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Motivation 

Approach & Methods 
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Retail prices, levelized cost of solar electricity (LCOE) and feed-
in tariff for residential consumers in Germany (stylized) [1] 

RES Surcharge

Grid fees et al.

Taxes

Wholesale Price

 The fall of PV and battery prices made local self-generation 
and consumption financially attractive for households  

 Prosumers save grid fees, consumers need to compensate 

 Self-consumption and feed-in is not in line with optimal 
system operation ; no scarcity signals are transmitted 

 How can system-friendly behavior be incentivized? 

Technical modelling: 

 Compute “egoistic“ storage dispatch, deriving 
grid load and feed-in profiles for many PV 
battery systems configurations  

 Input: high-resolution household load (HTW 
Berlin) and PV generation  profiles (DLR REMix-
EnDat) 

 

 

Uptake modelling: 
 Compare utility measure derived from Prospect 

model [3] based on [4] with historic uptake data 

Economic Assessment: 

 Compute net present value (NPV) matrices 

 Input: remunerations, electricity rate strucuture… 

 PV and battery cost scenarios 

The AMIRIS model(stylized) [2] 

Objectives 

 Increasing shares of self-consumption 
can have a parasitic, prisoner-dilemma 
like effect on the overall system.  

 However, levy and network charges 
structure have a major influence on 
system-friendliness.  

 Prospective profitability of PV battery 
systems is taken to endogenously 
simulate storage dispatch and 
deployment under different regulatory 
scenarios. 

 PV battery deployment dynamics can be 
reproduced taking the anticipation of 
absolute profitability, and its change.  

 We find that capacity based tariffs 
reduce the prospective uptake 
considerably.  
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LCOE 

Feed-in Tariff 

LCOE 

Feed-in Tariff 

The assessment of PV battery system deployment 
and dispatch requires an actor-based perspective in 
a system context. Next, system effects on the 
demand side will be studied in the framework of an 
agent-based electricity market model [2], with an 
internal representation of market prices (hourly 
basis, dynamically calculated in dependence of the 
generation mix). 
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Results 

Market Model Integration: 
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Summary & Outlook 

 Integrating self-
consumption and 
prosumer behavior 
into an agent-based 
model of the German 
electricity system 
(AMIRIS) 

 Assessing the 
prospective uptake of 
PV batteries in an 
overall system context 

 Studying different 
rate designs (capacity 
based tariffs, real-
time pricing, time-
variable feed-in 
remuneration) to 
regulate deployment 
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