Real-time benefit assessment in production of fiber reinforced polymers (FRPs)

Implementation of Industry 4.0 in benefit assessment

Dr. Philipp Hilmer; Ali Al-Lami, Manuel Buggisch
8th EASN-CEAS International Workshop on Manufacturing for Growth & Innovation
EFFICOMP Session, Glasgow

6th September 2018
Table of contents

• Introduction
 • Motivation
 • Concept of the smart-work-station (SWS)
• Realization of SWS
 • Data collection in SWS
 • Data processing by SWS
• Eco-efficiency assessment model (EEAM)
 • Process modeling in EEAM
 • Process assessment by EEAM
• Implementation of SWS
• Outlook
Motivation 1

Benefit assessment

- Economic
- Quality
- Ecological
- Social
- Time to market

FRP

Dr. Philipp Hilmer; Ali Al-Lami

6th September 2018
Motivation 2

Design | Manufacturing | Assembly | Operation | End-of-Life
Motivation 3

- Conventional data collection
 - Time consuming
 - Offline data processing /assessment
 - Dedicated collector
 - Dependent quality
 - FRP production has in general a low degree of automation (DoA)
 - High DoA is a prerequisite of digitalization in data collection

- SWS
 - Automated, sensor-based
 - Real-time data processing
 - Real-time impact assessment
 - Process automation is not a prerequisite
 - Product and process independent

Framework adopted from ISO-14040
Concept of the smart-work-station (SWS)

- Elementary flow definition
 - Fiber
 - Matrix
 - Core material
 - Ancillaries
 - Labor
 - Electricity
 - Equipment
- Initial data
 - What
 - How much
 - When
 - Where
- Regardless of DoA

Concept of SWS: example of preforming with various DoA
Data collection in SWS

- Sensors
 - Visual recognition
 - Infrared (IR) camera
 - Integrated scales
 - Electricity meter
- Technology independent
- Product independent

1- Mold dedicated scale:
 - How many workers
 - How long
 - Where
 - When

2- Integrated digital scales:
 - How much material
 - Where
 - When

3- Optical detection:
 - What material
 - Where
 - When

4- Electricity meter:
 - Which equipment
 - How long
 - When
 - How much energy

5- IR-Camera:
 - How many workers
 - How long
 - Where
 - When

Sensors of SWS: example of preforming with various DoA
Data processing by SWS

- Visual recognition
 - Elementary flows (~350)
 - Pictures
 - QR-Codes
 - Database (DB)
 - Machine learning
 - Recognition
- IR-Camera
 - Work duration
 - Labor count
 - Where
 - Which activity
- Product independent

Work time per activity (NACOR)

Optical recognition
Process modeling in EEAM

- Production of FRP
 - Manufacturing
 - Assembly
 - Quality assurance

- Process
 - Unit processes
 - Elementary flows
 - Intermediate flows

Model example: Multi-material process

Multi-Material leading edge (LE)
Process assessment by EEAM

- Aspects
 - Economic
 - Ecological
 - Time to market
 - Resources
- Key result indicators (KRI)
 - kg CO₂
 - €
 - hh:mm
 - kg waste/material
 - kW

Real-time benefit assessment: SWS & EEAM
Implementation of SWS

- Aerospace industry
 - Project NACOR: Preforming and Assembly
 - Preforming of spars with high DoA
- Energy
 - Project SmartBlades2: Manufacturing of a 20m rotor-blade
Outlook

- SWS development
 - Material DB enhancement
 - Stability
 - User interface
- SWS implementation
 - Further projects: EFFICOMP
 - Further unit processes
 - Other techniques
 - More structures
 - External partners
- SWS-based design to cost (DTC)
 - Parametrization of SWS results
 - Assessment-based estimation
 - Reliable estimation results
Thank you for your attention!

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
German Aerospace Center
Institute of Composite Structures and Adaptive Systems | FA-FVT |
Lilienthalplatz 7 | 38108 Braunschweig | Germany

Dr. Philipp Hilmer
Tel. +49 531 295 2318
Philipp.hilmer@dlr.de
www.DLR.de
Literatures