initial generation 0.0021 | 0.5067 | 0.5037 | 0.4184 1.4223 0.2103 0.2539
30th generation 0.0 0.5121 | 0.4937 | 0.4427 1.2381 0.1903 0.2271

AprilTag 2 [35], before and after each trial. Four trials were
recorded: (i) the robot pushing over one box, (ii) the robot
pushing one box sliding over the table, (iii) the robot pushing
one box against another one, and (iv) the robot grasping a
box and placing it on the table again. From this set of trials
trial (iv) had to be excluded since grasping posed a problem
in stability of the simulation at the current status.

The results of the optimization are shown graphically in
Fig. 4 for selected parameters and numerically in Table 1. The
table shows the best individual from the first generation and
after 30 iterations including the parameter set and the errors.
Fig. 4 shows the evolution of the rotational and translational
error as well as selected parameters of those individuals
that “survived” each generation. The plots show that the
mean error of the parents decreased quite steadily while the
minimum error was already reached in generation 14. The
ERP and ps show a rather clear trend in their evolution,
whilst £ stays more or less constant with more variation.

The inference capabilities of the framework were tested
by implementing two predicates, namely on and upright
for the two box objects. Fig. 5 shows the simulation of
the recorded telemetry of pushing over the green box and

the resulting change in the world representation, both for a
simulation with good and bad parametrization. In both cases
the transition from the simulated geometrical world state to
the extracted symbolic world state was performed correctly.

C. Discussion

The proposed framework enables us to keep track of the
symbolic world state during teleoperation. We decided to
split up geometric and symbolic reasoning into two modules,
allowing us to employ a physics simulation and its inherent
physical common sense knowledge to infer state changes on
the geometric level. Using a physic simulation engine brings
the advantage of being able to use highly advanced physical
knowledge without the need to re-implement it. If, in the near
future, physical simulations will make a big leap forward,
the modular design of the framework allows for integrating
a new simulation engine with minimum effort.

The general framework has proven to be able to extract
the predicates on and upright successfully, based solely
on the initial world state and a recorded robot telemetry,
same as would also be available in teleoperation. This marks
a remarkable advance from not being able to update the
symbolic world state during teleoperation at all.
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Fig. 5: Results from two runs with different parametrization. First line shows results from a run in bad parametrization: (a)
before the recorded telemetry is replayed, (b) during replay Rollin’ Justin is in contact with the blue box, (c) after the replay
has finished, and (d) the extracted symbolic world state. Second line shows results from a run in better parametrization: (e)
before replay, (f) during replay, (g) after replay, and (h) the extracted symbolic world state. Generally the transparent blue
box marks the ground truth position of the blue box after the experiment.

The framework also showed to be able to learn from
observation through the use of evolutionary strategies. While
the prediction error decreased slowly over the optimization
process, some simulation- and object properties were adapted
to better fit the observations. Table I shows a decrease in
rotational and translational error by each =~ 10%, while
Fig. 4 reveals that some parameters as the ERP and p5 evolve
with a stable trend. However, with a high number of objects
involved in a scene and a high number of parameters that
can be tuned for each object, the size of each generation
in the ES grows rapidly. If the number of individuals per
generation is too small, the ES might get stuck in some early
local minimum. On the opposite, having a high number of in-
dividuals per generation comes with increased computational
cost. Thus, the evolutionary strategy can right now only be
used for small scenes with a few objects.

The results from Fig. 5 give an impression of how the
simulation and the inference module interact and why the
evolutionary strategy is important for estimating good param-
eters. If the estimated set of parameters is bad, the simulation
predicts an incorrect world state and, thus, the inference
module infers an incorrect world state as in Fig. 5d compared
to Fig. 5h.

The concept of inferring the symbolic world state is based
on State Inference Entities. Being implemented as mere
Python code, SIEs offer a flexible interface for the inference
process since the whole range of possibilities offered by the
high-level programming language can be used. Furthermore,
SIEs are stored attached to objects, resulting in user-friendly
modularity and maintainability.

VII. CONCLUSION AND OUTLOOK

With the proposed framework we come a step closer to
awake the sleepwalking robot and enable it to keep track
of the changes it induces in its environment, thus, providing
the ground for smooth transmissions between teleoperation
and (supervised) autonomous behavior. The framework can
be used for teleoperation scenarios where the objects in the
scene are well known and where the physics of the overall
scene are rather stable.

The proposed framework does not relay on constantly
monitoring object positions with cameras but instead aims
at predicting their behavior based on a physical simulation.
This approach is motivated by the facts that especially visual
sensors are constrained on a field of view and that sensors
are likely to fail because of different reasons while our
approach keeps a model even of objects that are not visible
and is robust to sensor failures. It could thus complement
vision based scene understanding. On the other hand, using
a physics engine comes with the disadvantage of requiring
physically accurate models of the objects.

Following this work we see many opportunities and open
questions that can be investigated further. Namely they are:

The input data for the simulation so far consists of the
joint angles of the robot. A robot typically has a multitude
of sensors, thus, our goal is to use more input modalities
to refine the simulation. Especially force measurements and
visual input could be integrated into the propriosimulation
framework.

In the inference module, predicates and states in the world
are assumed absolute or discrete. As all inference processes



are subject to noise and uncertainty, the system could be
extended to represent this uncertainty by returning proba-
bilities for states. The simulation could be invoked multiple
times with initial conditions sampled from the probabilistic
distributions of each parameter, resulting in a distribution
over possible states after teleoperation.

Furthermore, the system could be used in the autonomous
operation mode to support evaluation of tasks execution.
Similar as in the teleoperation mode, the simulation could
be fed with the recorded data of the robot in real time in
order to infer the outcome of an action.
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